| # Owner(s): ["module: nestedtensor"] |
| |
| import torch |
| import torch.nn |
| import unittest |
| from torch.testing._internal.common_device_type import ( |
| dtypes, |
| dtypesIfCUDA, |
| instantiate_device_type_tests, |
| skipMeta, |
| onlyCUDA, |
| onlyCPU |
| ) |
| from torch.testing._internal.common_dtype import floating_types_and_half |
| from torch.testing._internal.common_utils import TestCase, IS_FBCODE, run_tests, freeze_rng_state, parametrize, gradcheck |
| |
| # Tests are ported from pytorch/nestedtensor. |
| # This makes porting as_nested_tensor easier in the future. |
| def _iter_constructors(): |
| # yield as_nested_tensor |
| yield torch.nested.nested_tensor |
| |
| # Helper function to generate a pair of random nested tensors |
| # one is contiguous, the other is not, but they appear to have same entries |
| # an output nested tensor consists of |
| # * `len(ragged_sizes)` matrices |
| # * matrices[i].shape == (20, ragged_sizes[i]) |
| def random_nt_noncontiguous_pair(ragged_sizes, device="cpu", dtype=torch.float16): |
| xs = [] |
| for size in ragged_sizes: |
| xs.append(torch.randn((size, 20), device=device, dtype=dtype)) |
| # contiguous nested tensor |
| ys = [] |
| for x in xs: |
| ys.append(x.transpose(-1, -2)) |
| nt_contiguous = torch.nested.nested_tensor(ys) |
| # noncontiguous nested tensor |
| n = len(ragged_sizes) |
| nt_noncontiguous = torch.nested.nested_tensor(xs).transpose(-1, -2) |
| return nt_contiguous, nt_noncontiguous |
| |
| # Helper functions to pad a noncontiguous nested tensor |
| # can be replaced once to_padded_tensor supports noncontiguous memory |
| def noncontiguous_to_padded_tensor(input, shape=None): |
| tensors = input.unbind() |
| ntensors = len(tensors) |
| assert ntensors > 0 |
| if shape is None: |
| shape = [] |
| for size in tensors[0].shape: |
| shape.append(size) |
| for i in range(1, ntensors): |
| new_shape = tensors[i].shape |
| for j in range(len(shape)): |
| shape[j] = max(shape[j], new_shape[j]) |
| shape = [ntensors] + shape |
| result = tensors[0].new_zeros(shape) |
| for itensor in range(ntensors): |
| tensor = tensors[itensor] |
| view = result[itensor] |
| for idim in range(tensor.dim()): |
| view = view.narrow(idim, 0, tensor.size(idim)) |
| view.copy_(tensor) |
| return result |
| |
| # Helper function to generate a random nested tensor |
| def random_nt(device, dtype, num_tensors, max_dims, min_dims=None): |
| if min_dims is None: |
| min_dims = tuple([0] * len(max_dims)) |
| ts1 = [] |
| for _ in range(num_tensors): |
| tensor_dims = tuple([torch.randint(low=min_dim, high=max_dim, size=(1,)).item() |
| for (min_dim, max_dim) in zip(min_dims, max_dims)]) |
| t1 = torch.randn(tensor_dims, device=device, dtype=dtype) |
| ts1.append(t1) |
| return torch.nested.nested_tensor(ts1, device=device, dtype=dtype) |
| |
| class TestNestedTensor(TestCase): |
| |
| @torch.inference_mode() |
| def _test_unbind_case(self, a, b): |
| nt = torch.nested.nested_tensor([a, b]) |
| a1, b1 = nt.unbind() |
| self.assertTrue(a is not a1) |
| self.assertTrue(b is not b1) |
| |
| nt = torch.nested.nested_tensor([a, b], dtype=a.dtype) |
| a1, b1 = nt.unbind(0) |
| self.assertEqual(a, a1) |
| self.assertEqual(b, b1) |
| |
| a = torch.randn((2, 3)).add_(1) |
| nt = torch.nested.nested_tensor([a]) |
| self.assertEqual(a, nt.unbind(0)[0]) |
| |
| @torch.inference_mode() |
| def test_unbind_0(self): |
| self._test_unbind_case( |
| torch.tensor([1, 2]), torch.tensor([7, 8]), |
| ) |
| |
| @torch.inference_mode() |
| def test_unbind_1(self): |
| self._test_unbind_case( |
| torch.tensor([1]), torch.tensor([7]), |
| ) |
| |
| @torch.inference_mode() |
| def test_unbind_3(self): |
| self._test_unbind_case( |
| torch.tensor([1.0]), torch.tensor([]), |
| ) |
| |
| @torch.inference_mode() |
| def test_unbind_4(self): |
| self._test_unbind_case( |
| torch.tensor([]), torch.tensor([]), |
| ) |
| |
| @torch.inference_mode() |
| def test_unbind_dim(self): |
| def _test_fn(unbind_fn): |
| a = torch.rand(3, 2) |
| b = torch.rand(2, 3) |
| nt = torch.nested.nested_tensor([a, b]) |
| self.assertRaises(RuntimeError, lambda: unbind_fn(nt, 1)) |
| |
| # Both of these tests are necessary, because we're using |
| # torch_function. |
| _test_fn(lambda x, dim: x.unbind(dim)) |
| # TODO: Re-enable this once using torch_dispatch |
| # _test_fn(lambda x, dim: torch.unbind(x, dim)) |
| |
| @torch.inference_mode() |
| def test_nested_tensor(self): |
| self.assertRaises(TypeError, lambda: torch.nested.nested_tensor([3.0])) |
| self.assertRaises(TypeError, lambda: torch.nested.nested_tensor(torch.tensor([3.0]))) |
| self.assertRaises(TypeError, lambda: torch.nested.nested_tensor(4.0)) |
| |
| @torch.inference_mode() |
| def test_nested_tensor_matching_dim(self): |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Found dimension 1 for Tensor at index 1 and dimension 0 for Tensor at index 0.", |
| lambda: torch.nested.nested_tensor([torch.tensor(1.0), torch.tensor([])]), |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Found dimension 1 for Tensor at index 2 and dimension 0 for Tensor at index 1.", |
| lambda: torch.nested.nested_tensor( |
| [torch.tensor(1.0), torch.tensor(2.0), torch.tensor([])] |
| ), |
| ) |
| |
| @torch.inference_mode() |
| def test_default_nested_tensor(self): |
| self.assertRaises(TypeError, lambda: torch.nested.nested_tensor()) |
| default_nested_tensor = torch.nested.nested_tensor([]) |
| default_tensor = torch.tensor([]) |
| # self.assertEqual(default_nested_tensor.nested_dim(), 1) |
| # self.assertEqual(default_nested_tensor.nested_size(), ()) |
| self.assertEqual(default_nested_tensor.dim(), default_tensor.dim()) |
| self.assertEqual(default_nested_tensor.layout, default_tensor.layout) |
| self.assertEqual(default_nested_tensor.device, default_tensor.device) |
| self.assertEqual(default_nested_tensor.dtype, default_tensor.dtype) |
| self.assertEqual( |
| default_nested_tensor.requires_grad, default_tensor.requires_grad |
| ) |
| self.assertIsNone(default_tensor.grad) |
| # TODO: Re-enable once we have a performance driven |
| # use case and implementation. |
| # self.assertEqual(default_nested_tensor.is_pinned(), |
| # default_tensor.is_pinned()) |
| |
| @torch.inference_mode() |
| def test_dim(self): |
| for constructor in _iter_constructors(): |
| a1 = constructor([]) |
| self.assertEqual(a1.dim(), 1) |
| a1 = constructor([torch.tensor(3.0)]) |
| self.assertEqual(a1.dim(), 1) |
| a1 = constructor([torch.tensor([1, 2, 3, 4])]) |
| self.assertEqual(a1.dim(), 2) |
| |
| @unittest.skipIf(IS_FBCODE, "numel is not virtual in fbcode.") |
| @torch.inference_mode() |
| def test_numel(self): |
| for constructor in _iter_constructors(): |
| a1 = constructor([]) |
| self.assertEqual(a1.numel(), 0) |
| a1 = constructor([torch.tensor(3.0), torch.tensor(4.0)]) |
| self.assertEqual(a1.numel(), 2) |
| a1 = constructor([torch.randn(2, 2, 2)]) |
| self.assertEqual(a1.numel(), 8) |
| a1 = constructor([torch.randn([1, 2, 3]), torch.randn(3, 2, 1)]) |
| self.assertEqual(a1.numel(), 12) |
| a1 = constructor([torch.randn([1, 1, 3]), torch.randn(3, 2, 4)]) |
| self.assertEqual(a1.numel(), 27) |
| a1 = constructor([torch.randn([5, 5, 5]), torch.randn(6, 6, 6)]) |
| self.assertEqual(a1.numel(), 341) |
| |
| # Interesting edge case |
| a1 = constructor([torch.randn([1, 2, 3]), torch.randn(1, 2, 0)]) |
| self.assertEqual(a1.numel(), 6) |
| |
| @torch.inference_mode() |
| def test_size(self): |
| for constructor in _iter_constructors(): |
| a1 = constructor([]) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Tensors of type NestedTensorImpl do not have sym sizes" |
| if IS_FBCODE |
| else "NestedTensorImpl doesn't support sizes", |
| lambda: a1.size(), |
| ) |
| |
| def test_size_dim(self): |
| a = torch.nested.nested_tensor([]) |
| self.assertEqual(a.size(0), 0) |
| |
| a = torch.nested.nested_tensor([torch.tensor(1)]) |
| self.assertEqual(a.size(0), 1) |
| |
| a = torch.nested.nested_tensor([torch.tensor(1), torch.tensor(2)]) |
| self.assertEqual(a.size(0), 2) |
| |
| a = torch.nested.nested_tensor([torch.rand(1, 2), |
| torch.rand(1, 8)]) |
| self.assertEqual(a.size(0), 2) |
| self.assertEqual(a.size(1), 1) |
| self.assertRaisesRegex( |
| RuntimeError, "Given dimension 2 is irregular and does not have a size", lambda: a.size(2)) |
| |
| a = torch.nested.nested_tensor([torch.rand(3, 4), |
| torch.rand(5, 4)]) |
| self.assertEqual(a.size(0), 2) |
| self.assertRaisesRegex( |
| RuntimeError, "Given dimension 1 is irregular and does not have a size", lambda: a.size(1)) |
| self.assertEqual(a.size(2), 4) |
| |
| @unittest.skipIf(IS_FBCODE, "stride is not virtual in fbcode.") |
| @torch.inference_mode() |
| def test_stride(self): |
| for constructor in _iter_constructors(): |
| a1 = constructor([]) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "NestedTensorImpl doesn't support strides", |
| lambda: a1.stride(), |
| ) |
| |
| @unittest.skipIf(IS_FBCODE, "is_contiguous is not virtual in fbcode.") |
| @torch.inference_mode() |
| def test_is_contiguous(self): |
| # Test empty case |
| nt_empty = torch.nested.nested_tensor([]) |
| assert nt_empty.is_contiguous() |
| self.assertEqual(nt_empty, nt_empty.contiguous()) |
| |
| nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7)) |
| |
| # Test contiguous case |
| assert nt_contiguous.is_contiguous() |
| self.assertEqual(nt_contiguous, nt_contiguous.contiguous()) |
| |
| # Test non_contiguous case |
| assert not nt_noncontiguous.is_contiguous() |
| self.assertEqual(nt_contiguous, nt_noncontiguous.contiguous()) |
| |
| @torch.inference_mode() |
| def test_repr_string(self): |
| a = torch.nested.nested_tensor([]) |
| expected = "nested_tensor([" "\n\n])" |
| self.assertEqual(str(a), expected) |
| self.assertEqual(repr(a), expected) |
| |
| a = torch.nested.nested_tensor([torch.tensor(1.0)]) |
| expected = "nested_tensor([" "\n tensor(1.)" "\n])" |
| self.assertEqual(str(a), expected) |
| self.assertEqual(repr(a), expected) |
| |
| a = torch.nested.nested_tensor([torch.tensor([[1, 2]]), torch.tensor([[4, 5]])]) |
| expected = ( |
| "nested_tensor([" "\n tensor([[1, 2]])" "," "\n tensor([[4, 5]])" "\n])" |
| ) |
| self.assertEqual(str(a), expected) |
| self.assertEqual(repr(a), expected) |
| |
| @torch.inference_mode() |
| def test_activations(self): |
