blob: e6c99780059bff12a496991377d88ff1c44f8064 [file] [log] [blame]
import argparse
import os
import pathlib
from collections import defaultdict
from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Sequence, TextIO, Tuple, Union
import yaml
# Parse native_functions.yaml into a sequence of NativeFunctions and Backend Indices.
from torchgen import dest
from torchgen.api import cpp as aten_cpp
from torchgen.api.types import CppSignature, CppSignatureGroup, CType, NamedCType
from torchgen.context import method_with_native_function, with_native_function_and_index
from torchgen.executorch.api import et_cpp
from torchgen.executorch.api.custom_ops import (
ComputeNativeFunctionStub,
gen_custom_ops_registration,
)
from torchgen.executorch.api.types import contextArg, ExecutorchCppSignature
from torchgen.executorch.api.unboxing import Unboxing
from torchgen.gen import (
get_custom_build_selector,
get_native_function_declarations,
get_native_function_schema_registrations,
LineLoader,
parse_native_yaml,
ParsedYaml,
)
from torchgen.model import (
BackendIndex,
BackendMetadata,
DispatchKey,
is_cuda_dispatch_key,
Location,
NativeFunction,
NativeFunctionsGroup,
OperatorName,
Variant,
)
from torchgen.selective_build.selector import SelectiveBuilder
from torchgen.utils import (
context,
FileManager,
make_file_manager,
mapMaybe,
NamespaceHelper,
)
def _sig_decl_wrapper(sig: Union[CppSignature, ExecutorchCppSignature]) -> str:
"""
A wrapper function to basically get `sig.decl(include_context=True)`.
For ATen kernel, the codegen has no idea about ET contextArg, so we
use this wrapper to add it.
"""
if isinstance(sig, ExecutorchCppSignature):
return sig.decl()
returns_type = aten_cpp.returns_type(sig.func.returns).cpp_type()
cpp_args = [a.decl() for a in sig.arguments()]
cpp_args_str = ", ".join([contextArg.decl()] + cpp_args)
sig_decl = f"{returns_type} {sig.name()}({cpp_args_str})"
return sig_decl
def static_dispatch(
sig: Union[CppSignature, ExecutorchCppSignature],
f: NativeFunction,
backend_indices: List[BackendIndex],
) -> str:
"""
For a given `NativeFunction`, find out the corresponding native function and dispatch to it. If zero or more than one
native function exists, error out. A simplified version of register_dispatch_key.py
Arguments:
sig: A CppSignature for this native function we want to use.
f: NativeFunction to generate static dispatch.
backend_indices: All available backends.
Return:
C++ code to call backend-specific functions, e.g., "return at::native::add(self, other, scale);"
"""
if len(backend_indices) == 0 or f.manual_kernel_registration:
return ""
backends = [b for b in backend_indices if b.has_kernel(f)]
static_block = None
if len(backends) == 1:
backend_metadata = backends[0].get_kernel(f)
if backend_metadata:
args = ", ".join(a.name for a in sig.arguments())
# Here we are assuming there's no difference between CppSignature and NativeSignature for Executorch.
static_block = f"return ::{backend_metadata.cpp_namespace}::{backend_metadata.kernel}({args});"
else:
static_block = f"""
ET_ASSERT_UNREACHABLE_MSG("The number of native function(s) binding to {f.func.name} is {len(backends)}.");
"""
return f"""
// {f.namespace}::{f.func}
TORCH_API inline {_sig_decl_wrapper(sig)} {{
{static_block}
}}
"""
# Generates Functions.h, which provides the functional public C++ API,
# and the scaffolding to call into the dispatcher from these functions.
@dataclass(frozen=True)
class ComputeFunction:
static_dispatch_backend_indices: List[BackendIndex]
selector: SelectiveBuilder
use_aten_lib: bool
is_custom_op: Callable[[NativeFunction], bool]
@method_with_native_function
def __call__(self, f: NativeFunction) -> Optional[str]:
if not self.selector.is_root_operator(f"{f.namespace}::{f.func.name}"):
return None
if Variant.function not in f.variants:
return None
sig: Union[CppSignature, ExecutorchCppSignature] = (
CppSignatureGroup.from_native_function(
f, method=False, fallback_binding=f.manual_cpp_binding
).most_faithful_signature()
if self.use_aten_lib
else ExecutorchCppSignature.from_native_function(f)
)
if self.use_aten_lib and not self.is_custom_op(f):
comma = ", "
return f"""
// {f.namespace}::{f.func}
TORCH_API inline {_sig_decl_wrapper(sig)} {{
return at::{sig.name()}({comma.join(e.name for e in sig.arguments())});
}}
"""
else:
return static_dispatch(
sig,
f,
backend_indices=self.static_dispatch_backend_indices,
)
