| #include <c10/util/irange.h> |
| #include <torch/script.h> |
| |
| #include "op.h" |
| |
| #include <cstddef> |
| #include <string> |
| |
| torch::List<torch::Tensor> custom_op( |
| torch::Tensor tensor, |
| double scalar, |
| int64_t repeat) { |
| torch::List<torch::Tensor> output; |
| output.reserve(repeat); |
| for (const auto i : c10::irange(repeat)) { |
| (void)i; // Suppress unused variable warning |
| output.push_back(tensor * scalar); |
| } |
| return output; |
| } |
| |
| int64_t custom_op2(std::string s1, std::string s2) { |
| return s1.compare(s2); |
| } |
| |
| struct CustomOpAutogradFunction : public torch::autograd::Function<CustomOpAutogradFunction> { |
| static torch::Tensor forward( |
| torch::autograd::AutogradContext* ctx, |
| torch::Tensor var1, |
| int64_t mul, |
| torch::Tensor var2, |
| c10::optional<torch::Tensor> var3) { |
| ctx->saved_data["mul"] = mul; |
| ctx->saved_data["var3_has_value"] = var3.has_value(); |
| ctx->save_for_backward({var1, var2}); |
| if (var3) { |
| return var1 + mul * var2 + var1 * var2 + var3.value(); |
| } |
| return var1 + mul*var2 + var1*var2; |
| } |
| |
| static torch::autograd::variable_list backward(torch::autograd::AutogradContext *ctx, torch::autograd::variable_list grad_output) { |
| int mul = ctx->saved_data["mul"].toInt(); |
| bool var3_has_value = ctx->saved_data["var3_has_value"].toBool(); |
| auto saved = ctx->get_saved_variables(); |
| auto var1 = saved[0]; |
| auto var2 = saved[1]; |
| auto var3_grad = var3_has_value ? grad_output[0] : torch::Tensor(); |
| torch::autograd::variable_list output = { |
| grad_output[0] + grad_output[0] * var2, |
| torch::Tensor(), |
| grad_output[0] * mul + grad_output[0] * var1, |
| var3_grad}; |
| return output; |
| } |
| }; |
| |
| torch::Tensor custom_op_with_autograd( |
| torch::Tensor var1, |
| int64_t mul, |
| torch::Tensor var2, |
| c10::optional<torch::Tensor> var3) { |
| return CustomOpAutogradFunction::apply(var1, mul, var2, var3); |
| } |
| |
| TORCH_LIBRARY_FRAGMENT(custom, m) { |
| m.def("op", custom_op); |
| m.def("op2", custom_op2); |
| m.def("op_with_defaults(Tensor tensor, float scalar = 1, int repeat = 1) -> Tensor[]", custom_op); |
| m.def("op_with_autograd(Tensor var1, int mul, Tensor var2, Tensor? var3=None) -> Tensor", custom_op_with_autograd); |
| } |