| for func in (torch.nn.functional.relu, |
| torch.nn.functional.relu_, |
| torch.nn.functional.gelu, |
| torch._C._nn.gelu_, |
| torch.tanh, |
| torch.tanh_): |
| t = torch.tensor([-1, 0, 1], dtype=torch.float) |
| nt = torch.nested.nested_tensor([t]) |
| nested_result = func(nt) |
| self.assertTrue(nested_result.is_nested) |
| self.assertEqual(func(t), nested_result.unbind()[0]) |
| |
| def test_to_padded_tensor_on_empty_tensor(self): |
| |
| nt = torch.nested.nested_tensor([]) |
| empty = torch.nested.to_padded_tensor(nt, 4) |
| self.assertEqual(empty, torch.tensor([])) |
| |
| def test_nested_namespace(self): |
| nt = torch.nested.nested_tensor([torch.randn(2, 3), torch.randn(4, 5)]) |
| result = nt.to_padded_tensor(4) |
| nested_namespace_result = torch.nested.to_padded_tensor(nt, 4) |
| self.assertEqual(result, nested_namespace_result) |
| |
| def test_to(self): |
| ntensors = 4 |
| nt = random_nt(torch.device('cpu'), torch.float32, ntensors, (4, 4)) |
| |
| def test_copy_behavior(t, non_blocking=False): |
| self.assertIs(t, t.to(t, non_blocking=non_blocking)) |
| self.assertIs(t, t.to(t.dtype, non_blocking=non_blocking)) |
| self.assertIs(t, t.to(torch.empty_like(t), non_blocking=non_blocking)) |
| self.assertIsNot(t, t.to(t, non_blocking=non_blocking, copy=True)) |
| self.assertIsNot(t, t.to(t.dtype, non_blocking=non_blocking, copy=True)) |
| self.assertIsNot(t, t.to(torch.empty_like(t), non_blocking=non_blocking, copy=True)) |
| |
| devices = [t.device] |
| if t.device.type == 'cuda': |
| if t.device.index == -1: |
| devices.append('cuda:{}'.format(torch.cuda.current_device())) |
| elif t.device.index == torch.cuda.current_device(): |
| devices.append('cuda') |
| for device in devices: |
| self.assertIs(t, t.to(device, non_blocking=non_blocking)) |
| self.assertIs(t, t.to(device, t.dtype, non_blocking=non_blocking)) |
| self.assertIsNot(t, t.to(device, non_blocking=non_blocking, copy=True)) |
| self.assertIsNot(t, t.to(device, t.dtype, non_blocking=non_blocking, copy=True)) |
| |
| test_copy_behavior(nt) |
| self.assertEqual(nt.device, nt.to('cpu').device) |
| self.assertEqual(nt.device, nt.to('cpu', dtype=torch.float32).device) |
| self.assertIs(torch.float32, nt.to('cpu', dtype=torch.float32).dtype) |
| self.assertEqual(nt.device, nt.to(torch.float32).device) |
| self.assertIs(torch.float32, nt.to(dtype=torch.float32).dtype) |
| |
| def test_data_ptr(getter): |
| self.assertEqual(getter(nt), getter(nt.to('cpu'))) |
| self.assertEqual(getter(nt), getter(nt.to(dtype=nt.dtype, device=nt.device, copy=False))) |
| self.assertEqual(getter(nt), getter(nt.to('cpu', copy=False))) |
| self.assertNotEqual(getter(nt), getter(nt.to('cpu', copy=True))) |
| |
| test_data_ptr(lambda nt: nt.data_ptr()) |
| |
| if torch.cuda.is_available(): |
| for non_blocking in [True, False]: |
| for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']: |
| nt2 = random_nt(cuda, torch.float32, ntensors, (4, 4)) |
| test_copy_behavior(nt2, non_blocking) |
| self.assertEqual(nt2.device, nt2.to(cuda, non_blocking=non_blocking).device) |
| self.assertEqual(nt.device, nt2.to('cpu', non_blocking=non_blocking).device) |
| self.assertEqual(nt2.device, nt.to(cuda, non_blocking=non_blocking).device) |
| self.assertIs(torch.int32, nt2.to('cpu', dtype=torch.int32, non_blocking=non_blocking).dtype) |
| self.assertEqual(nt.device, nt2.to('cpu', dtype=torch.int32, non_blocking=non_blocking).device) |
| self.assertIs(torch.int32, nt2.to(dtype=torch.int32).dtype) |
| self.assertEqual(nt2.device, nt2.to(dtype=torch.int32).device) |
| |
| |
| class TestNestedTensorDeviceType(TestCase): |
| |
| # Helper function to generate a pair of random nested tensors |
| # the 2 nested tensors have same shapes |
| def random_nt_pair(self, device, dtype, num_tensors, max_dims): |
| ts1 = [] |
| ts2 = [] |
| for _ in range(num_tensors): |
| tensor_dims = tuple([torch.randint(low=0, high=max_dim, size=(1,)).item() for max_dim in max_dims]) |
| t1 = torch.randn(tensor_dims, device=device, dtype=dtype) |
| t2 = torch.randn(tensor_dims, device=device, dtype=dtype) |
| ts1.append(t1) |
| ts2.append(t2) |
| return (torch.nested.nested_tensor(ts1, device=device, dtype=dtype), |
| torch.nested.nested_tensor(ts2, device=device, dtype=dtype)) |
| |
| @dtypes(*floating_types_and_half()) |
| def test_detach(self, device, dtype): |
| a = torch.randn(2, 4, device=device, dtype=dtype, requires_grad=False) |
| b = torch.randn(5, 4, device=device, dtype=dtype, requires_grad=False) |
| x = torch.nested.nested_tensor([a, b], requires_grad=True) |
| |
| x_detach = x.detach() |
| |
| z = x_detach * 4 |
| self.assertFalse(x_detach.requires_grad) |
| self.assertFalse(z.requires_grad) |
| |
| a = torch.randn(2, 4, device=device, dtype=dtype, requires_grad=True) |
| b = torch.randn(5, 4, device=device, dtype=dtype, requires_grad=True) |
| x = torch.nested.as_nested_tensor([a, b]) |
| |
| y = x * 2 |
| y = y.detach() |
| self.assertFalse(y.requires_grad) |
| self.assertIsNone(y.grad_fn) |
| |
| z = x + y |
| torch.nested.to_padded_tensor(z, 0).sum().backward() |
| # This is an incorrect gradient, but we assume that's what the user |
| # wanted. detach() is an advanced option. |
| self.assertEqual(a.grad, torch.ones(2, 4, device=device, dtype=dtype)) |
| self.assertEqual(b.grad, torch.ones(5, 4, device=device, dtype=dtype)) |
| |
| |
| @dtypes(torch.float, torch.float16, torch.double) |
| def test_unbind_noncontiguous(self, device, dtype): |
| nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype) |
| ub_contiguous = nt_contiguous.unbind() |
| ub_noncontiguous = nt_noncontiguous.unbind() |
| self.assertEqual(len(ub_contiguous), len(ub_noncontiguous)) |
| n = len(ub_contiguous) |
| for i in range(n): |
| self.assertEqual(ub_contiguous[i], ub_noncontiguous[i]) |
| |
| @dtypes(torch.float) |
| @skipMeta |
| def test_to_then_from_padded_tensor_no_transform0213(self, device, dtype): |
| t = torch.randn(4, 4, 4, device=device, dtype=dtype) |
| ts = list(torch.unbind(t)) |
| ts[0] = ts[0][:-1] |
| nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) |
| padded = torch.nested.to_padded_tensor(nt, 0) |
| |
| nt_to = torch._nested_from_padded_and_nested_example(padded, nt) |
| |
| for (t1, t2) in zip(nt.unbind(), nt_to.unbind()): |
| self.assertEqual(t1, t2) |
| self.assertEqual(nt.device, nt_to.device) |
| |
| @dtypes(torch.float) |
| @dtypesIfCUDA(torch.float, torch.half) |
| @skipMeta |
| @torch.inference_mode() |
| def test_layer_norm(self, device, dtype): |
| def _test(size): |
| # Simple shapes test |
| t0 = torch.randn(2, size, device=device, dtype=dtype, requires_grad=False) |
| t1 = torch.randn(2, size, device=device, dtype=dtype, requires_grad=False) |
| ts = [t0, t1, t0, t1] |
| nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) |
| layer_norm = torch.nn.LayerNorm(size, device=device, dtype=dtype) |
| nt_result = layer_norm(nt) |
| for (nt_subresult, t) in zip(nt_result.unbind(), ts): |
| t_result = layer_norm(t.reshape(1, -1, size).squeeze(0)) |
| self.assertEqual(nt_subresult, t_result) |
| |
| # More complex nt test with different lengths for each tensor |
| t0 = torch.randn(4, size, device=device, dtype=dtype, requires_grad=False) |
| t1 = torch.randn(10, size, device=device, dtype=dtype, requires_grad=False) |
| t2 = torch.randn(7, size, device=device, dtype=dtype, requires_grad=False) |
| ts = [t0, t1, t2, t0, t2] |
| nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) |
| layer_norm = torch.nn.LayerNorm(size, device=device, dtype=dtype) |
| nt_result = layer_norm(nt) |
| for (nt_subresult, t) in zip(nt_result.unbind(), ts): |
| t_result = layer_norm(t.reshape(1, -1, size).squeeze(0)) |
| self.assertEqual(nt_subresult, t_result) |
| |
| if size <= 128: |
| # Test with multidimensional tensors after irregular dim |
| # (run only with smaller dimensions to ensure fast execution) |
| t0 = torch.randn(4, size, size, 4, device=device, dtype=dtype, requires_grad=False) |
| t1 = torch.randn(10, size, size, 4, device=device, dtype=dtype, requires_grad=False) |
| t2 = torch.randn(7, size, size, 4, device=device, dtype=dtype, requires_grad=False) |
| ts = [t0, t1, t2, t0, t2] |
| nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) |
| layer_norm = torch.nn.LayerNorm((size, size, 4), device=device, dtype=dtype) |
| nt_result = layer_norm(nt) |
| for (nt_subresult, t) in zip(nt_result.unbind(), ts): |
| t_result = layer_norm(t.reshape(1, -1, size, size, 4).squeeze(0)) |
| self.assertEqual(nt_subresult, t_result) |
| |
| # Test where the normalizing dimensions are not all |
| layer_norm = torch.nn.LayerNorm((size, 4), device=device, dtype=dtype) |
| nt_result = layer_norm(nt) |
| for (nt_subresult, t) in zip(nt_result.unbind(), ts): |
| t_result = layer_norm(t.reshape(1, -1, size, size, 4).squeeze(0)) |
| self.assertEqual(nt_subresult, t_result) |
| |
| for size in (1024, 1023, 513, 512, 256, 128, 2, 4, 32): |
| _test(size) |
| |
| @dtypes(torch.float) |
| @dtypesIfCUDA(torch.float, torch.half) |
| @skipMeta |
| @torch.inference_mode() |
| def test_layer_norm_breaking(self, device, dtype): |
| size = 128 |
| t0 = torch.randn(4, size, size, 4, device=device, dtype=dtype, requires_grad=False) |
| t1 = torch.randn(10, size, size, 4, device=device, dtype=dtype, requires_grad=False) |
| t2 = torch.randn(7, size, size, 4, device=device, dtype=dtype, requires_grad=False) |
| ts = [t0, t1, t2, t0, t2] |
| nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) |
| layer_norm = torch.nn.LayerNorm((4, size, size, 4), device=device, dtype=dtype) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "normalized_shape extends into irregular dimensions for the nested tensor", |
| lambda: layer_norm(nt), |
| ) |
| layer_norm = torch.nn.LayerNorm((size + 1, size, 4), device=device, dtype=dtype) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "The shape at dimension 0", |
| lambda: layer_norm(nt), |
| ) |
| |
| @skipMeta |
| @torch.inference_mode() |
| def test_embedding(self, device): |
| inputs = [ |
| torch.randint(100, (L,), device=device, dtype=torch.int64) |
| for L in torch.randint(5, 50, (8,)) |
| ] |
| x = torch.nested.nested_tensor(inputs, device=device, dtype=torch.int64) |
| emb = torch.nn.Embedding(100, 8, device=device) |
| y = emb(x) |
| ys = y.unbind() |
| for i, inp in enumerate(inputs): |