# Generates RegisterCodegenUnboxedKernels.cpp.
@dataclass(frozen=True)
class ComputeCodegenUnboxedKernels:
selector: SelectiveBuilder
use_aten_lib: bool
@method_with_native_function
def __call__(self, f: NativeFunction) -> str:
if not self.selector.is_root_operator(f"{f.namespace}::{f.func.name}"):
return ""
sig: Union[CppSignature, ExecutorchCppSignature]
argument_type_gen: Callable[..., NamedCType]
return_type_gen: Callable[..., CType]
if self.use_aten_lib:
sig = CppSignatureGroup.from_native_function(
f, method=False, fallback_binding=f.manual_cpp_binding
).most_faithful_signature()
argument_type_gen = aten_cpp.argumenttype_type
return_type_gen = aten_cpp.returns_type
arguments = sig.arguments()
else:
sig = ExecutorchCppSignature.from_native_function(f)
argument_type_gen = et_cpp.argumenttype_type
return_type_gen = et_cpp.returns_type
arguments = sig.arguments(include_context=False)
# parse arguments into C++ code
binding_list, code_list = Unboxing(
argument_type_gen=argument_type_gen
).convert_arguments(arguments)
# for each C++ argument, generate the conversion code
code_connector = "\n\t"
arg_connector = ", "
args_str = f"{arg_connector.join(e.name for e in binding_list)}"
if len(f.func.returns) == 0:
if len(f.func.arguments.out) == 0:
raise Exception(
f"Can't handle native function {f.func} with no returns and no out yet."
)
out = f.func.arguments.out[0]
return_assignment = f"""stack[{len(binding_list)}] = &{out.name};"""
ret_prefix = ""
else:
if len(f.func.arguments.out) == 0:
return_assignment = (
f"""*stack[{len(binding_list)}] = EValue(result_);"""
)
ret_prefix = return_type_gen(f.func.returns).cpp_type() + " result_ = "
else:
return_assignment = ""
ret_prefix = ""
return f"""
Operator(
"{f.namespace}::{f.func.name}",
[]({contextArg.defn()}, EValue** stack) {{
{code_connector.join(code_list)}
EXECUTORCH_SCOPE_PROF("native_call_{f.func.name}");
{ret_prefix}torch::executor::{f.namespace}::{sig.name()}({"context, "}{args_str});
{return_assignment}
}}
),
"""
def gen_unboxing(
*,
native_functions: Sequence[NativeFunction],
cpu_fm: FileManager,
selector: SelectiveBuilder,
use_aten_lib: bool,
) -> None:
def key_func(fn: Union[NativeFunction, NativeFunctionsGroup]) -> str:
return fn.root_name
cpu_fm.write_sharded(
"RegisterCodegenUnboxedKernels.cpp",
native_functions,
key_fn=key_func,
env_callable=lambda fn: {
"unboxed_ops": [ComputeCodegenUnboxedKernels(selector, use_aten_lib)(fn)],
},
num_shards=1,
sharded_keys={"unboxed_ops"},
)
@with_native_function_and_index
def compute_native_function_declaration(
g: Union[NativeFunctionsGroup, NativeFunction], backend_index: BackendIndex
) -> List[str]:
assert isinstance(g, NativeFunction)
sig = ExecutorchCppSignature.from_native_function(f=g)
metadata = backend_index.get_kernel(g)
if metadata is None:
return []
prefix = "static" if backend_index.external else "TORCH_API"
# for kernels in lean mode, we declare two versions, one with context and one without.
# In the end we will cleanup the unused one.
return [
f"{prefix} {sig.decl(name=metadata.kernel)};",
f"{prefix} {sig.decl(name=metadata.kernel, include_context=False)};",
]
def gen_functions_declarations(
*,
native_functions: Sequence[NativeFunction],
static_dispatch_idx: List[BackendIndex],
selector: SelectiveBuilder,
use_aten_lib: bool,
custom_ops_native_functions: Optional[Sequence[NativeFunction]] = None,
) -> str:
"""
Generates namespace separated C++ function API inline declaration/definitions.
