| # Owner(s): ["module: sparse"] |
| |
| import copy |
| import torch |
| import random |
| import itertools |
| import unittest |
| import functools |
| from torch.testing import make_tensor |
| from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC |
| from torch.testing._internal.common_utils import \ |
| (TEST_WITH_ROCM, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, |
| subtest) |
| from torch.testing._internal.common_device_type import \ |
| (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, |
| precisionOverride, skipMeta, skipCUDAIf, skipCUDAIfRocm, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan) |
| from torch.testing._internal.common_methods_invocations import \ |
| (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) |
| from torch.testing._internal.common_cuda import _get_torch_cuda_version, CUDA11OrLater, TEST_CUDA |
| from torch.testing._internal.common_dtype import ( |
| floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, |
| all_types_and_complex, floating_and_complex_types_and |
| ) |
| from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED |
| |
| if TEST_SCIPY: |
| import scipy.sparse as sp |
| |
| if TEST_NUMPY: |
| import numpy as np |
| # load_tests from torch.testing._internal.common_utils is used to automatically filter tests for |
| # sharding on sandcastle. This line silences flake warnings |
| load_tests = load_tests |
| |
| no_mkl_sparse = IS_WINDOWS or not TEST_MKL |
| |
| def _check_cusparse_triangular_solve_available(): |
| version = _get_torch_cuda_version() |
| # cusparseSpSM was added in 11.3.1 but we don't have access to patch version |
| min_supported_version = (11, 4) |
| return version >= min_supported_version |
| |
| def _check_cusparse_spgemm_available(): |
| # cusparseSpGEMM was added in 11.0 |
| version = _get_torch_cuda_version() |
| min_supported_version = (11, 0) |
| return version >= min_supported_version |
| |
| def _check_cusparse_sddmm_available(): |
| version = _get_torch_cuda_version() |
| # cusparseSDDMM was added in 11.2.1 but we don't have access to patch version |
| min_supported_version = (11, 3) |
| return version >= min_supported_version |
| |
| _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) |
| _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc |
| or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) |
| binary_functions_with_dense_output = ['mm', 'mv', ] |
| binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) |
| |
| UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ |
| 'abs', |
| 'conj_physical', |
| 'neg', |
| ] |
| |
| # This should be just an import from test_linalg instead of code duplication |
| # but https://github.com/pytorch/pytorch/pull/63511#discussion_r733989701 |
| def _test_addmm_addmv( |
| test_case, |
| f, |
| t, |
| m, |
| v, |
| *, |
| alpha=None, |
| beta=None, |
| transpose_out=False, |
| layout=torch.strided, |
| mode=None |
| ): |
| """ |
| Unified test for checking `f(t, m, v, alpha=alpha, beta=beta)` computation, |
| where f is `torch.addmv` or `torch.addmm`. |
| `transpose_out` controls whether the out argument is in column-major order. |
| `layout` controls whether `m` is converted to specified layout or not. |
| Custom behaviour is implemented only for torch.sparse_csr layout. |
| """ |
| dtype = t.dtype |
| numpy_dtype = dtype |
| if dtype in {torch.bfloat16}: |
| numpy_dtype = torch.float |
| if dtype.is_complex: |
| alpha = 0.9 + 0.3j if alpha is None else alpha |
| beta = 0.5 + 0.6j if beta is None else beta |
| else: |
| alpha = 1.2 if alpha is None else alpha |
| beta = 0.8 if beta is None else beta |
| |
| def convert_layout(mat): |
| if layout == torch.sparse_csr: |
| return mat.to_sparse_csr() |
| elif layout == torch.sparse_csc: |
| return mat.to_sparse_csc() |
| else: |
| assert mat.layout == layout |
| return mat |
| |
| if mode == "all_sparse": |
| res1 = f(*map(convert_layout, (t, m, v)), alpha=alpha, beta=beta) |
| test_case.assertEqual(res1.layout, layout) |
| res1 = res1.to_dense() |
| elif mode == "dense_result": |
| res1 = f(t, convert_layout(m), convert_layout(v), alpha=alpha, beta=beta) |
| else: |
| res1 = f(t, convert_layout(m), v, alpha=alpha, beta=beta) |
| res2 = torch.full_like(res1, float('nan')) |
| if transpose_out: |
| res2 = res2.t().clone(memory_format=torch.contiguous_format).t() |
| f(t, convert_layout(m), v, alpha=alpha, beta=beta, out=res2) |
| res3 = alpha * (m.to(numpy_dtype).cpu().numpy() @ v.to(numpy_dtype).cpu().numpy()) |
| if beta != 0: |
| res3 += (beta * t).to(numpy_dtype).cpu().numpy() |
| res3 = torch.from_numpy(res3).to(dtype) |
| test_case.assertEqual(res1, res2) |
| test_case.assertEqual(res1, res3) |
| |
| |
| class TestSparseCSRSampler(TestCase): |
| |
| def test_make_crow_indices(self): |
| # Here we test the correctness of the crow_indices algorithm |
| # and testing it on CPU and with int32 dtype will be |
| # sufficient. |
| device = torch.device('cpu') |
| index_dtype = torch.int32 |
| for n_rows in range(1, 10): |
| for n_cols in range(1, 10): |
| for nnz in range(0, n_rows * n_cols + 1): |
| crow_indices = self._make_crow_indices( |
| n_rows, n_cols, nnz, |
| device=device, dtype=index_dtype) |
| self.assertEqual(len(crow_indices), n_rows + 1) |
| counts = crow_indices[1:] - crow_indices[:-1] |
| self.assertEqual(counts.sum(), nnz) |
| self.assertGreaterEqual(counts.min(), 0) |
| self.assertLessEqual(counts.max(), n_cols) |
| |
| |
| def all_sparse_compressed_layouts(test_name='layout'): |
| return parametrize(test_name, [ |
| subtest(torch.sparse_csr, name='SparseCSR'), |
| subtest(torch.sparse_csc, name='SparseCSC'), |
| subtest(torch.sparse_bsr, name='SparseBSR'), |
| subtest(torch.sparse_bsc, name='SparseBSC')]) |
| |
| |
| def sparse_compressed_nonblock_layouts(test_name='layout'): |
| return parametrize(test_name, [ |
| subtest(torch.sparse_csr, name='SparseCSR'), |
| subtest(torch.sparse_csc, name='SparseCSC')]) |
| |
| |
| sparse_compressed_indices_methods = { |
| torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), |
| torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), |
| torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), |
| torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), |
| } |
| |
| |
| def batched_nonbatched(test_name='batched'): |
| return parametrize(test_name, [ |
| subtest(True, name="Batched"), |
| subtest(False, name="NonBatched") |
| ]) |
| |
| |
| def hybrid_nonhybrid(test_name='hybrid'): |
| return parametrize(test_name, [ |
| subtest(True, name="Hybrid"), |
| subtest(False, name="NonHybrid") |
| ]) |
| |
| |
| class TestSparseCompressed(TestCase): |
| """Testing sparse compressed (CSR, CSC, BSR, BSC) tensor generic features. |
| """ |
| |
| def genTensor(self, size, nnz, *, layout, device=None, dtype=torch.float, index_dtype=torch.int64): |
| if device is None: |
| device = self.device_type |