| self.assertEqual(emb(inp), ys[i]) |
| |
| @dtypes(torch.float, torch.float16) |
| def test_to_padded_tensor_simple(self, device, dtype): |
| t = torch.randn(4, 4, 4, device=device, dtype=dtype) |
| ts = list(torch.unbind(t)) |
| ts[0] = ts[0][:-1] |
| nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) |
| for padding_value in (0, 1): |
| padded = torch.nested.to_padded_tensor(nt, padding_value) |
| |
| correct_output = t.clone() |
| if padding_value == 0: |
| correct_output[0][-1] = torch.zeros_like(correct_output[0][-1]) |
| else: |
| correct_output[0][-1] = torch.ones_like(correct_output[0][-1]) |
| |
| self.assertEqual(padded, correct_output) |
| self.assertEqual(padded.device, torch.device(device)) |
| self.assertEqual(padded.dtype, dtype) |
| |
| @dtypes(torch.float, torch.float16) |
| def test_to_padded_tensor_output_size(self, device, dtype): |
| t = torch.randn(4, 4, 4, device=device, dtype=dtype) |
| output_size = (4, 6, 5) |
| ts = list(torch.unbind(t)) |
| ts[0] = ts[0][:-1] |
| nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) |
| for padding_value in (0, 1): |
| padded = torch.nested.to_padded_tensor(nt, padding_value, output_size=output_size) |
| correct_output = torch.ones(output_size, device=device, dtype=dtype) * padding_value |
| correct_output[:4:, :4, :4] = t.clone() |
| if padding_value == 0: |
| correct_output[0][3] = torch.zeros_like(correct_output[0][3]) |
| else: |
| correct_output[0][3] = torch.ones_like(correct_output[0][3]) |
| |
| self.assertEqual(padded, correct_output) |
| self.assertEqual(padded.device, torch.device(device)) |
| self.assertEqual(padded.dtype, dtype) |
| |
| @dtypes(torch.float, torch.float16, torch.double) |
| def test_to_padded_tensor_dim2(self, device, dtype): |
| ts = [ |
| torch.randn(160, device=device, dtype=dtype), |
| torch.randn(1240, device=device, dtype=dtype), |
| torch.randn(2400, device=device, dtype=dtype), |
| ] |
| nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) |
| pad = 42 |
| correct_output = [] |
| for t in ts: |
| next_output = torch.ones_like(ts[2]) * pad |
| correct_output.append(next_output) |
| next_output[:t.size(0)].copy_(t) |
| correct_output = torch.stack(correct_output) |
| padded = torch.nested.to_padded_tensor(nt, pad) |
| self.assertEqual(padded, correct_output) |
| |
| @dtypes(torch.float, torch.float16, torch.double) |
| def test_to_padded_tensor_dim3(self, device, dtype): |
| ts = [ |
| torch.randn(16, 21, device=device, dtype=dtype), |
| torch.randn(24, 32, device=device, dtype=dtype), |
| torch.randn(40, 53, device=device, dtype=dtype), |
| ] |
| nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) |
| pad = 42 |
| correct_output = [] |
| for t in ts: |
| next_output = torch.ones_like(ts[2]) * pad |
| correct_output.append(next_output) |
| next_output[:t.size(0), :t.size(1)].copy_(t) |
| correct_output = torch.stack(correct_output) |
| padded = torch.nested.to_padded_tensor(nt, pad) |
| self.assertEqual(padded, correct_output) |
| |
| @dtypes(torch.float, torch.float16, torch.double) |
| def test_to_padded_tensor_dim4(self, device, dtype): |
| ts = [ |
| torch.randn(16, 21, 13, device=device, dtype=dtype), |
| torch.randn(24, 32, 14, device=device, dtype=dtype), |
| torch.randn(40, 53, 16, device=device, dtype=dtype), |
| ] |
| nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) |
| pad = 42 |
| correct_output = [] |
| for t in ts: |
| next_output = torch.ones_like(ts[2]) * pad |
| correct_output.append(next_output) |
| next_output[:t.size(0), :t.size(1), :t.size(2)].copy_(t) |
| correct_output = torch.stack(correct_output) |
| padded = torch.nested.to_padded_tensor(nt, pad) |
| self.assertEqual(padded, correct_output) |
| |
| # TODO: test noncontiguous to_padded_tensor |
| # For now this tests the functionality of noncontiguous_to_padded_tensor |
| # and the error message of to_padded_tensor |
| # since to_padded_tensor does not support noncontiguous buffer yet |
| @dtypes(torch.float, torch.float16, torch.double) |
| @torch.inference_mode() |
| def test_to_padded_tensor_noncontiguous(self, device, dtype): |
| nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype) |
| # test noncontiguous_to_padded_tensor functionality |
| self.assertEqual( |
| torch.nested.to_padded_tensor(nt_contiguous, 0.0), |
| noncontiguous_to_padded_tensor(nt_noncontiguous)) |
| # test to_padded_tensor error message |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"for now to_padded_tensor only supports contiguous nested tensor", |
| lambda: torch.nested.to_padded_tensor(nt_noncontiguous, 0.0) |
| ) |
| |
| @skipMeta |
| def test_device_checks(self, device): |
| nt = torch.nested.nested_tensor([], device=device) |
| is_cuda = 'cuda' in str(device) |
| self.assertEqual(nt.is_cuda, is_cuda) |
| |
| @dtypes(torch.float, torch.float16, torch.double) |
| def test_nested_tensor_indexing(self, device, dtype): |
| # edge case: empty nested tensor |
| nt0 = torch.nested.nested_tensor([]) |
| self.assertRaises(IndexError, lambda: nt0[0]) |
| # normal case |
| x0 = torch.randn((2, 5), device=device, dtype=dtype) |
| x1 = torch.randn((3, 4), device=device, dtype=dtype) |
| nt = torch.nested.nested_tensor([x0, x1]) |
| # single index: only support integer in the batch dimension |
| self.assertEqual(nt[0], x0) |
| self.assertEqual(nt[-1], x1) |
| self.assertRaises(IndexError, lambda: nt[2]) |
| self.assertRaises(IndexError, lambda: nt[-3]) |
| self.assertRaises(NotImplementedError, lambda: nt[:]) |
| self.assertRaises(NotImplementedError, lambda: nt[...]) |
| # tuple of indices: only support integer in the batch dimension |
| # + all possible indexing in the original tensor dimensions |
| self.assertEqual(nt[0, 0, 0], x0[0, 0]) |
| self.assertEqual(nt[0, 1, :], x0[1, :]) |
| self.assertEqual(nt[1, ...], x1) |
| self.assertRaises(IndexError, lambda: nt[1, 4, 2]) |
| self.assertRaises(NotImplementedError, lambda: nt[:, 1, 1]) |
| # make sure indexing returns a view |
| nt[0].fill_(100.0) |
| answer = torch.tensor(100.0, device=device, dtype=dtype).expand((2, 5)) |
| self.assertEqual(nt[0], answer) |
| nt[1, 1, :].fill_(200.0) |
| answer = torch.tensor(200.0, device=device, dtype=dtype).expand(4) |
| self.assertEqual(nt[1, 1, :], answer) |
| |
| # Test that indexing works when requires_grad_(True) |
| # previously this was failing because the backward kernel for select.int uses .sizes() |
| nt = torch.nested.nested_tensor([x0, x1]).requires_grad_(True) |
| self.assertEqual(nt[0], x0) |
| self.assertEqual(nt[-1], x1) |
| grad_x0 = torch.randn((2, 5), device=device, dtype=dtype) |
| nt[0].backward(grad_x0) |
| expected_grad = torch.nested.nested_tensor([grad_x0, torch.zeros((3, 4), device=device, dtype=dtype)]) |
| self.assertEqual(nt.grad, expected_grad) |
| |
| @dtypes(*floating_types_and_half()) |
| def test_nested_tensor_chunk(self, device, dtype): |
| # Transformer use case |
| a = torch.randn(3, 3 * 4, device=device, dtype=dtype) |
| b = torch.randn(2, 3 * 4, device=device, dtype=dtype) |
| c = torch.randn(1, 3 * 4, device=device, dtype=dtype) |
| a_chunks = a.chunk(3, dim=-1) |
| b_chunks = b.chunk(3, dim=-1) |
| c_chunks = c.chunk(3, dim=-1) |
| |
| a_nt = [a_chunks[0], b_chunks[0], c_chunks[0]] |
| b_nt = [a_chunks[1], b_chunks[1], c_chunks[1]] |
| c_nt = [a_chunks[2], b_chunks[2], c_chunks[2]] |
| |
| nt = torch.nested.nested_tensor([a, b, c]) |
| chunked = nt.chunk(3, dim=-1) |
| |
| self.assertEqual(chunked[0], torch.nested.nested_tensor(a_nt)) |
| self.assertEqual(chunked[1], torch.nested.nested_tensor(b_nt)) |
| self.assertEqual(chunked[2], torch.nested.nested_tensor(c_nt)) |
| |
| for chunk in chunked: |
| self.assertFalse(chunk.is_contiguous()) |
| |
| # Failure chunking on ragged dimensions |
| self.assertRaisesRegex( |
| RuntimeError, "Chunk for nested tensors is currently only supported for the last dimension.", |
| lambda: torch.chunk(nt, 5, dim=1)) |
| self.assertRaisesRegex( |
| RuntimeError, "Chunk for nested tensors is currently only supported for the last dimension.", |
| lambda: torch.chunk(nt, 5, dim=0)) |
| |
| # Failure on non-contiguous nt |
| _, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3), device, dtype) |
| self.assertRaisesRegex( |
| RuntimeError, "chunk expects `self` to be contiguous.", lambda: torch.chunk(nt_noncontiguous, 5, dim=-1)) |
| |
| # Failure when calling non divisible n_chunks |
| self.assertRaisesRegex( |
| RuntimeError, "Chunk for nested tensors is only supported for " |
| "nested tensors with trailing dimension divisible by chunks.", |
| lambda: torch.chunk(nt, 5, dim=-1)) |
| |
| # Failure when calling backward on a chunk |
| a = torch.randn(3, 3 * 4, device=device, dtype=dtype, requires_grad=True) |
| b = torch.randn(2, 3 * 4, device=device, dtype=dtype, requires_grad=True) |
| nt_grad = torch.nested.as_nested_tensor([a, b]) |
| chunked = torch.chunk(nt_grad, 2, dim=-1) |
| self.assertRaisesRegex(RuntimeError, "derivative for aten::chunk is not implemented", |
| lambda: chunked[0].backward(chunked[0].clone())) |
| |
| @dtypes(torch.float, torch.float16, torch.double) |
| @torch.inference_mode() |
| def test_nested_tensor_indexing_noncontiguous(self, device, dtype): |
| nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype) |
| self.assertEqual(nt_contiguous.size(0), nt_noncontiguous.size(0)) |
| n = nt_contiguous.size(0) |
| for i in range(n): |
| self.assertEqual(nt_contiguous[i], nt_noncontiguous[i]) |
| |
| @dtypes(torch.float, torch.float16) |
| @skipMeta |
| @torch.inference_mode() |
| def test_nested_tensor_add(self, device, dtype): |
| (nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4)) |
| ref = torch.nested.nested_tensor([t1 + t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())]) |
| out = nt1 + nt2 |
| self.assertEqual(ref, out) |
| |
| @dtypes(torch.float, torch.float16) |
| @skipMeta |
| @torch.inference_mode() |
| def test_nested_tensor_mul(self, device, dtype): |
| # nested tensor * nested tensor |
| (nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4)) |
| ref = torch.nested.nested_tensor([t1 * t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())]) |
| out = nt1 * nt2 |
| self.assertEqual(ref, out) |
| # nested tensor * scalar |
| number = 10.0 |
| scalar = torch.tensor(number).to(dtype).to(device) |
| ref = torch.nested.nested_tensor([t * number for t in nt1.unbind()]) |