Native functions are grouped by namespaces and the generated code is wrapped inside
namespace blocks.
E.g., for `custom_1::foo.out` in yaml file we will generate a C++ API as a symbol
in `torch::executor::custom_1::foo_out`. This way we avoid symbol conflict when
the other `custom_2::foo.out` is available.
"""
ns_grouped_functions = defaultdict(list)
for native_function in native_functions:
ns_grouped_functions[native_function.namespace].append(native_function)
functions_declarations = ""
newline = "\n"
for namespace in ns_grouped_functions:
ns_helper = NamespaceHelper(
namespace_str=namespace,
entity_name="",
max_level=3,
)
declarations = list(
mapMaybe(
ComputeFunction(
static_dispatch_backend_indices=static_dispatch_idx,
selector=selector,
use_aten_lib=use_aten_lib,
is_custom_op=lambda f: custom_ops_native_functions is not None
and f in custom_ops_native_functions,
),
ns_grouped_functions[namespace],
)
)
functions_declarations += f"""
{ns_helper.prologue}
{newline.join(declarations)}
{ns_helper.epilogue}
"""
return functions_declarations
def gen_headers(
*,
native_functions: Sequence[NativeFunction],
gen_custom_ops_header: bool,
custom_ops_native_functions: Sequence[NativeFunction],
static_dispatch_idx: List[BackendIndex],
selector: SelectiveBuilder,
backend_indices: Dict[DispatchKey, BackendIndex],
cpu_fm: FileManager,
use_aten_lib: bool,
) -> None:
"""Generate headers.
Args:
native_functions (Sequence[NativeFunction]): a collection of NativeFunction for ATen ops.
gen_custom_ops_header (bool): whether we should generate CustomOpsNativeFunctions.h
custom_ops_native_functions (Sequence[NativeFunction]): a collection of NativeFunction for custom ops.
static_dispatch_idx (List[BackendIndex]): kernel collection
selector (SelectiveBuilder): for selective build
backend_indices (Dict[DispatchKey, BackendIndex]): kernel collection TODO (larryliu): merge with static_dispatch_idx
cpu_fm (FileManager): file manager manages output stream
use_aten_lib (bool): whether we are generating for PyTorch types or Executorch types.
"""
aten_headers = ["#include <ATen/Functions.h>"]
if gen_custom_ops_header:
cpu_fm.write_with_template(
"CustomOpsNativeFunctions.h",
"NativeFunctions.h",
lambda: {
"nativeFunctions_declarations": get_native_function_declarations(
grouped_native_functions=custom_ops_native_functions,
backend_indices=backend_indices,
native_function_decl_gen=dest.compute_native_function_declaration,
),
},
)
aten_headers.append('#include "CustomOpsNativeFunctions.h"')
cpu_fm.write(
"Functions.h",
lambda: {
"static_dispatch_extra_headers": aten_headers
if use_aten_lib
else ['#include "NativeFunctions.h"'],
"Functions_declarations": gen_functions_declarations(
native_functions=native_functions,
static_dispatch_idx=static_dispatch_idx,
selector=selector,
use_aten_lib=use_aten_lib,
custom_ops_native_functions=custom_ops_native_functions,
),
},
)
cpu_fm.write(
"NativeFunctions.h",
lambda: {
"nativeFunctions_declarations": get_native_function_declarations(
grouped_native_functions=native_functions,
backend_indices=backend_indices,
native_function_decl_gen=dest.compute_native_function_declaration
if use_aten_lib
else compute_native_function_declaration,
),
},
)
def gen_custom_ops(
*,
native_functions: Sequence[NativeFunction],
selector: SelectiveBuilder,
backend_indices: Dict[DispatchKey, BackendIndex],
cpu_fm: FileManager,
rocm: bool,
) -> None:
dispatch_key = DispatchKey.CPU
backend_index = backend_indices[dispatch_key]
(
anonymous_definition,
static_init_dispatch_registrations,
) = gen_custom_ops_registration(
native_functions=native_functions,
selector=selector,
backend_index=backend_index,
rocm=rocm,
)
cpu_fm.write_with_template(
f"Register{dispatch_key}CustomOps.cpp",
"RegisterDispatchKeyCustomOps.cpp",
lambda: {
"ops_headers": '#include "CustomOpsNativeFunctions.h"',
"DispatchKey": dispatch_key,
"dispatch_namespace": dispatch_key.lower(),
"dispatch_namespaced_definitions": "",
"dispatch_anonymous_definitions": anonymous_definition,
"static_init_dispatch_registrations": static_init_dispatch_registrations,
},
)
cpu_fm.write_with_template(
f"Register{dispatch_key}Stub.cpp",
"RegisterDispatchKeyCustomOps.cpp",
lambda: {
"ops_headers": "",
"DispatchKey": dispatch_key,
"dispatch_namespace": dispatch_key.lower(),
"dispatch_namespaced_definitions": "",
"dispatch_anonymous_definitions": list(
mapMaybe(ComputeNativeFunctionStub(), native_functions)
),
"static_init_dispatch_registrations": static_init_dispatch_registrations,
},
)
(