| return self.genSparseCompressedTensor(size, nnz, device=device, dtype=dtype, index_dtype=index_dtype, layout=layout) |
| |
| def _generate_small_inputs_utils(self, layout, device=None, dtype=None): |
| |
| def shape(shape, basedim=0, blocksize=(1, 1), dense_shape=()): |
| # Below, we define compressed and plain indices that |
| # correspond to row compressed tensors. In order to reuse |
| # the indices tensors for column compressed tensors, we |
| # swap the row and columns in shape dims (basedim and |
| # basedim + 1, respectively) to obtain the correct shape |
| # for column compressed tensors. Batch and dense |
| # dimensions remain as they are. |
| # |
| # Similarly, we reuse indices of non-block tensors for |
| # block tensors, that means, we'll need to multiply the |
| # base shape of the non-block tensor with blocksize to get |
| # the base shape of a block tensor. |
| if layout is torch.sparse_csc: |
| shape = shape[:basedim] + (shape[basedim + 1], shape[basedim]) + shape[basedim + 2:] |
| elif layout is torch.sparse_bsc: |
| shape = shape[:basedim] + (shape[basedim + 1] * blocksize[1], shape[basedim] * blocksize[0]) + shape[basedim + 2:] |
| elif layout is torch.sparse_bsr: |
| shape = shape[:basedim] + (shape[basedim] * blocksize[0], shape[basedim + 1] * blocksize[1]) + shape[basedim + 2:] |
| return shape |
| |
| def values(lst, basedim=0, blocksize=(1, 1), densesize=(), device=device, dtype=dtype): |
| # Below, we define values for non-blocked and non-hybrid |
| # tensors. To reuse these for blocked tensors, we replace |
| # all values in lst with a double-list that "shape" |
| # corresponds to blocksize. |
| # To support hybrid tensors, the values in lst are further |
| # replaced with a N-list where N==len(densesize) and the |
| # shape corresponds to densesize. |
| |
| max_val = torch.iinfo(dtype).max if dtype in [torch.int16, torch.int8, torch.uint8] else None |
| |
| def list_add(lst, value): |
| # recursively add a value to lst items |
| if isinstance(lst, list): |
| return [list_add(item, value) for item in lst] |
| rc = lst + value |
| return rc if max_val is None else (rc % max_val) |
| |
| def stretch_values(value, bdim, values_item_shape): |
| # replace a value with a new value that extends the |
| # dimensionality of the value by |
| # len(values_item_shape) from right. The left |
| # dimensions up to bdim are considered as batch |
| # dimensions. |
| if not values_item_shape: |
| return value |
| if isinstance(value, list) and bdim >= 0: |
| return [stretch_values(item, bdim - 1, values_item_shape) for item in value] |
| new_value = functools.reduce(lambda x, dims: [copy.deepcopy(x) for _ in range(dims)], |
| reversed(values_item_shape), None) |
| for p in itertools.product(*map(list, map(range, values_item_shape))): |
| row = functools.reduce(lambda x, i: x.__getitem__(i), p[:-1], new_value) |
| row[p[-1]] = list_add(value, sum([i * 10 ** d for d, i in enumerate(p)])) |
| return new_value |
| |
| if layout is torch.sparse_bsr: |
| values_item_shape = blocksize + densesize |
| elif layout is torch.sparse_bsc: |
| values_item_shape = tuple(reversed(blocksize)) + densesize |
| else: |
| values_item_shape = densesize |
| |
| if not lst: |
| return torch.tensor(lst, device=device, dtype=dtype).reshape(0, *values_item_shape) |
| |
| lst = stretch_values(lst, basedim, values_item_shape) |
| |
| return torch.tensor(lst, device=device, dtype=dtype) |
| |
| return shape, values |
| |
| def _generate_small_inputs(self, layout, device=None, dtype=None, index_dtype=None, |
| enable_batched=True, enable_hybrid=True): |
| """Generator of inputs to sparse compressed tensor factory functions. |
| |
| The input is defined as a 4-tuple: |
| compressed_indices, plain_indices, values, expected_size_from_shape_inference |
| """ |
| if index_dtype is None: |
| index_dtype = torch.int64 |
| |
| shape, values = self._generate_small_inputs_utils(layout, device, dtype) |
| |
| # a regular tensor |
| yield (torch.tensor([0, 2, 4], device=device, dtype=index_dtype), |
| torch.tensor([0, 1, 0, 2], device=device, dtype=index_dtype), |
| values([1, 2, 3, 4], 0, (2, 1)), |
| shape((2, 3), 0, (2, 1))) |
| |
| # a tensor with zero dimensions |
| yield (torch.tensor([0, ], device=device, dtype=index_dtype), |
| torch.tensor([], device=device, dtype=index_dtype), |
| values([], 0, (2, 1)), |
| shape((0, 0), 0, (2, 1))) |
| |
| if enable_batched: |
| # a batched tensor with one batch dimension |
| yield (torch.tensor([[0, 2, 4], [0, 3, 4]], device=device, dtype=index_dtype), |
| torch.tensor([[0, 1, 0, 1], [0, 1, 2, 0]], device=device, dtype=index_dtype), |
| values([[1, 2, 3, 4], [5, 6, 7, 8]], 1, (1, 2)), |
| shape((2, 2, 3), 1, (1, 2))) |
| |
| # a batched tensor with two batch dimensions |
| yield (torch.tensor([[[0, 2, 4], [0, 3, 4], [0, 1, 4]], |
| [[0, 1, 4], [0, 2, 4], [0, 3, 4]]], |
| device=device, dtype=index_dtype), |
| torch.tensor([[[0, 1, 0, 1], [0, 1, 2, 0], [0, 0, 1, 2]], |
| [[1, 0, 1, 2], [0, 2, 0, 1], [0, 1, 2, 1]]], |
| device=device, dtype=index_dtype), |
| values([[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], |
| [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]], 2, (2, 3)), |
| shape((2, 3, 2, 3), 2, (2, 3))) |
| |
| if enable_hybrid: |
| # a tensor with one dense dimension |
| yield (torch.tensor([0, 2, 4], device=device, dtype=index_dtype), |
| torch.tensor([0, 1, 0, 2], device=device, dtype=index_dtype), |
| values([1, 2, 3, 4], 0, (3, 2), (2,)), |
| shape((2, 3, 2), 0, (3, 2))) |
| |
| # a tensor with two dense dimensions |
| yield (torch.tensor([0, 2, 4], device=device, dtype=index_dtype), |
| torch.tensor([0, 1, 0, 2], device=device, dtype=index_dtype), |
| values([1, 2, 3, 4], 0, (2, 3), (4, 2)), |
| shape((2, 3, 4, 2), 0, (2, 3))) |
| |
| if enable_batched and enable_hybrid: |
| # a batched tensor with two batch dimensions and two dense dimensions |
| yield (torch.tensor([[[0, 2, 4], [0, 3, 4], [0, 1, 4]], |
| [[0, 1, 4], [0, 2, 4], [0, 3, 4]]], |
| device=device, dtype=index_dtype), |
| torch.tensor([[[0, 1, 0, 1], [0, 1, 2, 0], [0, 0, 1, 2]], |
| [[1, 0, 1, 2], [0, 2, 0, 1], [0, 1, 2, 1]]], |
| device=device, dtype=index_dtype), |
| values([[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], |
| [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]], 2, (3, 2), (2, 1)), |
| shape((2, 3, 2, 3, 2, 1), 2, (3, 2))) |
| |
| @all_sparse_compressed_layouts() |
| @onlyCPU |
| def test_layout(self, layout): |
| self.assertIn(str(layout), {'torch.sparse_csr', 'torch.sparse_csc', 'torch.sparse_bsr', 'torch.sparse_bsc'}) |
| self.assertEqual(type(layout), torch.layout) |
| |
| @parametrize('shape_and_device_inference', [subtest(False, name='_'), subtest(True, name='shape_and_device_inference')]) |
| @parametrize('use_factory_function', [subtest(False, name='_'), subtest(True, name='factory')]) |