| out_number0 = nt1 * number |
| out_number1 = number * nt1 |
| out_scalar0 = nt1 * scalar |
| out_scalar1 = scalar * nt1 |
| self.assertEqual(out_number0, ref) |
| self.assertEqual(out_number1, ref) |
| self.assertEqual(out_scalar0, ref) |
| self.assertEqual(out_scalar1, ref) |
| # error case: numel == 1 but dim > 0 |
| vector = torch.tensor([number]).to(dtype).to(device) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Expected both self and other to be nested, but got a nested self and non-nested other", |
| lambda: nt1.mul(vector) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Expected both self and other to be nested, but got a non-nested self and nested other", |
| lambda: vector.mul(nt1) |
| ) |
| |
| @dtypes(torch.float, torch.float16) |
| @skipMeta |
| @torch.inference_mode() |
| def test_nested_tensor_add_in_place(self, device, dtype): |
| (nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4)) |
| ref = torch.nested.nested_tensor([t1 + t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())]) |
| nt1 += nt2 |
| self.assertEqual(ref, nt1) |
| |
| @dtypes(torch.float, torch.float16) |
| @skipMeta |
| @torch.inference_mode() |
| def test_nested_tensor_mul_in_place(self, device, dtype): |
| # nested tensor * nested tensor |
| (nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4)) |
| ref = torch.nested.nested_tensor([t1 * t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())]) |
| nt1 *= nt2 |
| self.assertEqual(ref, nt1) |
| # nested tensor * scalar |
| number = 10.0 |
| scalar = torch.tensor(number).to(dtype).to(device) |
| ref = torch.nested.nested_tensor([t * number for t in nt1.unbind()]) |
| out_number = nt1.clone() |
| out_number *= number |
| out_scalar = nt1.clone() |
| out_scalar *= scalar |
| self.assertEqual(out_number, ref) |
| self.assertEqual(out_scalar, ref) |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"output with shape \[.*\] doesn't match the broadcast shape \[.*\]", |
| lambda: scalar.mul_(nt1) |
| ) |
| # error case: numel == 1 but dim > 0 |
| vector = torch.tensor([number]).to(dtype).to(device) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Expected both self and other to be nested, but got a nested self and non-nested other", |
| lambda: nt1.mul_(vector) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Expected both self and other to be nested, but got a non-nested self and nested other", |
| lambda: vector.mul_(nt1) |
| ) |
| |
| @onlyCPU |
| @skipMeta |
| @dtypes(torch.float) |
| def test_nested_tensor_sum_dim(self, device, dtype): |
| params = ((2, (1, 1)), ((4), (4, 4)), (10, (3, 5, 7))) |
| |
| def test_sum(device, dtype, ntensors, max_sizes, dim, keepdim=True): |
| nt = random_nt(device, dtype, ntensors, max_sizes) |
| nt2 = nt.clone() |
| ub2 = nt2.unbind() |
| nt.requires_grad_(True) |
| [t.requires_grad_(True) for t in ub2] |
| nt_sum = nt.sum(dim=dim, keepdim=keepdim) |
| ub2_sum = [t.sum(-1, keepdim=keepdim) for t in ub2] |
| self.assertEqual(nt_sum, torch.nested.nested_tensor(ub2_sum)) |
| |
| # test backward |
| # generate gradient tensor that has the same size as the output |
| size = nt_sum._nested_tensor_size() |
| gt2 = [] |
| for i in range(ntensors): |
| gt2.append(torch.randn(size[i].tolist(), device=device, dtype=dtype)) |
| gt = torch.nested.nested_tensor(gt2).clone() |
| nt_sum.backward(gt) |
| for t2, g2 in zip(ub2_sum, gt2): |
| t2.backward(g2) |
| self.assertEqual(nt.grad, torch.nested.nested_tensor([t.grad for t in ub2])) |
| return |
| |
| for ntensors, max_sizes in params: |
| test_sum(device, dtype, ntensors, max_sizes, len(max_sizes)) |
| |
| # Test error inputs |
| with self.assertRaisesRegex(RuntimeError, "NestedTensor can only be reduced across the last"): |
| torch.nested.nested_tensor([torch.tensor([3, 4, 5]), torch.tensor([1, 2])]).sum(0, keepdim=True) |
| |
| with self.assertRaisesRegex(RuntimeError, "NestedTensor only allows reduction of a single"): |
| torch.nested.nested_tensor([torch.tensor([[3, 4, 5]]), torch.tensor([[1, 2]])]).sum([0, 1], keepdim=True) |
| |
| with self.assertRaisesRegex(RuntimeError, "NestedTensor always requires keepdim=True for now."): |
| torch.nested.nested_tensor([torch.tensor([3, 4, 5]), torch.tensor([1, 2])]).sum(-1) |
| |
| @dtypes(torch.float, torch.float16) |
| def test_contiguous(self, device, dtype): |
| # Since we don't have access to the buffer in python this is harder to show what |
| # we are testing for. When we call chunk on a consistent dim of a NT |
| # for chunk_size > 1 the resulting tensors are views of the original NT |
| # whose numels is now less than the size of the buffer. Clone was |
| # previously creating a new NT with a buffer that was the same size as the |
| # original. |
| nt_contiguous = torch.nested.nested_tensor([torch.randn(2, 20, device=device, dtype=dtype), |
| torch.randn(4, 20, device=device, dtype=dtype)]) |
| # Split up the last dimension which has a consistent size of 20 into 5 chunks |
| chunks = nt_contiguous.chunk(5, dim=-1) |
| |
| # # Check chunks are contiguous after calling contiguous |
| for chunk in chunks: |
| self.assertFalse(chunk.is_contiguous()) |
| self.assertTrue(chunk.contiguous().is_contiguous()) |
| |
| @dtypes(torch.float, torch.float16) |
| @skipMeta |
| def test_clone(self, device, dtype): |
| nt1 = random_nt(device, dtype, 4, (4, 4), (1, 1)) |
| nt2 = nt1.clone() |
| # Verify the values match |
| self.assertEqual(nt1, nt2) |
| # Verify modifying nt2 doesn't affect nt1 |
| nt2.mul_(nt1) |
| ub1 = nt1.unbind() |
| ub2 = nt2.unbind() |
| for i in range(len(ub1)): |
| self.assertNotEqual(ub1[i], ub2[i]) |
| |
| nt1.clone(memory_format=torch.preserve_format) |
| msg = "Nested tensor clone supports Preserve and Contiguous memory formats, called clone with memory format: ChannelsLast" |
| with self.assertRaisesRegex(RuntimeError, msg): |
| nt1.clone(memory_format=torch.channels_last) |
| |
| # cannot test torch.float16 because: RuntimeError: "bernoulli_scalar_cpu_" not implemented for 'Half' |
| @dtypes(torch.float, torch.double) |
| def test_dropout(self, device, dtype): |
| # edge case: empty nested tensor |
| nt0 = torch.nested.nested_tensor([]) |
| y = torch.nn.functional.dropout(nt0, 0.5) |
| self.assertEqual(nt0, y) |
| # normal nested tensor |
| ntensors = 4 |
| nt = random_nt(device, dtype, ntensors, (4, 4)) |
| # edge case: invalid dropout |
| self.assertRaises(ValueError, lambda: torch.nn.Dropout(-0.1)) |
| self.assertRaises(ValueError, lambda: torch.nn.Dropout(1.1)) |
| self.assertRaises(ValueError, lambda: torch.nn.functional.dropout(nt, -0.1)) |
| self.assertRaises(ValueError, lambda: torch.nn.functional.dropout(nt, 1.1)) |
| # edge case: no dropout |
| dropouter = torch.nn.Dropout(0.0) |
| y0 = dropouter(nt) |
| y1 = torch.nn.functional.dropout(nt, 0.0) |
| self.assertEqual(nt, y0) |
| self.assertEqual(nt, y1) |
| # edge case: all dropout |
| dropouter = torch.nn.Dropout(1.0) |
| y0 = dropouter(nt) |
| y1 = torch.nn.functional.dropout(nt, 1.0) |
| nt0 = nt.clone() |
| for i in range(ntensors): |
| nt0[i].fill_(0.0) |
| self.assertEqual(nt0, y0) |
| self.assertEqual(nt0, y1) |
| # normal case: normal dropout |
| p = 0.2 |
| y = torch.nn.functional.dropout(nt, p) |
| expect = nt.clone() |
| for i in range(ntensors): |
| actual_tensor = y[i].view(-1) |
| expect_tensor = expect[i].view(-1) |
| for j in range(actual_tensor.shape[0]): |
| if actual_tensor[j].item() == 0.0: |
| expect_tensor[j] = 0.0 |
| else: |
| expect_tensor[j] /= 1.0 - p |
| self.assertEqual(y, expect) |
| with freeze_rng_state(): |
| dropouter = torch.nn.Dropout(p) |
| y0 = dropouter(nt) |
| with freeze_rng_state(): |
| y1 = torch.nn.functional.dropout(nt, p) |
| self.assertEqual(y0, y1) |
| |
| @dtypes(torch.float, torch.double) |
| def test_dropout_noncontiguous(self, device, dtype): |
| ntensors = 4 |
| nt0 = random_nt(device, dtype, ntensors, (4, 4)) |
| nt1 = nt0.transpose(-1, -2) |
| p = 0.3 |
| with freeze_rng_state(): |
| dropouter = torch.nn.Dropout(p) |
| y0 = dropouter(nt0) |
| with freeze_rng_state(): |
| y1 = torch.nn.functional.dropout(nt1, p).transpose(-1, -2) |
| self.assertEqual(y0, y1) |
| |
| # cannot test torch.float16 because: RuntimeError: "softmax_kernel_impl" not implemented for 'Half' |
| @dtypes(torch.float, torch.double) |
| def test_softmax(self, device, dtype): |
| # normal nested tensor |
| ntensors = 4 |
| nt = random_nt(device, dtype, ntensors, (4, 4)) |
| # error case: softmax across nested dimension |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Cannot apply softmax across nested dimension 0", |
| lambda: torch.nn.functional.softmax(nt, 0) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Cannot apply softmax across nested dimension 0", |
| lambda: torch.nn.functional.softmax(nt, -3) |
| ) |
| # error case: dimension out of range |
| self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt, 3)) |
| self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt, -4)) |
| # normal case: should equal to padding -inf |
| softmaxer = torch.nn.Softmax(1) |
| y0 = softmaxer(nt) |
| y1 = torch.nn.functional.softmax(nt, 1) |
| self.assertEqual(y0, y1) |
| pt = torch.nested.to_padded_tensor(nt, float("-inf")) |
| # if an entire slice is padded, then softmax will return 0.0 / 0.0 = nan |
| # however, physically speaking that should be 0.0 |
| expect = torch.nn.functional.softmax(pt, 1).nan_to_num_(0.0) |
| self.assertEqual(torch.nested.to_padded_tensor(y0, 0.0), expect) |
| # edge case: empty nested tensor |
| nt0 = torch.nested.nested_tensor([]) |
| y = torch.nn.functional.softmax(nt0, 1) |
| self.assertEqual(nt0, y) |
| # edge case: nesting scalars |
| nt1 = torch.nested.nested_tensor([torch.tensor(0.0), torch.tensor(1.0)]) |
| self.assertRaises(RuntimeError, lambda: torch.nn.functional.softmax(nt1, 0)) |
| self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt1, 1)) |
| |
| @dtypes(torch.float, torch.double) |
| @torch.inference_mode() |
| def test_softmax_noncontiguous(self, device, dtype): |
| nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype) |
| self.assertEqual( |
| torch.nn.functional.softmax(nt_contiguous, -1), |
| torch.nn.functional.softmax(nt_noncontiguous, -1)) |
| |
| def _test_bmm(self, device, dtype): |
| # error case: one is nested but the other is not |
