blob: d0d24c269e3bdb471bd925f44d064a422f49f5c6 [file] [log] [blame]
# Owner(s): ["oncall: jit"]
import os
import sys
import unittest
import torch
# as with test_jit tests, requires global dtype set
torch.set_default_dtype(torch.double)
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase, enable_profiling_mode
from torch.testing._internal.jit_metaprogramming_utils import try_get_nn_module_compiled_mod_and_inputs, \
get_nn_mod_test_name, get_all_nn_module_tests, nn_functional_tests, get_nn_functional_compiled_fn_and_inputs
from torch.testing._internal.common_utils import run_tests, suppress_warnings, IS_FBCODE
def num_ifs_loops(graph):
graph_str = str(graph)
# only look at body of graph
graph_body = graph_str[0:graph_str.find("return")]
return graph_body.count("prim::Loop") + graph_body.count("prim::If")
def num_non_tensor_nodes(block):
num_non_tensor = 0
for node in block.nodes():
kind = node.kind()
# GetAttr don't provide useful signal here, since they are non-optimizable except with freezing
# Constant is not executed, bailouts should be a separate tests, don't provide useful signal here
if kind == "prim::Constant" or "prim::Bailout" in kind or "GetAttr" in kind:
continue
for b in node.blocks():
num_non_tensor += num_non_tensor_nodes(b)
tensor_out = False
for out in node.outputs():
if "Tensor" in str(out.type()):
tensor_out = True
break
num_non_tensor += int(not tensor_out)
return num_non_tensor
class TestComplexity(JitTestCase):
def setUp(self):
super(TestComplexity, self).setUp()
self.grad_enabled = torch.is_grad_enabled()
torch.set_grad_enabled(False)
def tearDown(self):
super(TestComplexity, self).tearDown()
torch.set_grad_enabled(self.grad_enabled)
@suppress_warnings
def test_generated_functional_tests(self):
with enable_profiling_mode():
stats = [("Name", "Ifs/Loops", "non-tensor ops")]
for test in nn_functional_tests:
test_name = test[0]
fn, inputs = get_nn_functional_compiled_fn_and_inputs(*test)
for _ in range(6):
fn(*inputs)
g = torch.jit.last_executed_optimized_graph()
stats.append((test_name, num_ifs_loops(g), num_non_tensor_nodes(g)))
for line in stats:
print(line)
@suppress_warnings
@unittest.skipIf(IS_FBCODE, "Causes a RecursionError in fbcode")
def test_nn_module_tests(self):
with enable_profiling_mode():
stats = [("Name", "Ifs/Loops", "non-tensor ops")]
for test in get_all_nn_module_tests():
out = try_get_nn_module_compiled_mod_and_inputs(**test)
if not out:
continue
mod, inputs = out
test_name = get_nn_mod_test_name(**test)
for _ in range(6):
mod(*inputs)
g = torch.jit.last_executed_optimized_graph()
stats.append((test_name, num_ifs_loops(g), num_non_tensor_nodes(g)))
for line in stats:
print(line)
if __name__ == '__main__':
run_tests()