| @parametrize('input_kind', [subtest('tensor', name='from_tensor'), subtest('list', name='from_list')]) |
| @all_sparse_compressed_layouts() |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| def test_sparse_compressed_constructor(self, layout, device, dtype, |
| use_factory_function, shape_and_device_inference, input_kind): |
| if input_kind == 'list' and shape_and_device_inference and torch.device(device).type == 'cuda': |
| # list inputs to factory/constructor function without |
| # specifying device will result a sparse compressed tensor |
| # on CPU. So, skip testing against cuda device as unused. |
| self.skipTest("nothing to test") |
| |
| expected_devices = [torch.device(device)] |
| if TEST_CUDA and torch.device(device).type == 'cuda' and torch.cuda.device_count() >= 2 and not shape_and_device_inference: |
| expected_devices.append(torch.device('cuda:1')) |
| |
| factory_function = { |
| torch.sparse_csr: torch.sparse_csr_tensor, |
| torch.sparse_csc: torch.sparse_csc_tensor, |
| torch.sparse_bsr: torch.sparse_bsr_tensor, |
| torch.sparse_bsc: torch.sparse_bsc_tensor, |
| }[layout] |
| compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout] |
| for index_dtype in [torch.int32, torch.int64]: |
| for expected_device in expected_devices: |
| for compressed_indices, plain_indices, values, size in self._generate_small_inputs( |
| layout, expected_device, dtype, index_dtype): |
| if input_kind == 'list': |
| if size == (0, 0): |
| # for this degenerate case, plain_indices must |
| # remain a tensor because |
| # tensor(plain_indices) results a float dtype |
| # when plain_indices is an empty list |
| if index_dtype == torch.int32: |
| # skip testing int32 case because |
| # tensor(compressed_indices) results a |
| # int64 dtype when compressed_indices is |
| # [0] (a list of single int zero). |
| continue |
| else: |
| plain_indices = plain_indices.tolist() |
| compressed_indices = compressed_indices.tolist() |
| values = values.tolist() |
| if size == (0, 0) and layout in {torch.sparse_bsr, torch.sparse_bsc}: |
| # in the block sparse case, values of type list needs to represent a 3-D tensor |
| values = [[[]]] |
| |
| if use_factory_function: |
| if shape_and_device_inference: |
| sparse = factory_function(compressed_indices, plain_indices, values) |
| else: |
| sparse = factory_function(compressed_indices, plain_indices, values, size, |
| dtype=dtype, device=expected_device) |
| else: |
| if shape_and_device_inference: |
| sparse = torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, layout=layout) |
| else: |
| sparse = torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, size, |
| dtype=dtype, layout=layout, device=expected_device) |
| self.assertEqual(layout, sparse.layout) |
| self.assertEqual(size, sparse.shape) |
| self.assertEqual(compressed_indices, compressed_indices_mth(sparse)) |
| self.assertEqual(plain_indices, plain_indices_mth(sparse)) |
| self.assertEqual(values, sparse.values()) |
| self.assertEqual(sparse.device, sparse.values().device) |
| self.assertEqual(sparse.device, expected_device) |
| |
| @skipMeta |
| @sparse_compressed_nonblock_layouts() |
| @dtypes(*all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half)) |
| def test_empty(self, layout, device, dtype): |
| ns = [5, 2, 0] |
| batch_shapes = [(), (2,), (2, 3)] |
| compressed_dim = { |
| torch.sparse_csr: -2, |
| torch.sparse_csc: -1, |
| }[layout] |
| compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout] |
| for m, n, b in itertools.product(ns, ns, batch_shapes): |
| shape = (*b, m, n) |
| result = torch.empty(shape, dtype=dtype, device=device, layout=layout) |
| self.assertEqual(result.shape, shape) |
| self.assertEqual(result.dtype, dtype) |
| self.assertEqual(result.device, torch.device(device)) |
| self.assertEqual(result.layout, layout) |
| self.assertEqual(compressed_indices_mth(result).shape, (*b, shape[compressed_dim] + 1,)) |
| self.assertEqual(plain_indices_mth(result).shape, (*b, 0,)) |
| self.assertEqual(result.values().shape, (*b, 0,)) |
| self.assertEqual(result._nnz(), 0) |
| self.assertEqual(compressed_indices_mth(result).device, torch.device(device)) |
| self.assertEqual(plain_indices_mth(result).device, torch.device(device)) |
| self.assertEqual(result.values().device, torch.device(device)) |
| self.assertEqual(compressed_indices_mth(result).dtype, torch.int64) |
| self.assertEqual(plain_indices_mth(result).dtype, torch.int64) |
| self.assertEqual(result.values().dtype, dtype) |
| |
| @skipMeta |
| @sparse_compressed_nonblock_layouts() |
| @dtypes(*all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16)) |
| def test_empty_errors(self, layout, device, dtype): |
| with self.assertRaisesRegex(RuntimeError, |
| "torch.empty: Only batched sparse compressed \\(non-block\\) tensors are supported" |
| ", but got size"): |
| torch.empty((5,), dtype=dtype, device=device, layout=layout) |
| |
| @skipMeta |
| @all_sparse_compressed_layouts() |
| @dtypes(*all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16)) |
| def test_clone(self, layout, device, dtype): |
| for compressed_indices, plain_indices, values, size in self._generate_small_inputs( |
| layout, device, dtype, index_dtype=torch.int32): |
| sparse = torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, size, |
| dtype=dtype, layout=layout, device=device) |
| cloned_sparse = sparse.clone() |
| self.assertEqual(sparse, cloned_sparse) |
| |
| @all_sparse_compressed_layouts() |
| def test_print(self, layout, device): |
| compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout] |
| printed = [] |
| for enable_hybrid in [False, True]: |
| for index_dtype in [torch.int32, torch.int64]: |
| for dtype in [torch.float32, torch.float64]: |
| for compressed_indices, plain_indices, values, size in self._generate_small_inputs( |
| layout, device, dtype, index_dtype, enable_hybrid=enable_hybrid): |
| block_ndim = 2 if layout in {torch.sparse_bsr, torch.sparse_bsc} else 0 |
| base_ndim = 2 |
| batch_ndim = compressed_indices.dim() - 1 |
| dense_ndim = values.dim() - batch_ndim - block_ndim - 1 |
| if enable_hybrid and dense_ndim == 0: |
| # non-hybrid cases are covered by the enable_hybrid==False loop |
| continue |
| batchsize = size[:batch_ndim] |
| basesize = size[batch_ndim:batch_ndim + base_ndim] |
| densesize = size[batch_ndim + base_ndim:] |
| assert len(densesize) == dense_ndim |
| printed.append("########## {}/{}/size={}+{}+{} ##########".format( |
| dtype, index_dtype, batchsize, basesize, densesize)) |
| x = torch.sparse_compressed_tensor(compressed_indices, |
| plain_indices, |
| values, size, dtype=dtype, layout=layout, device=device) |
| printed.append("# sparse tensor") |
| printed.append(str(x)) |
| printed.append(f"# _{compressed_indices_mth.__name__}") |
| printed.append(str(compressed_indices_mth(x))) |
| printed.append(f"# _{plain_indices_mth.__name__}") |
| printed.append(str(plain_indices_mth(x))) |