| nt = torch.nested.nested_tensor([torch.randn(2), torch.randn(3)], device=device, dtype=dtype) |
| t = torch.randn(4, device=device, dtype=dtype) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Expected both to be nested, but got a nested self and non-nested other", |
| lambda: nt.bmm(t) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Expected both to be nested, but got a non-nested self and nested other", |
| lambda: t.bmm(nt) |
| ) |
| # error case: not 3D tensors |
| nt0 = torch.nested.nested_tensor([], device=device, dtype=dtype) |
| nt1 = torch.nested.nested_tensor([torch.randn(2), torch.randn(3)], device=device, dtype=dtype) |
| nt2 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "batch1 must be a 3D tensor", |
| lambda: nt0.bmm(nt0) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "batch1 must be a 3D tensor", |
| lambda: nt0.bmm(nt1) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "batch1 must be a 3D tensor", |
| lambda: nt0.bmm(nt2) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "batch1 must be a 3D tensor", |
| lambda: nt1.bmm(nt0) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "batch1 must be a 3D tensor", |
| lambda: nt1.bmm(nt1) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "batch1 must be a 3D tensor", |
| lambda: nt1.bmm(nt2) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "batch2 must be a 3D tensor", |
| lambda: nt2.bmm(nt0) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "batch2 must be a 3D tensor", |
| lambda: nt2.bmm(nt1) |
| ) |
| # error case: incompatible batch size |
| nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype) |
| nt1 = torch.nested.nested_tensor([torch.randn((4, 6)), |
| torch.randn((4, 5)), |
| torch.randn((4, 7))], |
| device=device, dtype=dtype) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Expected size for the 1st dimension of batch2 tensor to be: 2 but got: 3.", |
| lambda: nt0.bmm(nt1) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Expected size for the 1st dimension of batch2 tensor to be: 3 but got: 2.", |
| lambda: nt1.bmm(nt0) |
| ) |
| # error case: underlying matrices cannot be multiplied |
| nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype) |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"0-th nested matrices in batch cannot be multiplied \(2x4 and 2x4\)", |
| lambda: nt0.bmm(nt0) |
| ) |
| # normal nested tensor |
| nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 7))], device=device, dtype=dtype) |
| nt1 = torch.nested.nested_tensor([torch.randn((4, 6)), torch.randn((7, 5))], device=device, dtype=dtype) |
| actual = torch.nested.to_padded_tensor(nt0.bmm(nt1), 0.0) |
| expect = torch.nested.to_padded_tensor(nt0, 0.0).bmm(torch.nested.to_padded_tensor(nt1, 0.0)) |
| if dtype == torch.float16: |
| self.assertEqual(actual, expect, rtol=1e-3, atol=1e-3) |
| else: |
| self.assertEqual(actual, expect) |
| |
| @onlyCUDA |
| @dtypes(torch.float, torch.double, torch.float16) |
| def test_bmm_cuda(self, device, dtype): |
| self._test_bmm(device, dtype) |
| |
| @onlyCPU |
| # cannot test torch.float16 because: RuntimeError: "addmm_impl_cpu_" not implemented for 'Half' |
| @dtypes(torch.float, torch.double) |
| def test_bmm_cpu(self, device, dtype): |
| self._test_bmm(device, dtype) |
| |
| # TODO: Re-enable this test once bmm supports non-contiguous inputs. |
| # # cannot test torch.float16 because: RuntimeError: "addmm_impl_cpu_" not implemented for 'Half' |
| # @dtypes(torch.float, torch.double) |
| # def test_bmm_noncontiguous(self, device, dtype): |
| # nt0_contiguous, nt0_noncontiguous = random_nt_noncontiguous_pair((2, 3), device, dtype) |
| # nt1_contiguous, nt1_noncontiguous = random_nt_noncontiguous_pair((6, 7), device, dtype) |
| # self.assertEqual( |
| # nt0_contiguous.transpose(-1, -2).bmm(nt1_contiguous), |
| # nt0_noncontiguous.transpose(-1, -2).bmm(nt1_noncontiguous)) |
| |
| # cannot test torch.float16 because: RuntimeError: "bmm" not implemented for 'Half' |
| @dtypes(torch.float, torch.double) |
| def test_matmul(self, device, dtype): |
| # error case: one is nested but the other is not |
| nt = torch.nested.nested_tensor([torch.randn(2), torch.randn(3)], device=device, dtype=dtype) |
| t = torch.randn(4, device=device, dtype=dtype) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Expected both to be nested, but got a nested self and non-nested other", |
| lambda: torch.matmul(nt, t) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Expected both to be nested, but got a non-nested self and nested other", |
| lambda: torch.matmul(t, nt) |
| ) |
| # error case: not 3+D tensors |
| nt0 = torch.nested.nested_tensor([], device=device, dtype=dtype) |
| nt1 = torch.nested.nested_tensor([torch.randn(2), torch.randn(3)], device=device, dtype=dtype) |
| nt2 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype) |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", |
| lambda: torch.matmul(nt0, nt0) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", |
| lambda: torch.matmul(nt0, nt1) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", |
| lambda: torch.matmul(nt0, nt2) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", |
| lambda: torch.matmul(nt1, nt0) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", |
| lambda: torch.matmul(nt1, nt1) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", |
| lambda: torch.matmul(nt1, nt2) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 2nd input has rank: [0-9]+", |
| lambda: torch.matmul(nt2, nt0) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 2nd input has rank: [0-9]+", |
| lambda: torch.matmul(nt2, nt1) |
| ) |
| # error case: incompatible batch size |
| nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype) |
| nt1 = torch.nested.nested_tensor([torch.randn((4, 6)), |
| torch.randn((4, 5)), |
| torch.randn((4, 7))], |
| device=device, dtype=dtype) |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"matmul: Expected size for the 1st dimension of 2nd input tensor to be: [0-9]+ but got: [0-9]+.", |
| lambda: torch.matmul(nt0, nt1) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"matmul: Expected size for the 1st dimension of 2nd input tensor to be: [0-9]+ but got: [0-9]+.", |
| lambda: torch.matmul(nt1, nt0) |
| ) |
| # error case: incompatible (wrong) batch sizes that shouldn't even broadcast? |
| nt0 = torch.nested.nested_tensor([torch.randn((2, 2, 4)), |
| torch.randn((2, 3, 4))], |
| device=device, dtype=dtype) |
| nt1 = torch.nested.nested_tensor([torch.randn((3, 4, 6)), |
| torch.randn((3, 4, 5))], |
| device=device, dtype=dtype) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "matmul(): For nested tensors, batch dimensions must have the same sizes,", |
| lambda: torch.matmul(nt0, nt1) |
| ) |
| # error case: incompatible batch sizes that should technically broadcast |
| nt0 = torch.nested.nested_tensor([torch.randn((2, 2, 4)), |
| torch.randn((1, 3, 4))], |
| device=device, dtype=dtype) |
| nt1 = torch.nested.nested_tensor([torch.randn((1, 4, 6)), |
| torch.randn((3, 4, 5))], |
| device=device, dtype=dtype) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "matmul(): For nested tensors, batch dimensions must have the same sizes,", |
| lambda: torch.matmul(nt0, nt1) |
| ) |
| # error case: underlying matrices cannot be multiplied |
| nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "matmul(): Nested tensors cannot be matrix multiplied", |
| lambda: torch.matmul(nt0, nt0) |
| ) |
| # normal nested tensor: 3D |
| nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 7))], device=device, dtype=dtype) |
| nt1 = torch.nested.nested_tensor([torch.randn((4, 6)), torch.randn((7, 5))], device=device, dtype=dtype) |
| actual = torch.nested.to_padded_tensor(torch.matmul(nt0, nt1), 0.0) |
| expect = torch.matmul(torch.nested.to_padded_tensor(nt0, 0.0), torch.nested.to_padded_tensor(nt1, 0.0)) |
| self.assertEqual(actual, expect) |
| # normal nested tensor: 4D (with testing for batch_size=1) |
| nt0 = torch.nested.nested_tensor([torch.randn((1, 2, 4)), |
| torch.randn((8, 3, 7))], |
| device=device, dtype=dtype) |
| nt1 = torch.nested.nested_tensor([torch.randn((1, 4, 6)), |
| torch.randn((8, 7, 5))], |
| device=device, dtype=dtype) |
| actual = torch.nested.to_padded_tensor(torch.matmul(nt0, nt1), 0.0) |
| expect = torch.matmul(torch.nested.to_padded_tensor(nt0, 0.0), torch.nested.to_padded_tensor(nt1, 0.0)) |
| self.assertEqual(actual, expect) |
| # normal nested tensor: 5D |
| nt0 = torch.nested.nested_tensor([torch.randn((8, 9, 2, 4)), |
| torch.randn((8, 9, 3, 7))], |
| device=device, dtype=dtype) |
| nt1 = torch.nested.nested_tensor([torch.randn((8, 9, 4, 6)), |
| torch.randn((8, 9, 7, 5))], |
| device=device, dtype=dtype) |
| actual = torch.nested.to_padded_tensor(torch.matmul(nt0, nt1), 0.0) |
| expect = torch.matmul(torch.nested.to_padded_tensor(nt0, 0.0), torch.nested.to_padded_tensor(nt1, 0.0)) |
| self.assertEqual(actual, expect) |
| |
| # cannot test torch.float16 because: RuntimeError: "bmm" not implemented for 'Half' |
| @dtypes(torch.float, torch.double) |
| def test_matmul_noncontiguous(self, device, dtype): |
| nt0_contiguous, nt0_noncontiguous = random_nt_noncontiguous_pair((2, 3), device, dtype) |
| nt1_contiguous, nt1_noncontiguous = random_nt_noncontiguous_pair((6, 7), device, dtype) |
| self.assertEqual( |
| torch.matmul(nt0_contiguous.transpose(-1, -2), nt1_contiguous), |
| torch.matmul(nt0_noncontiguous.transpose(-1, -2), nt1_noncontiguous)) |
| |
| @dtypes(torch.float, torch.double) |
| def test_linear(self, device, dtype): |
| a = torch.randn(1, 2, device=device, dtype=dtype) |
| b = torch.randn(2, 2, device=device, dtype=dtype) |
| c = torch.randn(3, 2, device=device, dtype=dtype) |
| nt = torch.nested.nested_tensor([a, b, c]) |
| |
| weight = torch.randn(2, 2, device=device, dtype=dtype) |
| bias = torch.randn(2, device=device, dtype=dtype) |
| # success case |
| torch.functional.F.linear(nt, weight, bias) |
| |
| # invalid nested tensor dimension |
| msg = r'Linear requires nested_tensor.dim == 3 and dense_matrix.dim == 2. Nested tensor dim: 2. Dense tensor dim: 2' |
| nt1 = torch.nested.nested_tensor([torch.randn(1, device=device, dtype=dtype), |
| torch.randn(2, device=device, dtype=dtype)]) |
| with self.assertRaisesRegex(RuntimeError, msg): |
| torch.functional.F.linear(nt1, weight, bias) |