aten_schema_registrations,
schema_registrations,
) = get_native_function_schema_registrations(
native_functions=native_functions,
schema_selector=selector,
)
cpu_fm.write(
"RegisterSchema.cpp",
lambda: {
"schema_registrations": schema_registrations,
"aten_schema_registrations": aten_schema_registrations,
},
)
def translate_native_yaml(
tags_yaml_path: str,
aten_yaml_path: str,
native_yaml_path: Optional[str],
use_aten_lib: bool,
out_file: TextIO,
) -> None:
"""Translates Executorch DSL dialect to use the same syntax as
native_functions.yaml. The major difference is that Executorch DSL dialect
supports "op" key, where it refers to the operator name in native_functions.yaml.
For example, a functions.yaml may have the following entry:
- op: add.out
...
It needs to be translated to the following:
- func: add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
...
We go in aten_yaml_path and find the operator schema for "add.out" and add it
to the original functions.yaml. We also add required field "variants", where for
Executorch it will always be "function".
For ATen mode we don't have to do the translation because native_yaml_path is
the same as native_functions.yaml.
Args:
tags_yaml_path: Path to a tags.yaml file to satisfy codegen parsing.
It is not optional.
aten_yaml_path: Path to ATen operator yaml file native_functions.yaml.
native_yaml_path: Path to a functions.yaml file to parse.
If the path does not exist in the filesystem, it is treated as an
empty file. If `custom_ops_yaml_path` exists, the contents of that
file are appended to the yaml input to be parsed.
use_aten_lib: We use this flag to determine if we want to generate native
functions. In ATen mode we should generate out= variants.
out_file: The IO object that we are writing into.
Returns:
None
"""
if use_aten_lib:
with open(aten_yaml_path, "r") as aten_yaml:
out_file.writelines(aten_yaml.readlines())
return
aten_parsed_yaml = parse_native_yaml(
aten_yaml_path,
tags_yaml_path,
None,
skip_native_fns_gen=False,
)
aten_native_functions = aten_parsed_yaml.native_functions
schema_dict = {
f"{f.namespace}::{f.func.name}": str(f.func) for f in aten_native_functions
}
if (
not native_yaml_path
or not os.path.exists(native_yaml_path)
or os.stat(native_yaml_path).st_size == 0
):
return
with open(native_yaml_path, "r") as native_yaml:
native_es = yaml.load(native_yaml, Loader=LineLoader)
if not native_es:
return
for e in native_es:
assert isinstance(e.get("__line__"), int), e
loc = Location(native_yaml_path, e.pop("__line__"))
with context(lambda: f"in {loc}:\n "):
if "variants" not in e:
e["variants"] = "function"
if "func" in e:
continue
assert isinstance(e.get("op"), str), e
opname = e.pop("op")
if "::" not in opname:
opname = "aten::" + opname
assert opname in schema_dict
e["func"] = schema_dict.get(opname)
yaml.dump(native_es, out_file, width=1000)
def convert_backend_indices(
bs: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]]
) -> Dict[DispatchKey, BackendIndex]:
indices: Dict[DispatchKey, BackendIndex] = defaultdict(
lambda: BackendIndex(
dispatch_key=DispatchKey.Undefined,
use_out_as_primary=True,
external=False,
device_guard=False,
index={},
)
)
for k, v in bs.items():
indices[k] = BackendIndex(
dispatch_key=k,
use_out_as_primary=True,
external=False,
# Only cuda-like devices in tree require device guards
device_guard=is_cuda_dispatch_key(k),
index=v,
)
return indices
def parse_yaml(
path: Optional[str],
tags_yaml_path: str,
function_filter: Callable[[NativeFunction], bool],
skip_native_fns_gen: bool = False,
) -> Tuple[
List[NativeFunction], Dict[DispatchKey, Dict[OperatorName, BackendMetadata]]
]:
if path and os.path.exists(path) and os.stat(path).st_size > 0:
parsed_yaml = parse_native_yaml(
path,
tags_yaml_path,
None,
skip_native_fns_gen=skip_native_fns_gen,
)
native_functions = list(filter(function_filter, parsed_yaml.native_functions))
op_names = [f.func.name for f in native_functions]
def map_index(
m: Dict[OperatorName, BackendMetadata]
) -> Dict[OperatorName, BackendMetadata]:
return {op: m[op] for op in m if op in op_names}
backend_indices = {
k: map_index(b.index) for (k, b) in parsed_yaml.backend_indices.items()
}
return native_functions, backend_indices
else:
return [], {}
def parse_yaml_files(
tags_yaml_path: str,
aten_yaml_path: str,
native_yaml_path: Optional[str],
custom_ops_yaml_path: Optional[str],
selector: SelectiveBuilder,
use_aten_lib: bool,
) -> Tuple[ParsedYaml, Optional[ParsedYaml]]:
"""Parses functions.yaml and custom_ops.yaml files.