| printed.append("# _values") |
| printed.append(str(x.values())) |
| printed.append('') |
| printed.append('') |
| orig_maxDiff = self.maxDiff |
| self.maxDiff = None |
| try: |
| self.assertExpected('\n'.join(printed)) |
| self.maxDiff = orig_maxDiff |
| except Exception: |
| self.maxDiff = orig_maxDiff |
| raise |
| |
| @skipMeta |
| @all_sparse_compressed_layouts() |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| def test_copy(self, layout, device, dtype): |
| |
| def run_test(shape, blocksize, nnz, index_type): |
| a = self.genSparseCompressedTensor(shape, nnz, dtype=dtype, layout=layout, device=device, |
| index_dtype=index_dtype, blocksize=blocksize) |
| b = self.genSparseCompressedTensor(shape, nnz, dtype=dtype, layout=layout, device=device, |
| index_dtype=index_dtype, blocksize=blocksize) |
| |
| a.copy_(b) |
| |
| self.assertEqual(a, b) |
| |
| ns = [(9, 3), (2, 1), (0, 0)] # (number of dimensions, the corresponding block size) |
| batch_shapes = [(), (2,), (2, 3)] |
| for ((m, bm), (n, bn), b), index_dtype in zip(itertools.product(ns, ns, batch_shapes), [torch.int32, torch.int64]): |
| blocksize = (bm, bn) if layout in {torch.sparse_bsr, torch.sparse_bsc} else () |
| run_test((*b, m, n), blocksize, 0, index_dtype) |
| run_test((*b, m, n), blocksize, m * n, index_dtype) |
| |
| @skipMeta |
| @all_sparse_compressed_layouts() |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| def test_copy_errors(self, layout, device, dtype): |
| blocksize = (2, 3) if layout in {torch.sparse_bsr, torch.sparse_bsc} else () |
| nnz = 6 if layout in {torch.sparse_bsr, torch.sparse_bsc} else 1 |
| shape1 = (2 * 6, 3 * 6) if layout in {torch.sparse_bsr, torch.sparse_bsc} else (2, 3) |
| for index_dtype in [torch.int32, torch.int64]: |
| a = self.genSparseCompressedTensor(shape1, 0, dtype=dtype, layout=layout, device=device, |
| index_dtype=index_dtype, blocksize=blocksize) |
| |
| with self.assertRaisesRegex(RuntimeError, |
| "copy of sparse compressed tensors having different layouts is not supported."): |
| a.copy_(torch.empty(a.shape, dtype=dtype, device=device)) |
| |
| b = self.genSparseCompressedTensor(shape1, nnz, dtype=dtype, layout=layout, device=device, |
| index_dtype=index_dtype, blocksize=blocksize) |
| assert a._nnz() != b._nnz(), (a._nnz(), b._nnz()) |
| with self.assertRaisesRegex(RuntimeError, |
| "only sparse compressed tensors with the same number of specified elements are supported."): |
| a.copy_(b) |
| |
| shape2 = tuple(reversed(shape1)) |
| c = self.genSparseCompressedTensor(shape2, nnz, dtype=dtype, layout=layout, device=device, |
| index_dtype=index_dtype, blocksize=blocksize) |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "expected shapes of self and src to match along dimension"): |
| b.copy_(c) |
| |
| if blocksize: |
| blocksize1 = tuple(reversed(blocksize)) |
| d = self.genSparseCompressedTensor(shape1, nnz, dtype=dtype, layout=layout, device=device, |
| index_dtype=index_dtype, blocksize=blocksize1) |
| with self.assertRaisesRegex(RuntimeError, |
| "copy of sparse compressed tensors having different block sizes is not supported"): |
| b.copy_(d) |
| |
| def _smallest_divisor(self, n): |
| for i in range(2, int(n ** 0.5) + 1): |
| if n % i == 0: |
| return i |
| return n |
| |
| @all_sparse_compressed_layouts() |
| @ops(_sparse_compressed_ops) |
| def test_consistency(self, layout, device, dtype, op): |
| # TODO: Normaly, we should use DecorateInfo instead of |
| # skipTest but this requires implemening OpInfo support for |
| # layout as a test parameter (similar to device and dtype). |
| if not (layout == torch.sparse_csr and op.supports_sparse_csr |
| or layout == torch.sparse_csc and op.supports_sparse_csc |
| or layout == torch.sparse_bsr and op.supports_sparse_bsr |
| or layout == torch.sparse_bsc and op.supports_sparse_bsc): |
| self.skipTest(f"{op.name} does not support input with {layout} layout") |
| |
| # FIXME: remove in followup once integer support is landed for segment_reduce |
| if (layout == torch.sparse_csr and not dtype.is_floating_point |
| and op.name in ('masked.mean', 'masked.amax', 'masked.amin')): |
| self.skipTest(f"{op.name} does not support input with {layout} layout") |
| |
| require_mask = isinstance(op, ReductionOpInfo) and 'masked.' in op.name |
| if require_mask and layout in {torch.sparse_bsr, torch.sparse_bsc}: |
| self.skipTest(f"{op.name} does not support input with {layout} layout") |
| |
| if layout is torch.sparse_bsc: |
| self.skipTest(f"test requires conversion from Strided layout to {layout} layout") |
| |
| samples = list(op.sample_inputs(device, dtype)) |
| |
| # Fail early to prevent silent success with this test |
| ndims_equals_2d = (s.input.ndim == 2 for s in samples) |
| if not any(ndims_equals_2d): |
| raise ValueError("Expected at least one 2D tensor in samples.") |
| |
| count = 0 |
| for sample in samples: |
| assert torch.is_tensor(sample.input) |
| # Sparse CSR/CSC only supports 2D tensors as inputs |
| if sample.input.ndim != 2: |
| continue |
| if isinstance(op, ReductionOpInfo): |
| # Reductions on sparse compressed require keepdim=True |
| if not sample.kwargs.get('keepdim'): |
| continue |
| # Reductions on sparse compressed tensors require explicit mask |
| if require_mask and sample.kwargs.get('mask') is None: |
| continue |
| expected = op(sample.input, **sample.kwargs) |
| assert torch.is_tensor(expected) |
| # Use smallest non-trivial blocksize for the given input shape: |
| blocksize = tuple(map(self._smallest_divisor, sample.input.shape[-2:])) |
| if layout is torch.sparse_bsr: |
| sparse = sample.input.to_sparse_bsr(blocksize) |
| elif layout is torch.sparse_bsc: |
| sparse = sample.input.to_sparse_bsc(blocksize) |
| elif layout is torch.sparse_csr: |
| sparse = sample.input.to_sparse_csr() |
| elif layout is torch.sparse_csc: |
| sparse = sample.input.to_sparse_csc() |
| else: |
| assert 0, layout |
| |
| assert torch.is_tensor(sparse) |
| output = op(sparse, **sample.kwargs) |
| assert torch.is_tensor(output) |
| strided_output = output.to_dense() |
| if require_mask: |
| output_mask = torch.masked._output_mask(op.op, sample.input, **sample.kwargs) |
| expected.masked_fill_(~output_mask, 0) |
| self.assertEqual(strided_output, expected) |
| count += 1 |
| |
| # Better fail late to prevent silent success with this test |
| if not count: |
| raise ValueError("Expected at least one sample with keepdim and/or explicit mask for reductions.") |
| |
| @skipMeta |
| @all_sparse_compressed_layouts() |
| @all_sparse_compressed_layouts('layout2') |
| @dtypes(*all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16)) |
| def test_empty_like(self, layout, layout2, device, dtype): |
| for compressed_indices, plain_indices, values, size in self._generate_small_inputs(layout): |
| sparse = torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, size, |