| |
| # invalid weight shape |
| msg = r'Linear requires nested_tensor.dim == 3 and dense_matrix.dim == 2. Nested tensor dim: 3. Dense tensor dim: 3' |
| weight1 = torch.randn(2, 2, 3, device=device, dtype=dtype) |
| with self.assertRaisesRegex(RuntimeError, msg): |
| torch.functional.F.linear(nt, weight1, bias) |
| |
| # inconsistent last dim of nested tensor |
| msg = r"Expected all tensors in nested tensor to have the same trailing dimension, instead last dimension equals:" |
| nt2 = torch.nested.nested_tensor([torch.randn(1, 2, device=device, dtype=dtype), |
| torch.randn(2, 3, device=device, dtype=dtype)]) |
| with self.assertRaisesRegex(RuntimeError, msg): |
| torch.functional.F.linear(nt2, weight, bias) |
| |
| # Mismatch of nested tensor last dim and weight dimension |
| weight2 = torch.randn(2, 4, device=device, dtype=dtype) |
| msg = r"Shape mismatch for NestedTensor Linear: Expected input's \(a nested tensor\) 'last_dim'" \ |
| r" to equal 'weight.size\(1\), but got: last_dim = 2, and weight.size\(1\) = 4" |
| with self.assertRaisesRegex(RuntimeError, msg): |
| torch.functional.F.linear(nt, weight2, bias) |
| |
| # Nested tensor input and nested weight |
| nt_weight = nt.clone() |
| msg = r"Linear does not support nested weight when input is a nested tensor." |
| with self.assertRaisesRegex(RuntimeError, msg): |
| torch.functional.F.linear(nt, nt_weight, bias) |
| |
| # TODO: test noncontiguous linear |
| # For now this tests the error message of linear |
| # since linear does not support noncontiguous buffer yet |
| @dtypes(torch.float, torch.double) |
| def test_linear_noncontiguous(self, device, dtype): |
| nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype) |
| weight = torch.randn((8, 5), device=device, dtype=dtype) |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"for now linear only supports contiguous nested tensor", |
| lambda: torch.nn.functional.linear(nt_noncontiguous, weight) |
| ) |
| |
| @dtypes(torch.float, torch.float16, torch.double) |
| def test_transpose(self, device, dtype): |
| nt = random_nt(device, dtype, 4, (4, 4)) |
| # error case: transpose nested dimension |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Nested tensor dimension 0 cannot be transposed", |
| lambda: nt.transpose(0, 1) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Nested tensor dimension 0 cannot be transposed", |
| lambda: nt.transpose(1, -3) |
| ) |
| # error case: dimension out of range |
| self.assertRaises(IndexError, lambda: nt.transpose(1, 3)) |
| self.assertRaises(IndexError, lambda: nt.transpose(-4, -1)) |
| # normal case |
| ntT = nt.transpose(-1, -2) |
| ptT_from_ntT = noncontiguous_to_padded_tensor(ntT) |
| pt = torch.nested.to_padded_tensor(nt, 0.0) |
| ptT = pt.transpose(-1, -2) |
| self.assertEqual(ptT, ptT_from_ntT) |
| |
| @dtypes(torch.float, torch.float16, torch.double) |
| def test_squeeze_unsqueeze(self, device, dtype): |
| a = torch.arange(6).reshape(2, 3) |
| b = torch.arange(15).reshape(5, 3) |
| nt = torch.nested.nested_tensor([a, b], device=device, dtype=dtype) |
| # error case: squeeze no dimension |
| self.assertRaisesRegex( |
| RuntimeError, |
| "For nested tensors, squeeze without the dim argument", |
| lambda: nt.squeeze() |
| ) |
| # error case: squeeze nested dimension |
| self.assertRaisesRegex( |
| RuntimeError, |
| "For nested tensors, squeezing dimension 0", |
| lambda: nt.squeeze(0) |
| ) |
| # error case: dimension out of range |
| self.assertRaises(IndexError, lambda: nt.squeeze(3)) |
| # error case: squeeze nested tensor of singleton tensors |
| c = torch.ones(1) |
| nt_singleton = torch.nested.nested_tensor([c, c], device=device, dtype=dtype) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "For nested tensors, squeezing a nested tensor of singleton", |
| lambda: nt_singleton.squeeze(1) |
| ) |
| |
| # squeezing a dim which does not have size 1 should be a no-op |
| nt2 = nt.squeeze(-1) |
| self.assertEqual(nt, nt2) |
| |
| # test cases that should work |
| for i in range(-2, 3): |
| if (i == 0): |
| continue |
| nt_unsqueezed = nt.unsqueeze(i) |
| size_idx = i if i < 0 else i - 1 |
| self.assertEqual(nt_unsqueezed._nested_tensor_size()[:, size_idx], torch.ones(2, dtype=torch.long)) |
| nt_squeezed = nt_unsqueezed.squeeze(i) |
| self.assertEqual(nt_squeezed, nt) |
| |
| @dtypes(torch.float, torch.float16, torch.double) |
| def test_transpose_inference_mode_interaction(self, device, dtype): |
| nt = random_nt(device, dtype, 4, (4, 4)) |
| # Construct in default mode and transpose while in inference mode |
| with torch.inference_mode(): |
| ntT = nt.transpose(-1, -2) |
| ptT_from_ntT = noncontiguous_to_padded_tensor(ntT) |
| pt = torch.nested.to_padded_tensor(nt, 0.0) |
| ptT = pt.transpose(-1, -2) |
| self.assertEqual(ptT, ptT_from_ntT) |
| |
| # Construct and transpose while in inference mode |
| with torch.inference_mode(): |
| nt = random_nt(device, dtype, 4, (4, 4)) |
| ntT = nt.transpose(-1, -2) |
| ptT_from_ntT = noncontiguous_to_padded_tensor(ntT) |
| pt = torch.nested.to_padded_tensor(nt, 0.0) |
| ptT = pt.transpose(-1, -2) |
| self.assertEqual(ptT, ptT_from_ntT) |
| |
| @dtypes(torch.float, torch.float16, torch.double) |
| def test_view(self, device, dtype): |
| nt = random_nt(device, dtype, 4, (4, 4)) |
| # error case: empty shape |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"shape '\[\]' is invalid for a nested tensor", |
| lambda: nt.view(()) |
| ) |
| # error case: empty nested tensor |
| nt_empty = torch.nested.nested_tensor([]) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "empty nested tensor cannot be reshaped", |
| lambda: nt_empty.view(-1) |
| ) |
| # error case: -1 for batch size |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"view: For now nested view cannot change or infer the implicit batch dimension", |
| lambda: nt.view(-1, 2, 3) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"shape '\[.*\]' is invalid for input of size [0-9]+", |
| lambda: nt.view(4, 2, 3) |
| ) |
| # normal case |
| x0 = torch.randn((2, 20), device=device, dtype=dtype) |
| x1 = torch.randn((3, 20), device=device, dtype=dtype) |
| nt = torch.nested.nested_tensor([x0, x1]) |
| pt = torch.nested.to_padded_tensor(nt, 0.0) |
| # error case, trying to reshape batch dim to a legit shape |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"For now nested view cannot change or infer the implicit batch dimension", |
| lambda: nt.transpose(-1, -2).view(40, -1) |
| ) |
| # inherit only the ragged dimension |
| # (2, 20) -> (2, 5, 4) |
| # (3, 20) -> (3, 5, 4) |
| nt1 = nt.view(2, -1, 5, 4) |
| # (2, 3, 20) -> (2, 3, 5, 4) -> (2, 4, 5, 4) |
| pt1 = pt.view(2, -1, 5, 4) |
| self.assertEqual(noncontiguous_to_padded_tensor(nt1), pt1) |
| |
| # more than one -1 (even for "old" dims), should fail |
| # this attempts to do # (2, (2, 3), 5, 4) -> (2, (2, 3), 5, 2, 2) |
| # but we ban "inherit old behavior" for >1 dimension |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"only one dimension can be inferred", |
| lambda: nt1.view(2, -1, -1, 2, 2) |
| ) |
| |
| @dtypes(torch.float, torch.float16, torch.double) |
| def test_view_inference_mode_interaction(self, device, dtype): |
| # Construct in default mode and view while in inference mode |
| nt = torch.nested.nested_tensor([torch.randn((2, 20)), torch.randn((3, 20))], device=device, dtype=dtype) |
| with torch.inference_mode(): |
| ntT = nt.view(2, -1, 4, 5) |
| ptT_from_ntT = noncontiguous_to_padded_tensor(ntT) |
| pt = torch.nested.to_padded_tensor(nt, 0.0) |
| ptT = pt.view(2, -1, 4, 5) |
| self.assertEqual(ptT, ptT_from_ntT) |
| # Construct and view while in inference mode |
| with torch.inference_mode(): |
| nt = torch.nested.nested_tensor([torch.randn((2, 20)), torch.randn((3, 20))], device=device, dtype=dtype) |
| ntT = nt.view(2, -1, 4, 5) |
| ptT_from_ntT = noncontiguous_to_padded_tensor(ntT) |
| pt = torch.nested.to_padded_tensor(nt, 0.0) |
| ptT = pt.view(2, -1, 4, 5) |
| self.assertEqual(ptT, ptT_from_ntT) |
| |
| @dtypes(torch.float, torch.float16, torch.double) |
| def test_reshape(self, device, dtype): |
| nt = random_nt(device, dtype, 4, (4, 4)) |
| # error case: empty shape |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"shape '\[\]' is invalid for a nested tensor", |
| lambda: nt.reshape(()) |
| ) |
| # error case: empty nested tensor |
| nt_empty = torch.nested.nested_tensor([]) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "empty nested tensor cannot be reshaped", |
| lambda: nt_empty.reshape(-1) |
| ) |
| # error case: -1 for batch size |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"reshape: For now nested reshape cannot change or infer the implicit batch dimension", |
| lambda: nt.reshape(-1, 2, 3) |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"shape '\[.*\]' is invalid for input of size [0-9]+", |
| lambda: nt.reshape(4, 2, 3) |
| ) |
| # normal case |
| x0 = torch.randn((2, 20), device=device, dtype=dtype) |
| x1 = torch.randn((3, 20), device=device, dtype=dtype) |
| nt = torch.nested.nested_tensor([x0, x1]) # (2, (2, 3), 20) |
| pt = torch.nested.to_padded_tensor(nt, 0.0) |
| # error case, trying to reshape batch dim to a legit shape |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"reshape: For now nested reshape cannot change or infer the implicit batch dimension", |
| lambda: nt.transpose(-1, -2).reshape(40, -1) |
| ) |
| # inherit only the ragged dimension |
| # (2, 20) -> (2, 5, 4) |
| # (3, 20) -> (3, 5, 4) |
| nt1 = nt.reshape(2, -1, 5, 4) |
| # (2, 3, 20) -> (2, 3, 5, 4) -> (2, 4, 5, 4) |
| pt1 = pt.reshape(2, -1, 5, 4) |
| self.assertEqual(noncontiguous_to_padded_tensor(nt1), pt1) |
| |
| # more than one -1 (even for "old" dims), should fail |
| # this attempts to do # (2, (2, 3), 5, 4) -> (2, (2, 3), 5, 2, 2) |
| # but we ban "inherit old behavior" for >1 dimension |
| self.assertRaisesRegex( |
| RuntimeError, |
| r"only one dimension can be inferred", |
| lambda: nt1.reshape(2, -1, -1, 2, 2) |
| ) |
| |
| @parametrize("input_dim", [3, 4]) |
| def test_scaled_dot_product_attention(self, device, input_dim): |
| |
| def rand_tensor(*shape): |
| return torch.randn(shape, device=device) |
| |
| E = 10 |
| if input_dim == 3: |
| # Shape: (N, L, E); ragged L |
| query = torch.nested.nested_tensor([rand_tensor(2, E), rand_tensor(3, E), rand_tensor(4, E)]) |