Args:
tags_yaml_path: Path to a tags.yaml file to satisfy codegen parsing.
It is not optional.
aten_yaml_path: Path to ATen operator yaml file native_functions.yaml.
native_yaml_path: Path to a functions.yaml file to parse.
If the path does not exist in the filesystem, it is treated as an
empty file. If `custom_ops_yaml_path` exists, the contents of that
file are appended to the yaml input to be parsed.
custom_ops_yaml_path: Path to a custom_ops.yaml file to parse. If
the path does not exist in the filesystem, it is ignored.
selector: For selective build.
use_aten_lib: We use this flag to determine if we want to generate native
functions. In ATen mode we should generate out= variants.
Returns:
A tuple with two elements:
[0]: The parsed results of concatenating the contents of
`native_yaml_path` and `custom_ops_yaml_path`.
[1]: The parsed results of the contents of `custom_ops_yaml_path`, if
present. If not present, None.
"""
import tempfile
# only include selected ops, this is because we want to avoid
def function_filter(f: NativeFunction) -> bool:
return selector.is_native_function_selected(f)
with tempfile.TemporaryDirectory() as tmpdirname:
translated_yaml_path = os.path.join(tmpdirname, "translated.yaml")
with open(translated_yaml_path, "w") as translated:
translate_native_yaml(
tags_yaml_path,
aten_yaml_path,
native_yaml_path,
use_aten_lib,
translated,
)
translated_functions, translated_backend_indices = parse_yaml(
translated_yaml_path, tags_yaml_path, function_filter, not use_aten_lib
)
custom_ops_functions, custom_ops_backend_indices = parse_yaml(
custom_ops_yaml_path, tags_yaml_path, function_filter, True
)
combined_functions = translated_functions + custom_ops_functions
combined_backend_indices: Dict[
DispatchKey, Dict[OperatorName, BackendMetadata]
] = defaultdict(dict)
combined_backend_indices.update(translated_backend_indices)
for dk in custom_ops_backend_indices:
if dk not in combined_backend_indices:
combined_backend_indices.update({dk: custom_ops_backend_indices[dk]})
else:
combined_backend_indices[dk] = {
**combined_backend_indices[dk],
**custom_ops_backend_indices[dk],
}
combined_yaml = ParsedYaml(
combined_functions, convert_backend_indices(combined_backend_indices)
)
custom_ops_parsed_yaml = ParsedYaml(
custom_ops_functions, convert_backend_indices(custom_ops_backend_indices)
)
return combined_yaml, custom_ops_parsed_yaml
def main() -> None:
parser = argparse.ArgumentParser(description="Generate operator source files")
# Although we don't refer to --source-path directly, make_file_manager()
# expects it to point to a directory that contains a templates/ subdirectory
# containing the file templates.
parser.add_argument(
"-s",
"--source-path",
help="path to source directory for kernel templates",
)
parser.add_argument(
"--functions-yaml-path",
"--functions_yaml_path",
help="path to the functions.yaml file to use. Optional, but at least "
"one of --functions-yaml-path and --custom-ops-yaml-path must be "
"specified.",
)
parser.add_argument(
"--custom-ops-yaml-path",
"--custom_ops_yaml_path",
help="path to the custom_ops.yaml file to use. Optional, but at least "
"one of --functions-yaml-path and --custom-ops-yaml-path must be "
"specified.",
)
parser.add_argument(
"--aten-yaml-path",
"--aten_yaml_path",
help="path to native_functions.yaml file.",
)