| dtype=dtype, layout=layout, device=device) |
| if layout == layout2: |
| result = torch.empty_like(sparse, layout=layout2) |
| compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[result.layout] |
| torch._validate_sparse_compressed_tensor_args(compressed_indices_mth(result), |
| plain_indices_mth(result), |
| result.values(), |
| result.shape, |
| result.layout) |
| self.assertEqual(sparse.shape, result.shape) |
| else: |
| self.assertRaisesRegex( |
| RuntimeError, |
| "empty_like with different sparse layout is not supported", |
| lambda: torch.empty_like(sparse, layout=layout2) |
| ) |
| |
| @skipMeta |
| @all_sparse_compressed_layouts() |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| def test_validate(self, layout, device, dtype): |
| for index_dtype in [torch.int32, torch.int64]: |
| for compressed_indices, plain_indices, values, size in self._generate_small_inputs( |
| layout, device, dtype, index_dtype, enable_batched=True, enable_hybrid=True): |
| torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, values, size, layout) |
| |
| def _generate_invalid_input(self, layout, device): |
| from functools import partial |
| |
| shape, values = self._generate_small_inputs_utils(layout, device=device) |
| |
| tensor = partial(torch.tensor, device=device) |
| values = partial(values, device=device) |
| |
| yield ('incontiguous compressed_indices', |
| tensor([0, -1, 2, -1, 4, -1])[::2], |
| tensor([0, 1, 0, 2]), |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| 'expected compressed_indices to be a strided and contiguous tensor') |
| |
| yield ('incontiguous plain_indices', |
| tensor([0, 2, 4]), |
| tensor([0, -1, 1, -1, 0, -1, 2, -1])[::2], |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| 'expected plain_indices to be a strided and contiguous tensor') |
| |
| yield ('incontiguous values', |
| tensor([0, 2, 4]), |
| tensor([0, 1, 0, 2]), |
| values([1, 1, 2, 2, 3, 3, 4, 4])[::2], |
| shape((2, 3)), |
| 'expected values to be a strided and contiguous tensor') |
| |
| yield ('0-D compressed_indices', |
| tensor(0), |
| tensor([0, 1, 0, 2]), |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| 'compressed_indices must have dimensionality >= 1 but got 0') |
| |
| yield ('compressed/plain_indices mismatch of dimensionalites', |
| tensor([[0, 2, 4]]), |
| tensor([0, 1, 0, 2]), |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| 'compressed_indices and plain_indices dimensionalities must be equal but got 2 and 1, respectively') |
| |
| if layout in {torch.sparse_csr, torch.sparse_csc}: |
| yield ('indices and values mismatch of dimensionalites', |
| tensor([[0, 2, 4]]), |
| tensor([[0, 1, 0, 2]]), |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| r'values must have dimensionality > sum of batch and block dimensionalities \(=1 \+ 0\) but got 1') |
| else: |
| yield ('indices and values mismatch of dimensionalites', |
| tensor([[0, 2, 4]]), |
| tensor([[0, 1, 0, 2]]), |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| r'values must have dimensionality > sum of batch and block dimensionalities \(=1 \+ 2\) but got 3') |
| |
| yield ('invalid size', |
| tensor([0, 2, 4]), |
| tensor([0, 1, 0, 2]), |
| values([1, 2, 3, 4]), |
| (2,), |
| r'tensor dimensionality must be sum of batch, base, and dense dimensionalites \(=0 \+ 2 \+ 0\) but got 1') |
| |
| yield ('invalid batchsize', |
| tensor([[0, 2, 4]]), |
| tensor([[0, 1, 0, 2]]), |
| values([[1, 2, 3, 4]]), |
| shape((2, 2, 3), 1), |
| r'all batch dimensions of compressed_indices \(=\[1\]\), plain_indices \(=\[1\]\), ' |
| r'and values \(=\[1\]\) must be equal to tensor batch dimensions \(=\[2\]\)') |
| |
| if layout is torch.sparse_bsr: |
| yield ('invalid blocksize', |
| tensor([0, 2, 4]), |
| tensor([0, 1, 0, 2]), |
| tensor([[[1, 11]], [[2, 22]], [[3, 33]], [[4, 33]]]), |
| shape((2, 3)), |
| r'tensor shape\[1\] \(=3\) must be divisible with blocksize\[1\] \(=2\) as defined by values shape') |
| |
| if layout is torch.sparse_bsc: |
| yield ('invalid blocksize', |
| tensor([0, 2, 4]), |
| tensor([0, 1, 0, 2]), |
| tensor([[[1, 11]], [[2, 22]], [[3, 33]], [[4, 33]]]), |
| shape((3, 2)), |
| r'tensor shape\[1\] \(=3\) must be divisible with blocksize\[1\] \(=2\) as defined by values shape') |
| |
| yield ('invalid compressed_indices shape', |
| tensor([0, 2, 3, 4]), |
| tensor([0, 1, 0, 2]), |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| r'compressed_indices.shape\[-1\] must be equal to the number of compressed_indices_names \+ 1 \(=3\), but got 4') |
| |
| yield ('invalid compressed_indices shape', |
| tensor([0, 2, 4]), |
| tensor([0, 1, 0, 1, 2]), |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| r'plain_indices.shape\[-1\] must be equal to nnz \(=4\) as defined by values.shape\[0\], but got 5') |
| |
| yield ('compressed/plain_indices mismatch of dtype', |
| tensor([0, 2, 4], dtype=torch.int32), |
| tensor([0, 1, 0, 2], dtype=torch.int64), |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| r'compressed_indices and plain_indices must have the same dtype, bot got Int and Long, respectively') |
| |
| yield ('invalid compressed/plain_indices dtype', |
| tensor([0, 2, 4], dtype=torch.int16), |
| tensor([0, 1, 0, 2], dtype=torch.int16), |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| r'compressed_indices and plain_indices dtype must be Int or Long, but got Short') |
| |
| # CUDA kernel asserts are not recoverable, so we skip these for now |
| if torch.device(device).type == 'cpu': |
| yield ('invalid compressed_indices[0]', |
| tensor([1, 2, 4]), |
| tensor([0, 1, 0, 2]), |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| r'`compressed_indices\[..., 0\] == 0` is not satisfied.') |
| |
| yield ('invalid compressed_indices[-1]', |
| tensor([0, 2, 5]), |
| tensor([0, 1, 0, 2]), |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| r'`compressed_indices\[..., -1\] == nnz` is not satisfied.') |
| |
| yield ('invalid compressed_indices.diff(dim=-1)', |
| tensor([0, 0, 4]), |
| tensor([0, 1, 0, 2]), |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| r'0 <= compressed_indices\[..., 1:\] - compressed_indices\[..., :\-1\] <= plain_dim` is not satisfied.') |
| |
| yield ('invalid compressed_indices.diff(dim=-1)', |
| tensor([0, 5, 4]), |
| tensor([0, 1, 0, 2]), |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| r'0 <= compressed_indices\[..., 1:\] - compressed_indices\[..., :\-1\] <= plain_dim` is not satisfied.') |
| |
| yield ('invalid min(plain_indices)', |
| tensor([0, 2, 4]), |
| tensor([0, -1, 0, 3]), |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| r'`0 <= plain_indices < plain_dim` is not satisfied.') |
| |
| yield ('invalid max(plain_indices)', |
| tensor([0, 2, 4]), |
| tensor([0, 1, 0, 3]), |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| r'`0 <= plain_indices < plain_dim` is not satisfied.') |
| |
| yield ('non-coalesced', |