| |
| # Shape: (N, S, E); ragged S |
| key = torch.nested.nested_tensor([rand_tensor(3, E), rand_tensor(4, E), rand_tensor(5, E)]) |
| value = torch.nested.nested_tensor([rand_tensor(3, E), rand_tensor(4, E), rand_tensor(5, E)]) |
| elif input_dim == 4: |
| # Shape: (N, N', L, E); ragged N' and L |
| query = torch.nested.nested_tensor([rand_tensor(2, 2, E), rand_tensor(3, 3, E), rand_tensor(4, 4, E)]) |
| # Shape: (N, N', S, E); ragged N' and S |
| key = torch.nested.nested_tensor([rand_tensor(2, 3, E), rand_tensor(3, 4, E), rand_tensor(4, 5, E)]) |
| value = torch.nested.nested_tensor([rand_tensor(2, 3, E), rand_tensor(3, 4, E), rand_tensor(4, 5, E)]) |
| else: |
| self.fail(f"Invalid input_dim {input_dim} encountered in SDP test") |
| |
| def rand_mask(size): |
| return torch.randint(0, 2, size=size, dtype=torch.bool, device=device) |
| |
| # Shape: (N, L, S); ragged L and S matching above |
| attn_mask = torch.nested.nested_tensor([rand_mask((2, 3)), rand_mask((3, 4)), rand_mask((4, 5))]) |
| |
| dropout_p = 0.0 # no dropout for reproducibility |
| need_attn_weights: bool = True |
| |
| # Success case: no attn_mask set and is_causal=False. |
| actual = torch.ops.aten._scaled_dot_product_attention( |
| query, key, value, attn_mask=None, dropout_p=dropout_p, need_attn_weights=need_attn_weights) |
| |
| expected_outputs = [] |
| expected_attn_weights = [] |
| for q, k, v in zip(query.unbind(), key.unbind(), value.unbind()): |
| (output, attn_weights) = torch.ops.aten._scaled_dot_product_attention( |
| q.unsqueeze(0), k.unsqueeze(0), v.unsqueeze(0), attn_mask=None, dropout_p=dropout_p, |
| need_attn_weights=need_attn_weights) |
| expected_outputs.append(output.squeeze(0)) |
| expected_attn_weights.append(attn_weights.squeeze(0)) |
| expected_output_nested = torch.nested.nested_tensor(expected_outputs) |
| expected_attn_weight_nested = torch.nested.nested_tensor(expected_attn_weights) |
| self.assertEqual(actual[0], expected_output_nested) |
| self.assertEqual(actual[1], expected_attn_weight_nested) |
| |
| # Error case: explicit attn_mask set. |
| with self.assertRaisesRegex(RuntimeError, "not supported when an explicit attn_mask is set"): |
| torch.ops.aten._scaled_dot_product_attention( |
| query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, need_attn_weights=need_attn_weights) |
| |
| # Error case: is_causal=True. |
| with self.assertRaisesRegex(RuntimeError, "not supported when is_causal=True"): |
| torch.ops.aten._scaled_dot_product_attention( |
| query, key, value, dropout_p=dropout_p, need_attn_weights=need_attn_weights, is_causal=True) |
| |
| @dtypes(torch.float, torch.float16, torch.double) |
| def test_empty_like(self, device, dtype): |
| ntensors = 4 |
| nt = random_nt(device, dtype, ntensors, (4, 4)) |
| |
| # Create empty on same device as original nested tensor |
| nt_empty = torch.empty_like(nt) |
| assert nt.is_same_size(nt_empty) |
| self.assertEqual(nt.dtype, nt_empty.dtype) |
| self.assertEqual(nt.device, nt_empty.device) |
| self.assertEqual(nt.layout, nt_empty.layout) |
| |
| if torch.cuda.is_available(): |
| if device == "cpu": |
| nt_cuda = torch.empty_like(nt, device='cuda') |
| self.assertEqual(torch.device("cuda").type, nt_cuda.device.type) |
| else: |
| nt_cpu = torch.empty_like(nt, device='cpu') |
| self.assertEqual(torch.device("cpu").type, nt_cpu.device.type) |
| |
| # Check changing dtype of empty_like nested tensor output |
| dtype_set = {torch.float, torch.float16, torch.double} |
| for other_dtype in dtype_set - {dtype}: |
| nt_empty_other_dtype = torch.empty_like(nt, dtype=other_dtype) |
| self.assertEqual(nt.dtype, dtype) |
| self.assertEqual(nt_empty_other_dtype.dtype, other_dtype) |
| self.assertEqual(nt.device, nt_empty.device) |
| self.assertEqual(nt.layout, nt_empty.layout) |
| |
| # Create tensor for autograd |
| nt_empty_req_grad = torch.empty_like(nt, requires_grad=True) |
| self.assertEqual(nt_empty_req_grad.requires_grad, True) |
| |
| # Test noncontiguous tensor fails to copy |
| nt_cont, nt_noncont = random_nt_noncontiguous_pair((2, 3, 6, 7)) |
| nt_empty = torch.empty_like(nt_cont) |
| assert nt_cont.is_same_size(nt_empty) |
| with self.assertRaisesRegex(RuntimeError, "empty_like only supports contiguous memory format for Nested Tensors"): |
| nt_empty = torch.empty_like(nt_noncont) |
| |
| |
| class TestNestedTensorAutograd(TestCase): |
| # Note [Gradcheck args check_batched_grad=False] the common_utils testing version of gradcheck |
| # includes the default parameters used for testing ops with gradcheck. However nested tensor |
| # does not support the stack op therefore we turn it off for these tests |
| def _create_leaf_nested_tensor_from_list(self, requires_grad=False): |
| return torch.nested.nested_tensor([torch.randn(1, 2), |
| torch.randn(7, 8)], requires_grad=requires_grad) |
| |
| def _create_nested_tensor_from_list(self, requires_grad=False): |
| return torch.nested.as_nested_tensor([torch.randn(1, 2, requires_grad=requires_grad), |
| torch.randn(7, 8, requires_grad=requires_grad)]) |
| |
| |
| def _create_nested_tensor_from_mask(self, requires_grad=False): |
| data = torch.randn(2, 3, 4, requires_grad=requires_grad) |
| mask = torch.ones_like(data[:, :, 0]).bool() |
| return torch._nested_tensor_from_mask(data, mask) |
| |
| def test_as_nested_tensor_propagates_gradients(self): |
| a = torch.arange(3, dtype=torch.float) |
| b = torch.arange(5, dtype=torch.float) |
| nt = torch.nested.as_nested_tensor([a, b]) |
| # tensors with requires_grad=False are leaves |
| self.assertTrue(nt.is_leaf) |
| self.assertTrue(not nt.requires_grad) |
| |
| a = torch.arange(3, dtype=torch.float, requires_grad=True) |
| b = torch.arange(5, dtype=torch.float, requires_grad=True) |
| nt2 = torch.nested.as_nested_tensor([a, b]) |
| fake_grad = torch.nested.nested_tensor([torch.ones_like(a), torch.zeros_like(b)]) |
| nt2.backward(fake_grad) |
| self.assertEqual(a.grad, fake_grad[0]) |
| self.assertEqual(b.grad, fake_grad[1]) |
| |
| def test_nested_tensor_generates_leaf(self): |
| a = torch.arange(3, dtype=torch.float, requires_grad=True) |
| b = torch.arange(5, dtype=torch.float, requires_grad=True) |
| |
| nt = torch.nested.nested_tensor([a, b], requires_grad=False) |
| self.assertTrue(nt.is_leaf) |
| self.assertTrue(not nt.requires_grad) |
| |
| nt2 = torch.nested.nested_tensor([a, b], requires_grad=True) |
| self.assertTrue(nt2.is_leaf) |
| self.assertTrue(nt2.requires_grad) |
| |
| fake_grad = torch.nested.nested_tensor([torch.ones_like(a), torch.zeros_like(b)]) |
| nt2.backward(fake_grad) |
| self.assertEqual(nt2.grad, fake_grad) |
| self.assertEqual(a.grad, None) |
| self.assertEqual(b.grad, None) |
| |
| |
| def test_set_requires_grad_from_list(self): |
| nt = self._create_nested_tensor_from_list() |
| nt.requires_grad_() |
| assert nt.requires_grad |
| |
| def test_set_requires_grad_from_mask(self): |
| nt = self._create_nested_tensor_from_mask() |
| nt.requires_grad_() |
| assert nt.requires_grad |
| |
| def test_backward_for_add_op(self): |
| nt_1 = self._create_nested_tensor_from_mask() |
| nt_2 = self._create_nested_tensor_from_mask() |
| |
| nt_1.requires_grad_() |
| c = nt_1 + nt_2 |
| |
| assert nt_1.requires_grad |
| assert c.requires_grad |
| grad_output = self._create_nested_tensor_from_mask() |
| c.backward(grad_output) |
| |
| # Grad check doesn't work with nested yet. |
| # d/dnt_1 (nt + nt_1) = 1*grad_output |
| self.assertEqual(nt_1.grad, grad_output) |
| |
| # Test Factory Functions |
| def test_nested_tensor_to_padded_tensor(self): |
| for padding_val in [0, 1]: |
| nt = self._create_leaf_nested_tensor_from_list(True) |
| |
| out = torch.nested.to_padded_tensor(nt, padding_val) |
| grad_output = torch.ones(out.shape) |
| out.backward(grad_output) |
| |
| self.assertEqual(nt.grad, torch.nested.nested_tensor([torch.ones(1, 2), torch.ones(7, 8)])) |
| |
| def test_nested_tensor_from_mask_and_to_padded(self): |
| N, L, D = 2, 4, 4 |
| mask = torch.ones(N, L) |
| for i in range(1, N): |
| end = torch.randint(1, L - 1, (1,)) |
| mask[i, end:] = 0 |
| |
| mask[0, :] = 1 |
| mask = mask.bool() |
| |
| data = torch.randn(N, L, D, requires_grad=True, dtype=torch.float64) |
| |
| def grad_test_func(inpt): |
| nt = torch._nested_tensor_from_mask(inpt, mask) |
| # This implicitly tests to_padded_tensor grads |
| return torch.nested.to_padded_tensor(nt, 0) |
| assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) |
| |
| def test_nested_tensor_from_padded(self): |
| nested_size = torch.tensor([[1, 2], [2, 2]]) |
| padded_tensor = torch.randn(2, 2, 2, dtype=torch.float64) |
| padded_tensor[0, 1, :] = 0 |
| padded_tensor.requires_grad_() |
| |
| def grad_test_func(tensor, nested_size): |
| nt = torch._nested_from_padded(tensor, nested_size, fuse_transform_0213=False) |
| # This implicitly tests to_padded_tensor grads |
| return torch.nested.to_padded_tensor(nt, 0) |
| |
| data = (padded_tensor, nested_size) |
| assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) |
| |
| def test_nested_tensor_from_padded_fused(self): |
| nested_size = torch.tensor([[1, 8], [2, 8]]) |
| padded_tensor = torch.randn(2, 2, 2, 4, dtype=torch.float64) |
| padded_tensor[0, 1, :] = 0 |
| padded_tensor.requires_grad_() |
| |
| def grad_test_func(tensor, nested_size): |
| nt = torch._nested_from_padded(tensor, nested_size, fuse_transform_0213=True) |
| # This implicitly tests to_padded_tensor grads |
| return torch.nested.to_padded_tensor(nt, 0) |
| data = (padded_tensor, nested_size) |
| assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) |
| |
| def test_nested_tensor_from_list(self): |
| |
| a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64) |
| b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64) |
| c = torch.randn(10, 2, requires_grad=True, dtype=torch.float64) |
| |
| def grad_test_func(a, b, c): |
| c = torch.nested.as_nested_tensor([a, b, c]) |
| # This implictily tests to_padded_tensor grads |
| return torch.nested.to_padded_tensor(c, 0) |
| data = (a, b, c) |
| assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) |
| |
| def test_dropout_backward(self): |
| nt = torch.nested.nested_tensor([torch.randn((2, 5)), torch.randn((3, 4))], requires_grad=True) |
| p = 0.2 |
| y = torch.nn.functional.dropout(nt, p) |
| y.backward(nt.clone().detach()) |