# Note that make_file_manager() also looks at --install-dir.
parser.add_argument(
"-d",
"--install-dir",
"--install_dir",
help="output directory",
default="build/generated",
)
parser.add_argument(
"-o",
"--output-dependencies",
help="output a list of dependencies into the given file and exit",
)
# Although we don't refer to --dry-run directly, make_file_manager() looks
# for it.
parser.add_argument(
"--dry-run",
action="store_true",
help="run without writing any files (still updates outputs)",
)
parser.add_argument(
"--static-dispatch-backend",
"--static_dispatch_backend",
nargs="*",
help="generate static dispatch code for the specific backend (if set)",
)
parser.add_argument(
"--op-registration-whitelist",
"--op_registration_whitelist",
nargs="*",
help="filter op registrations by the whitelist (if set); "
"each item is `namespace`::`operator name` without overload name; "
"e.g.: aten::empty aten::conv2d ...",
)
parser.add_argument(
"--op-selection-yaml-path",
"--op_selection_yaml_path",
help="Provide a path to the operator selection (for custom build) YAML "
"that contains the information about the set of selected operators "
"and their categories (training, ...). Each operator is either a "
"full operator name with overload or just a bare operator name. "
"The operator names also contain the namespace prefix (e.g. aten::)",
)
parser.add_argument(
"--tags-path",
help="Path to tags.yaml. Required by yaml parsing in codegen system.",
)
parser.add_argument(
"--rocm",
action="store_true",
help="reinterpret CUDA as ROCm/HIP and adjust filepaths accordingly",
)
parser.add_argument(
"--use-aten-lib",
"--use_aten_lib",
action="store_true",
help="a boolean flag to indicate whether we use ATen kernels or not, in the future this flag will be per "
"operator",
)
parser.add_argument(
"--generate",
type=str,
nargs="*",
choices=["headers", "sources"],
default=["headers", "sources"],
help="Generate only a subset of files",
)
options = parser.parse_args()
assert options.tags_path, "tags.yaml is required by codegen yaml parsing."
selector = get_custom_build_selector(
options.op_registration_whitelist,
options.op_selection_yaml_path,
)
parsed_yaml, custom_ops_parsed_yaml = parse_yaml_files(
aten_yaml_path=options.aten_yaml_path,
tags_yaml_path=options.tags_path,
native_yaml_path=options.functions_yaml_path,
custom_ops_yaml_path=options.custom_ops_yaml_path,
selector=selector,
use_aten_lib=options.use_aten_lib,
)
native_functions, backend_indices = (
parsed_yaml.native_functions,
parsed_yaml.backend_indices,
)
custom_ops_native_functions = (
custom_ops_parsed_yaml.native_functions if custom_ops_parsed_yaml else []
)
cpu_fm = make_file_manager(options=options)
static_dispatch_idx: List[BackendIndex] = [backend_indices[DispatchKey.CPU]]
if "headers" in options.generate:
# generate CustomOpsNativeFunctions.h when custom_ops.yaml is present, to match the build system.
gen_headers(
native_functions=native_functions,
gen_custom_ops_header=options.custom_ops_yaml_path,
custom_ops_native_functions=custom_ops_native_functions,
static_dispatch_idx=static_dispatch_idx,
selector=selector,
backend_indices=backend_indices,
cpu_fm=cpu_fm,
use_aten_lib=options.use_aten_lib,
)
if "sources" in options.generate:
gen_unboxing(
native_functions=native_functions,
cpu_fm=cpu_fm,
selector=selector,
use_aten_lib=options.use_aten_lib,
)
if custom_ops_native_functions:
gen_custom_ops(
native_functions=custom_ops_native_functions,
selector=selector,
backend_indices=backend_indices,
cpu_fm=cpu_fm,
rocm=options.rocm,
)
if options.output_dependencies:
depfile_path = pathlib.Path(options.output_dependencies).resolve()
depfile_name = depfile_path.name
depfile_stem = depfile_path.stem
for fm, prefix in [
(cpu_fm, ""),
]:
varname = prefix + depfile_stem
path = depfile_path.parent / (prefix + depfile_name)
fm.write_outputs(varname, str(path))
if __name__ == "__main__":
main()