| tensor([0, 2, 4]), |
| tensor([1, 0, 0, 2]), |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| r'`plain_indices\[..., compressed_indices\[..., i - 1\]:compressed_indices\[..., i\]\] ' |
| 'for all i = 1, ..., compressed_dim ' |
| 'are sorted and distinct along the last dimension values` is not satisfied.') |
| |
| if TEST_CUDA and torch.device(device).type == 'cpu': |
| yield ('indices and values mismatch of device', |
| torch.tensor([0, 2, 4]), |
| torch.tensor([0, 1, 0, 1]), |
| values([1, 2, 3, 4], device='cuda'), |
| shape((2, 3)), |
| r'device of compressed_indices \(=cpu\) must match device of values \(=cuda:0\)') |
| yield ('compressed_indices and values mismatch of device', |
| torch.tensor([0, 2, 4], device='cuda'), |
| torch.tensor([0, 1, 0, 1]), |
| values([1, 2, 3, 4]), |
| shape((2, 3)), |
| r'Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!') |
| yield ('compressed/plain_indices mismatch of device', |
| torch.tensor([0, 2, 4], device='cuda'), |
| torch.tensor([0, 1, 0, 1]), |
| values([1, 2, 3, 4], device='cuda'), |
| shape((2, 3)), |
| r'Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!') |
| |
| if TEST_CUDA and torch.device(device).type == 'cuda' and torch.cuda.device_count() >= 2: |
| yield ('indices and values mismatch of device index', |
| torch.tensor([0, 2, 4], device='cuda:0'), |
| torch.tensor([0, 1, 0, 1], device='cuda:0'), |
| values([1, 2, 3, 4], device='cuda:1'), |
| shape((2, 3)), |
| r'device of compressed_indices \(=cuda:0\) must match device of values \(=cuda:1\)') |
| yield ('compressed_indices and values mismatch of device index', |
| torch.tensor([0, 2, 4], device='cuda:0'), |
| torch.tensor([0, 1, 0, 1], device='cuda:1'), |
| values([1, 2, 3, 4], device='cuda:0'), |
| shape((2, 3)), |
| r'Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:1!') |
| |
| @skipMeta |
| @all_sparse_compressed_layouts() |
| @parametrize('target', [subtest('validate_sparse_compressed_tensor_args'), |
| subtest('sparse_compressed_tensor'), |
| subtest('sparse_compressed_tensor_no_size')]) |
| def test_invalid_input(self, layout, device, target): |
| for label, compressed_indices, plain_indices, values, size, errmsg in self._generate_invalid_input(layout, device): |
| if layout is torch.sparse_bsr: |
| errmsg = errmsg.replace('compressed_indices_name', 'row block').replace('plain_indices_name', 'column block') |
| elif layout is torch.sparse_bsc: |
| errmsg = errmsg.replace('compressed_indices_name', 'column block').replace('plain_indices_name', 'row block') |
| elif layout is torch.sparse_csr: |
| errmsg = errmsg.replace('compressed_indices_name', 'row').replace('plain_indices_name', 'column') |
| elif layout is torch.sparse_csc: |
| errmsg = errmsg.replace('compressed_indices_name', 'column').replace('plain_indices_name', 'row') |
| if layout in {torch.sparse_csr, torch.sparse_bsr}: |
| errmsg = errmsg.replace('compressed_indices', 'crow_indices') \ |
| .replace('plain_indices', 'col_indices') \ |
| .replace('plain_dim', 'ncols') \ |
| .replace('compressed_dim', 'nrows') |
| else: |
| errmsg = errmsg.replace('compressed_indices', 'ccol_indices') \ |
| .replace('plain_indices', 'row_indices') \ |
| .replace('plain_dim', 'nrows') \ |
| .replace('compressed_dim', 'ncols') |
| |
| if target == 'sparse_compressed_tensor_no_size' and label in { |
| 'invalid size', 'invalid batchsize', 'invalid compressed_indices shape', 'invalid max(plain_indices)', |
| 'invalid blocksize'}: |
| # Skip invalid size input as a valid size is estimated for other inputs |
| continue |
| |
| with self.assertRaisesRegex(RuntimeError, errmsg): |
| if target == 'validate_sparse_compressed_tensor_args': |
| torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, values, size, layout) |
| elif target == 'sparse_compressed_tensor': |
| torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, size, layout=layout) |
| elif target == 'sparse_compressed_tensor_no_size': |
| torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, layout=layout) |
| else: |
| raise NotImplementedError(target) |
| |
| @skipMeta |
| @onlyCPU |
| @all_sparse_compressed_layouts() |
| def test_dim(self, layout): |
| for compressed_indices, plain_indices, values, size in self._generate_small_inputs(layout): |
| batch_dim = compressed_indices.dim() - 1 |
| sparse_dim = 2 |
| block_dim = 2 if layout in {torch.sparse_bsr, torch.sparse_bsc} else 0 |
| dense_dim = values.dim() - batch_dim - block_dim - 1 |
| sparse = torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, size, layout=layout) |
| self.assertEqual(sparse.sparse_dim(), sparse_dim) |
| self.assertEqual(sparse.dense_dim(), dense_dim) |
| |
| |
| def _npref_block_addmm_addmv(c, a, b, alpha, beta): |
| return alpha * (a @ b) + beta * c |
| |
| |
| class TestSparseCSR(TestCase): |
| |
| def test_csr_stride(self): |
| a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64) |
| |
| with self.assertRaisesRegex(RuntimeError, "Sparse CSR tensors do not have strides"): |
| a.stride() |
| |
| with self.assertRaisesRegex(RuntimeError, "Sparse CSR tensors do not have strides"): |
| a.stride(-1) |
| |
| def test_csr_storage(self): |
| a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64) |
| |
| with self.assertRaisesRegex(RuntimeError, "Cannot access storage of SparseCsrTensorImpl"): |
| a.storage() |
| |
| def test_csr_is_contiguous(self): |
| a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64) |
| |
| with self.assertRaisesRegex(RuntimeError, "Sparse CSR tensors do not have is_contiguous"): |
| a.is_contiguous() |
| |
| def test_csr_double_to_sparse_csr(self): |
| a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64) |
| a.to_sparse_csr().to_sparse_csr() |
| |
| @all_sparse_compressed_layouts() |
| @parametrize("index_dtype", [torch.int32, torch.int64]) |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool)) |
| def test_select(self, device, dtype, index_dtype, layout): |
| compressed_indices_mth = { |
| torch.sparse_csr: torch.Tensor.crow_indices, |
| torch.sparse_bsr: torch.Tensor.crow_indices, |
| torch.sparse_csc: torch.Tensor.ccol_indices, |
| torch.sparse_bsc: torch.Tensor.ccol_indices, |
| }[layout] |
| |
| plain_indices_mth = { |
| torch.sparse_csr: torch.Tensor.col_indices, |
| torch.sparse_bsr: torch.Tensor.col_indices, |
| torch.sparse_csc: torch.Tensor.row_indices, |
| torch.sparse_bsc: torch.Tensor.row_indices, |
| }[layout] |
| create_tensor_mth = { |
| torch.sparse_csr: torch.sparse_csr_tensor, |
| torch.sparse_bsr: torch.sparse_bsr_tensor, |
| torch.sparse_csc: torch.sparse_csc_tensor, |
| torch.sparse_bsc: torch.sparse_bsc_tensor, |
| }[layout] |
| |
| shape = (2, 3, 6, 10) |
| nnz = 6 |
| blocksize = (2, 2) if layout in {torch.sparse_bsr, torch.sparse_bsc} else () |
| sparse = self.genSparseCompressedTensor( |
| shape, nnz, device=device, layout=layout, dtype=dtype, index_dtype=index_dtype, blocksize=blocksize) |