| self.assertEqual(nt.grad, y) |
| |
| def test_nested_tensor_bmm_gradcheck(self): |
| a = torch.randn(2, 6, requires_grad=True, dtype=torch.float64) |
| b = torch.randn(3, 6, requires_grad=True, dtype=torch.float64) |
| c = torch.randn(6, 4, requires_grad=True, dtype=torch.float64) |
| d = torch.randn(6, 5, requires_grad=True, dtype=torch.float64) |
| |
| def grad_test_func(a, b, c, d): |
| nt0 = torch.nested.as_nested_tensor([a, b]) |
| nt1 = torch.nested.as_nested_tensor([c, d]) |
| result = nt0.bmm(nt1) |
| return torch.nested.to_padded_tensor(result, 0.0) |
| |
| data = (a, b, c, d) |
| assert torch.autograd.gradcheck(grad_test_func, inputs=data) |
| |
| def test_nested_tensor_bmm_backward(self): |
| nt0 = torch.nested.nested_tensor([torch.randn((2, 6)), torch.randn((3, 6))], requires_grad=True) |
| nt1 = torch.nested.nested_tensor([torch.randn((6, 4)), torch.randn((6, 5))], requires_grad=True) |
| with torch.no_grad(): |
| pt0 = torch.nested.to_padded_tensor(nt0, 0.0).requires_grad_(True) |
| pt1 = torch.nested.to_padded_tensor(nt1, 0.0).requires_grad_(True) |
| |
| ynt = nt0.bmm(nt1) |
| ypt = pt0.bmm(pt1) |
| ynt.backward(ynt.clone()) |
| ypt.backward(ypt.clone()) |
| |
| self.assertEqual(torch.nested.to_padded_tensor(nt0.grad, 0.0), pt0.grad) |
| self.assertEqual(torch.nested.to_padded_tensor(nt1.grad, 0.0), pt1.grad) |
| |
| def test_nested_tensor_matmul_gradcheck(self): |
| a = torch.randn(2, 6, requires_grad=True, dtype=torch.float64) |
| b = torch.randn(3, 6, requires_grad=True, dtype=torch.float64) |
| c = torch.randn(6, 4, requires_grad=True, dtype=torch.float64) |
| d = torch.randn(6, 5, requires_grad=True, dtype=torch.float64) |
| |
| def grad_test_func(a, b, c, d): |
| nt0 = torch.nested.as_nested_tensor([a, b]) |
| nt1 = torch.nested.as_nested_tensor([c, d]) |
| result = torch.matmul(nt0, nt1) |
| return torch.nested.to_padded_tensor(result, 0.0) |
| |
| data = (a, b, c, d) |
| assert torch.autograd.gradcheck(grad_test_func, inputs=data) |
| |
| def test_nested_tensor_matmul_backward(self): |
| nt0 = torch.nested.nested_tensor([torch.randn((7, 2, 6)), torch.randn((7, 3, 6))], requires_grad=True) |
| nt1 = torch.nested.nested_tensor([torch.randn((7, 6, 4)), torch.randn((7, 6, 5))], requires_grad=True) |
| with torch.no_grad(): |
| pt0 = torch.nested.to_padded_tensor(nt0, 0.0).requires_grad_(True) |
| pt1 = torch.nested.to_padded_tensor(nt1, 0.0).requires_grad_(True) |
| |
| ynt = torch.matmul(nt0, nt1) |
| ypt = torch.matmul(pt0, pt1) |
| ynt.backward(ynt.clone()) |
| ypt.backward(ypt.clone()) |
| |
| self.assertEqual(torch.nested.to_padded_tensor(nt0.grad, 0.0), pt0.grad) |
| self.assertEqual(torch.nested.to_padded_tensor(nt1.grad, 0.0), pt1.grad) |
| |
| def test_nested_tensor_transpose_gradcheck(self): |
| a = torch.randn(2, 5, requires_grad=True) |
| b = torch.randn(3, 4, requires_grad=True) |
| |
| def grad_test_func(a, b): |
| nt = torch.nested.as_nested_tensor([a, b]) |
| result = nt.transpose(-2, -1).transpose(-2, -1) |
| return torch.nested.to_padded_tensor(result, 0.0) |
| |
| data = (a, b) |
| assert torch.autograd.gradcheck(grad_test_func, inputs=data, eps=1e-3) |
| |
| def test_nested_tensor_transpose_backward(self): |
| nt = torch.nested.nested_tensor([torch.randn((2, 5)), torch.randn((3, 4))], requires_grad=True) |
| with torch.no_grad(): |
| pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True) |
| |
| ynt = nt.transpose(-2, -1) |
| ypt = pt.transpose(-2, -1) |
| ynt.backward(ynt.clone()) |
| ypt.backward(ypt.clone()) |
| |
| self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad) |
| |
| def test_nested_tensor_reshape_gradcheck(self): |
| a = torch.randn(2, 6, requires_grad=True) |
| b = torch.randn(3, 6, requires_grad=True) |
| |
| def grad_test_func(a, b): |
| nt = torch.nested.as_nested_tensor([a, b]) |
| result = nt.reshape(2, -1, 2, 3) |
| return torch.nested.to_padded_tensor(result, 0.0) |
| |
| data = (a, b) |
| assert torch.autograd.gradcheck(grad_test_func, inputs=data, eps=1e-3) |
| |
| def test_nested_tensor_reshape_backward(self): |
| nt = torch.nested.nested_tensor([torch.randn((2, 6)), torch.randn((3, 6))], requires_grad=True) |
| with torch.no_grad(): |
| pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True) |
| |
| ynt = nt.reshape(2, -1, 2, 3) |
| ypt = pt.reshape(2, -1, 2, 3) |
| ynt.backward(ynt.clone()) |
| ypt.backward(ypt.clone()) |
| |
| self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad) |
| |
| def test_nested_tensor_squeeze_backward(self): |
| nt = torch.nested.nested_tensor([torch.randn((2, 6, 1)), torch.randn((3, 6, 1))], requires_grad=True) |
| with torch.no_grad(): |
| pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True) |
| |
| ynt = nt.squeeze(-1) |
| ypt = pt.squeeze(-1) |
| ynt.backward(ynt.clone()) |
| ypt.backward(ypt.clone()) |
| |
| self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad) |
| |
| def test_nested_tensor_squeeze_gradcheck(self): |
| a = torch.randn((2, 6, 1), dtype=torch.float64, requires_grad=True) |
| b = torch.randn((3, 6, 1), dtype=torch.float64, requires_grad=True) |
| |
| def grad_test_func(a, b): |
| nt = torch.nested.as_nested_tensor([a, b]) |
| result = nt.squeeze(-1) |
| return torch.nested.to_padded_tensor(result, 0.0) |
| |
| assert torch.autograd.gradcheck(grad_test_func, inputs=(a, b), eps=1e-3) |
| |
| def test_nested_tensor_unsqueeze_backward(self): |
| nt = torch.nested.nested_tensor([torch.randn((2, 6)), torch.randn((3, 6))], requires_grad=True) |
| with torch.no_grad(): |
| pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True) |
| |
| ynt = nt.unsqueeze(2) |
| ypt = pt.unsqueeze(2) |
| ynt.backward(ynt.clone()) |
| ypt.backward(ypt.clone()) |
| |
| self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad) |
| |
| def test_nested_tensor_unsqueeze_gradcheck(self): |
| a = torch.randn((2, 6), dtype=torch.float64, requires_grad=True) |
| b = torch.randn((3, 6), dtype=torch.float64, requires_grad=True) |
| |
| def grad_test_func(a, b): |
| nt = torch.nested.as_nested_tensor([a, b]) |
| result = nt.unsqueeze(-1) |
| return torch.nested.to_padded_tensor(result, 0.0) |
| |
| assert torch.autograd.gradcheck(grad_test_func, inputs=(a, b), eps=1e-3) |
| |
| def test_nested_tensor_linear(self): |
| |
| a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64) |
| b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64) |
| c = torch.randn(3, 2, requires_grad=True, dtype=torch.float64) |
| |
| weight = torch.randn(2, 2, requires_grad=True, dtype=torch.float64) |
| bias = torch.randn(2, requires_grad=True, dtype=torch.float64) |
| |
| def grad_test_func(a, b, c, weight, bias=None): |
| nt = torch.nested.as_nested_tensor([a, b, c]) |
| # This implicitly tests to_padded_tensor grads |
| d = torch.functional.F.linear(nt, weight, bias) |
| return torch.nested.to_padded_tensor(d, 0) |
| data = (a, b, c, weight, bias) |
| assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) |
| |
| # Test linear with no bias added |
| data = (a, b, c, weight) |
| assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) |
| |
| def test_nested_tensor_softmax(self): |
| a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64) |
| b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64) |
| c = torch.randn(3, 2, requires_grad=True, dtype=torch.float64) |
| |
| def grad_test_func(a, b, c, dim): |
| nt = torch.nested.as_nested_tensor([a, b, c]) |
| # This implicitly tests to_padded_tensor grads |
| d = torch.functional.F.softmax(nt, dim=dim) |
| return torch.nested.to_padded_tensor(d, 0) |
| |
| # softmax over last dim |
| data = (a, b, c, -1) |
| assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) |
| |
| def test_nested_tensor_linear_backward(self): |
| a = torch.randn(1, 2, requires_grad=False) |
| b = torch.randn(2, 2, requires_grad=False) |
| c = torch.randn(3, 2, requires_grad=False) |
| |
| weight = torch.randn(2, 2, requires_grad=True) |
| bias = torch.randn(2, requires_grad=True) |
| nt = torch.nested.as_nested_tensor([a, b, c]) |
| |
| out = torch.functional.F.linear(nt, weight, bias) |
| |
| out.backward(out.clone()) |
| |
| assert weight.grad is not None |
| assert bias.grad is not None |
| |
| assert a.grad is None |
| assert b.grad is None |
| assert c.grad is None |
| |
| def test_values_grad_with_broadcast(self): |
| a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64) |
| b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64) |
| c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64) |
| |
| def grad_test_func(a, b, c): |
| nt = torch.nested.as_nested_tensor([a, b, c]) |
| buffer = nt.values() |
| return buffer.sum() |
| |
| data = (a, b, c) |
| assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) |
| |
| def test_to_buffer_series_ops_grad_with_broadcast(self): |
| a = torch.randn(1, 1, 2, requires_grad=True, dtype=torch.float64) |
| b = torch.randn(1, 1, 2, requires_grad=True, dtype=torch.float64) |
| c = torch.randn(1, 1, 2, requires_grad=True, dtype=torch.float64) |
| |
| def grad_test_func(a, b, c): |
| nt = torch.nested.as_nested_tensor([a, b, c]) |
| buffer = nt.values() |
| buffer = buffer * 2 |
| return buffer.exp() |
| |
| data = (a, b, c) |
| assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) |
| |
| def test_unbind_flow_through(self): |
| a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64) |
| b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64) |
| c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64) |
| |
| def grad_test_func(a, b, c): |
| nt = torch.nested.as_nested_tensor([a, b, c]) |
| ntT = nt.transpose(-1, -2) |
| unbound = ntT.unbind() |
| d = unbound[0] |
| d = torch.pow(d, 2) |
| return d |
| |
| data = (a, b, c) |
| assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) |
| |
| def test_indexing_backward(self): |
| x0 = torch.randn((2, 5)) |
| x1 = torch.randn((3, 4)) |
| nt = torch.nested.nested_tensor([x0, x1], requires_grad=True) |
| self.assertEqual(nt[0], x0) |
| self.assertEqual(nt[-1], x1) |
| grad_x0 = torch.randn((2, 5)) |
| nt[0].backward(grad_x0) |
| expected_grad = torch.nested.nested_tensor([grad_x0, torch.zeros((3, 4))]) |
| self.assertEqual(nt.grad, expected_grad) |
| |
| instantiate_device_type_tests(TestNestedTensorDeviceType, globals()) |
| |
| if __name__ == '__main__': |
| run_tests() |