| from typing import Iterable, Any, Optional, Callable, Union, List |
| from .optimizer import Optimizer |
| |
| class _LRScheduler: |
| optimizer: Optimizer = ... |
| base_lrs: List[float] = ... |
| last_epoch: int = ... |
| verbose: bool = ... |
| def __init__(self, optimizer: Optimizer, last_epoch: int = ..., verbose: bool = ...) -> None: ... |
| def state_dict(self) -> dict: ... |
| def load_state_dict(self, state_dict: dict) -> None: ... |
| def get_last_lr(self) -> List[float]: ... |
| def get_lr(self) -> float: ... |
| def step(self, epoch: Optional[int] = ...) -> None: ... |
| def print_lr(self, is_verbose: bool, group: dict, lr: float, epoch: Optional[int] = ...) -> None: ... |
| |
| class LambdaLR(_LRScheduler): |
| lr_lambdas: List[Callable[[int], float]] = ... |
| def __init__(self, optimizer: Optimizer, lr_lambda: Union[Callable[[int], float], List[Callable[[int], float]]], last_epoch: int = ..., verbose: bool = ...) -> None: ... |
| |
| class MultiplicativeLR(_LRScheduler): |
| lr_lambdas: List[Callable[[int], float]] = ... |
| def __init__(self, optimizer: Optimizer, lr_lambda: Union[Callable[[int], float], List[Callable[[int], float]]], last_epoch: int = ..., verbose: bool = ...) -> None: ... |
| |
| class StepLR(_LRScheduler): |
| step_size: int = ... |
| gamma: float = ... |
| def __init__(self, optimizer: Optimizer, step_size: int, gamma: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ... |
| |
| class MultiStepLR(_LRScheduler): |
| milestones: Iterable[int] = ... |
| gamma: float = ... |
| def __init__(self, optimizer: Optimizer, milestones: Iterable[int], gamma: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ... |
| |
| class ConstantLR(_LRScheduler): |
| factor: float = ... |
| total_iters: int = ... |
| def __init__(self, optimizer: Optimizer, factor: float=..., total_iters: int=..., last_epoch: int=..., verbose: bool = ...) -> None: ... |
| |
| class LinearLR(_LRScheduler): |
| start_factor: float = ... |
| end_factor: float = ... |
| total_iters: int = ... |
| def __init__(self, optimizer: Optimizer, start_factor: float=..., end_factor: float= ..., total_iters: int= ..., last_epoch: int= ..., verbose: bool = ...) -> None: ... |
| |
| class ExponentialLR(_LRScheduler): |
| gamma: float = ... |
| def __init__(self, optimizer: Optimizer, gamma: float, last_epoch: int = ..., verbose: bool = ...) -> None: ... |
| |
| class ChainedScheduler(_LRScheduler): |
| def __init__(self, schedulers: List[_LRScheduler]) -> None: ... |
| |
| class SequentialLR(_LRScheduler): |
| def __init__(self, optimizer: Optimizer, schedulers: List[_LRScheduler], milestones: List[int], last_epoch: int=..., verbose: bool=...) -> None: ... |
| |
| class CosineAnnealingLR(_LRScheduler): |
| T_max: int = ... |
| eta_min: float = ... |
| def __init__(self, optimizer: Optimizer, T_max: int, eta_min: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ... |
| |
| class ReduceLROnPlateau: |
| factor: float = ... |
| optimizer: Optimizer = ... |
| min_lrs: List[float] = ... |
| patience: int = ... |
| verbose: bool = ... |
| cooldown: int = ... |
| cooldown_counter: int = ... |
| mode: str = ... |
| threshold: float = ... |
| threshold_mode: str = ... |
| best: Optional[float] = ... |
| num_bad_epochs: Optional[int] = ... |
| mode_worse: Optional[float] = ... |
| eps: float = ... |
| last_epoch: int = ... |
| def __init__(self, optimizer: Optimizer, mode: str = ..., factor: float = ..., patience: int = ..., threshold: float = ..., threshold_mode: str = ..., cooldown: int = ..., min_lr: Union[List[float], float] = ..., eps: float = ..., verbose: bool = ...) -> None: ... |
| def step(self, metrics: Any, epoch: Optional[int] = ...) -> None: ... |
| @property |
| def in_cooldown(self) -> bool: ... |
| def is_better(self, a: Any, best: Any) -> bool: ... |
| def state_dict(self) -> dict: ... |
| def load_state_dict(self, state_dict: dict) -> None: ... |
| |
| class CyclicLR(_LRScheduler): |
| max_lrs: List[float] = ... |
| total_size: float = ... |
| step_ratio: float = ... |
| mode: str = ... |
| gamma: float = ... |
| scale_mode: str = ... |
| cycle_momentum: bool = ... |
| base_momentums: List[float] = ... |
| max_momentums: List[float] = ... |
| def __init__(self, optimizer: Optimizer, base_lr: Union[float, List[float]], max_lr: Union[float, List[float]], step_size_up: int = ..., step_size_down: Optional[int] = ..., mode: str = ..., gamma: float = ..., scale_fn: Optional[Callable[[float], float]] = ..., scale_mode: str = ..., cycle_momentum: bool = ..., base_momentum: float = ..., max_momentum: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ... |
| def scale_fn(self, x: Any) -> float: ... |
| |
| class CosineAnnealingWarmRestarts(_LRScheduler): |
| T_0: int = ... |
| T_i: int = ... |
| T_mult: Optional[int] = ... |
| eta_min: Optional[float] = ... |
| T_cur: Any = ... |
| def __init__(self, optimizer: Optimizer, T_0: int, T_mult: int = ..., eta_min: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ... |
| def step(self, epoch: Optional[Any] = ...): ... |
| |
| class OneCycleLR(_LRScheduler): |
| total_steps: int = ... |
| anneal_func: Callable[[float, float, float], float] = ... |
| cycle_momentum: bool = ... |
| use_beta1: bool = ... |
| def __init__(self, optimizer: Optimizer, max_lr: Union[float, List[float]], total_steps: int = ..., epochs: int = ..., steps_per_epoch: int = ..., pct_start: float = ..., anneal_strategy: str = ..., cycle_momentum: bool = ..., base_momentum: Union[float, List[float]] = ..., max_momentum: Union[float, List[float]] = ..., div_factor: float = ..., final_div_factor: float = ..., three_phase: bool = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ... |
| |
| class PolynomialLR(_LRScheduler): |
| total_iters: int = ... |
| power: float = ... |
| def __init__(self, optimizer: Optimizer, total_iters: int = ..., power: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ... |