| comp_indices = compressed_indices_mth(sparse) |
| plain_indices = plain_indices_mth(sparse) |
| values = sparse.values() |
| |
| # select from batch dimensions |
| sparse_selected12 = sparse.select(1, 2) |
| expected_sparse_selected12 = create_tensor_mth(comp_indices.select(1, 2).contiguous(), |
| plain_indices.select(1, 2).contiguous(), |
| values.select(1, 2).contiguous(), |
| size=(2, 6, 10), |
| dtype=dtype, |
| device=device) |
| self.assertEqual(expected_sparse_selected12, sparse_selected12) |
| |
| # Select from dense dimensions |
| sparse_hybrid = self.genSparseCompressedTensor(shape + (4, 2), |
| nnz, |
| device=device, |
| layout=layout, |
| dtype=dtype, |
| index_dtype=index_dtype, |
| blocksize=blocksize, |
| dense_dims=2) |
| sparse_hybrid_dense_selected = sparse_hybrid.select(4, 1) |
| expected_sparse_hybrid_dense_selected = sparse_hybrid.values().select(-2, 1) |
| self.assertEqual(expected_sparse_hybrid_dense_selected, sparse_hybrid_dense_selected) |
| |
| |
| |
| # selecting rows/col with batch dims not allowed |
| sparse_non_batched = sparse[0, 0] |
| # select from sparse dimensions if layout supports is |
| if layout in {torch.sparse_csr, torch.sparse_csc}: |
| |
| for select_args in [(0, 0), (1, 1)]: |
| sparse_selected = sparse_non_batched.select(*select_args) |
| dense_selected = sparse_non_batched.to_dense().select(*select_args) |
| self.assertEqual(dense_selected, sparse_selected) |
| |
| self.assertEqual(sparse[0, 0, 0, 0], sparse.to_dense()[0, 0, 0, 0]) |
| # assigning to sparse through indexing is disabled, not tested generally because only layouts supporting |
| # sparse dim select will get far enough to test |
| with self.assertRaisesRegex(TypeError, "Cannot assign to a sparse tensor"): |
| sparse[0, 0, 0, 0] = 99.0 |
| |
| # select from sparse dimensions without removing batch dims, not tested generally because only layouts |
| # supporting sparse dim select will get far enough |
| msg = "selecting rows or columns is not implemented for batched sparse compressed tensors." |
| with self.assertRaisesRegex(RuntimeError, msg): |
| sparse.select(-2, 0) |
| |
| with self.assertRaisesRegex(RuntimeError, msg): |
| sparse.select(-1, 0) |
| # ensure raises if layout does not support |
| else: |
| msg = ( |
| "selecting non-batch dimensions is currently only supported for non-blocked sparse " |
| "compressed layouts tensors.") |
| with self.assertRaisesRegex(RuntimeError, msg): |
| sparse_non_batched.select(0, 0) |
| |
| @skipMeta |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| def test_resize(self, device, dtype): |
| batch_shapes = [(), (2,), (2, 3)] |
| for index_dtype, b in zip([torch.int32, torch.int64], batch_shapes): |
| shape = (*b, 2, 3) |
| nnz = 6 |
| a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype) |
| |
| new_shape = (*b, 4, 5) |
| a.resize_(new_shape) |
| |
| self.assertEqual(a.shape, new_shape) |
| # resize to larger shape doesn't add specified elements |
| self.assertEqual(a._nnz(), nnz) |
| |
| new_shape = (*b, 1, 5) |
| a.resize_(new_shape) |
| |
| self.assertEqual(a.shape, new_shape) |
| # resize to smaller shape trims specified elements |
| self.assertEqual(a._nnz(), 5) |
| |
| # trim batched dimensions |
| a.resize_(new_shape[-2], new_shape[-1]) |
| self.assertEqual(a.shape, (new_shape[-2], new_shape[-1])) |
| self.assertEqual(a._nnz(), 5) |
| |
| @skipMeta |
| @dtypes(torch.float, torch.bool) |
| @all_sparse_compressed_layouts() |
| def test_resize_as_sparse_compressed(self, device, dtype, layout): |
| |
| def _check_resize_b_as_a(b, a): |
| br = b.clone() |
| br.resize_as_sparse_(a) |
| |
| # shape is inherited from a |
| self.assertEqual(a.shape, br.shape) |
| # other metadata is not affected |
| self.assertEqual(b.layout, br.layout) |
| self.assertEqual(b.device, br.device) |
| self.assertEqual(b.dtype, br.dtype) |
| |
| def _get_compressed_plain_inds(t): |
| compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[t.layout] |
| return compressed_indices_mth(t), plain_indices_mth(t) |
| |
| br_compressed_indices, br_plain_indices = _get_compressed_plain_inds(br) |
| br_values = br.values() |
| |
| b_compressed_indices, b_plain_indices = _get_compressed_plain_inds(b) |
| a_compressed_indices, a_plain_indices = _get_compressed_plain_inds(a) |
| self.assertEqual(a_plain_indices.shape, br_plain_indices.shape) |
| self.assertEqual(a_compressed_indices.shape, br_compressed_indices.shape) |
| # We don't check the content of br_plain_indices and br_compressed_indices |
| # because it is not well-defined (the content depends on the original |
| # shape of `b` that `resize_as` ought to discard) nor needed (the |
| # subsequent operation likely updates the indices and values of `b` anyway). |
| # the device/dtype of indices should always be unaffected |
| self.assertEqual(b_plain_indices.dtype, br_plain_indices.dtype) |
| self.assertEqual(b_plain_indices.device, br_plain_indices.device) |
| self.assertEqual(b_compressed_indices.dtype, br_compressed_indices.dtype) |
| self.assertEqual(b_compressed_indices.device, br_compressed_indices.device) |
| # values are generated empty, shape is updated |
| self.assertEqual(a.values().shape, br_values.shape) |
| # the device/dtype of indices should always be unaffected |
| b_values = b.values() |
| self.assertEqual(b_values.dtype, br_values.dtype) |
| self.assertEqual(b_values.device, br_values.device) |
| # nnz will be picked up from a via new shape of values |
| self.assertEqual(a._nnz(), br._nnz()) |
| |
| # post resize the invariants of the layout are respected |
| torch._validate_sparse_compressed_tensor_args(br_compressed_indices, br_plain_indices, br_values, br.shape, |
| br.layout) |
| |
| block_sparse = layout in (torch.sparse_bsr, torch.sparse_bsc) |
| shape = (2, 1, 6, 4) |
| nnz = 4 |
| blocksize = (2, 1) if block_sparse else () |
| for index_dtype in [torch.int32, torch.int64]: |
| a = self.genSparseCompressedTensor(shape, |
| layout=layout, |
| device=device, |
| index_dtype=index_dtype, |
| dtype=dtype, |
| nnz=nnz, |
| blocksize=blocksize) |
| |
| # same size, resize should not trigger |
| b = self.genSparseCompressedTensor(shape, |
| layout=layout, |
| device=device, |
| index_dtype=index_dtype, |
| dtype=dtype, |
| nnz=nnz, |
| blocksize=blocksize) |
| |
| # This test will not always trigger a resize, if the layouts are the same nothing should happen to b. |
| # The invariants of the function as checked should still hold |
| _check_resize_b_as_a(b, a) |
| |
| # same ndim, but bigger, more nnz, different dtype, different blocksize if blocked |
| b = self.genSparseCompressedTensor(tuple(s * 2 for s in shape), |
| layout=layout, |
| device=device, |
| dtype=torch.chalf, |
| index_dtype=torch.int64 if index_dtype == torch.int32 else torch.int32, |
| nnz=nnz * 2, |
| blocksize=tuple(2 * bi for bi in blocksize)) |
| _check_resize_b_as_a(b, a) |
| |
| # different device, only check on cuda pass as we know we are testing in an environment |
| # that has multiple devices |
| |
| # TODO: .cpu() does not seem to work correctly for sparse. Causes a call to `copy_` which |
| # complains about incompatible nnz between src and self? |
| if torch.device(device).type == 'cuda' and (layout not in (torch.sparse_bsc, torch.sparse_bsr)): |
| a_cpu = self.genSparseCompressedTensor(shape, |
| layout=layout, |
| device='cpu', |
| index_dtype=index_dtype, |
| dtype=dtype, |
| nnz=nnz, |
| blocksize=blocksize) |
| _check_resize_b_as_a(b, a) |
| |
| # error on a strided |
| a_strided = a.to_dense() |
| with self.assertRaisesRegex( |
| RuntimeError, r'"resize_as_sparse_compressed_: src " expected sparse compressed tensor layout'): |
| b.resize_as_sparse_(a_strided) |
| |
| # error on b strided |
| b_strided = b.to_dense() |
| with self.assertRaisesRegex( |
| RuntimeError, r'"resize_as_sparse_compressed_: self " expected sparse compressed tensor layout'): |
| b_strided.resize_as_sparse_(a) |
| |
| # error if layout does not match, transpose induces layout flip |
| with self.assertRaisesRegex(RuntimeError, |
| r"resize_as_sparse_compressed_tensor_: self and src must have the same layout"): |
| b.transpose(-2, -1).resize_as_sparse_(a) |
| with self.assertRaisesRegex(RuntimeError, |
| r"resize_as_sparse_compressed_tensor_: self and src must have the same layout"): |
| b.resize_as_sparse_(a.transpose(-2, -1)) |
| |
| @skipMeta |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| def test_resize_errors(self, device, dtype): |
| for index_dtype in [torch.int32, torch.int64]: |
| shape = (2, 3) |
| nnz = 6 |
| a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype) |
| |
| with self.assertRaisesRegex(RuntimeError, "torch.resize_: Only batched sparse CSR matrices are supported"): |
| new_shape = (4,) |
| a.resize_(new_shape) |
| |
| # resizing of columns to smaller size is not implemented |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "torch.resize_: Resizing columns of sparse CSR tensors to a smaller value is not supported.", |
| ): |
| new_shape = (2, 2) |
| a.resize_(new_shape) |
| |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| def test_sparse_csr_from_dense(self, device, dtype): |
| dense = torch.tensor([[4, 5, 0], [0, 0, 0], [1, 0, 0]], dtype=dtype, device=device) |
| sparse = dense.to_sparse_csr() |
| self.assertEqual(torch.tensor([0, 2, 2, 3], dtype=torch.int64), sparse.crow_indices()) |
| self.assertEqual(torch.tensor([0, 1, 0], dtype=torch.int64), sparse.col_indices()) |
| self.assertEqual(torch.tensor([4, 5, 1], dtype=dtype), sparse.values()) |
| |
| dense = torch.tensor([[0, 0, 0], [0, 0, 1], [1, 0, 0]], dtype=dtype, device=device) |
| sparse = dense.to_sparse_csr() |
| self.assertEqual(torch.tensor([0, 0, 1, 2], dtype=torch.int64), sparse.crow_indices()) |
| self.assertEqual(torch.tensor([2, 0], dtype=torch.int64), sparse.col_indices()) |
| self.assertEqual(torch.tensor([1, 1], dtype=dtype), sparse.values()) |
| |
| dense = torch.tensor([[2, 2, 2], [2, 2, 2], [2, 2, 2]], dtype=dtype, device=device) |
| sparse = dense.to_sparse_csr() |
| self.assertEqual(torch.tensor([0, 3, 6, 9], dtype=torch.int64), sparse.crow_indices()) |
| self.assertEqual(torch.tensor([0, 1, 2] * 3, dtype=torch.int64), sparse.col_indices()) |
| self.assertEqual(torch.tensor([2] * 9, dtype=dtype), sparse.values()) |
| |
| def _test_sparse_compressed_to_dense(self, device, dtype, layout): |
| compressed_format_str = str(layout)[-3:] |
| |
| def to_compressed(t): |
| return getattr(t, f"to_sparse_{compressed_format_str}")() |
| |
| def compressed_constructor(*input, **kwargs): |
| constructor = getattr(torch, f"sparse_{compressed_format_str}_tensor") |
| return constructor(*input, **kwargs) |
| |
| def get_dense_shape(shape, batch_ndim): |
| if layout is torch.sparse_csc: |
| compressed_dims_slice = slice(batch_ndim + 1, batch_ndim - 1, -1) |
| else: |
| compressed_dims_slice = slice(batch_ndim, batch_ndim + 2) |
| return shape[:batch_ndim] + shape[compressed_dims_slice] + shape[batch_ndim + 2:] |
| |
| def transpose(t, batch_ndim): |
| if layout is torch.sparse_csc: |
| return t.transpose(batch_ndim, batch_ndim + 1) |
| return t |
| |
| mn = [5, 2, 0] |
| for (m, n) in itertools.product(mn, mn): |
| size = (m, n) |
| dense = make_tensor(size, dtype=dtype, device=device) |
| sparse = to_compressed(dense) |
| self.assertEqual(sparse.to_dense(), dense) |
| |
| batch_shape = (2, 3) |
| compressed_indices = torch.tensor([0, 3, 5], device=device).repeat(6, 1).reshape(*batch_shape, -1) |
| plain_indices = torch.tensor([0, 1, 2, 0, 1], device=device).repeat(6, 1).reshape(*batch_shape, -1) |
| values = torch.tensor([1, 2, 1, 3, 4], device=device, dtype=dtype).repeat(6, 1).reshape(*batch_shape, -1) |
| sparse = compressed_constructor(compressed_indices, plain_indices, values, dtype=dtype, device=device) |
| dense_shape = get_dense_shape(sparse.shape, len(batch_shape)) |
| dense = torch.tensor([[1, 2, 1], [3, 4, 0]], dtype=dtype, device=device).repeat(6, 1).reshape(dense_shape) |
| self.assertEqual(sparse.to_dense(), transpose(dense, len(batch_shape))) |
| |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| def test_sparse_csr_to_dense(self, device, dtype): |
| self._test_sparse_compressed_to_dense(device, dtype, torch.sparse_csr) |
| |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| def test_sparse_csc_to_dense(self, device, dtype): |
| self._test_sparse_compressed_to_dense(device, dtype, torch.sparse_csc) |
| |
| @skipMeta |
| @skipCPUIfNoMklSparse |
| @coalescedonoff |
| @dtypes(torch.double) |
| def test_coo_to_csr_convert(self, device, dtype, coalesced): |
| with self.assertRaisesRegex(RuntimeError, "Input is supposed to be a vector"): |
| torch._convert_indices_from_coo_to_csr( |
| torch.randint(100, (5, 5), device=device), |
| size=100) |
| |
| size = (5, 5) |
| sparse_dim = 2 |
| nnz = 10 |
| sparse_coo, _, _ = self.genSparseTensor(size, sparse_dim, nnz, coalesced, device, dtype) |
| sparse_csr = sparse_coo.to_sparse_csr() |
| |
| self.assertTrue(sparse_csr.is_sparse_csr) |
| self.assertEqual(sparse_csr.to_dense(), sparse_coo.to_dense()) |
| |
| vec = torch.randn((5, 1), dtype=dtype, device=device) |
| coo_product = sparse_coo.matmul(vec) |
| csr_product = sparse_csr.matmul(vec) |
| |
| self.assertEqual(coo_product, csr_product) |
| |
| vec = torch.randn((100, 1), dtype=dtype, device=device) |
| index = torch.tensor([ |
| [1, 0, 35, 14, 39, 6, 71, 66, 40, 27], |
| [92, 31, 62, 50, 22, 65, 89, 74, 56, 34], |
| ], dtype=torch.int32) |
| values = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dtype, device=device) |
| coo = torch.sparse_coo_tensor(index, values, torch.Size([100, 100]), dtype=dtype, device=device) |
| csr = coo.to_sparse_csr() |
| |
| self.assertEqual(coo.matmul(vec), csr.matmul(vec)) |
| |
| col_indices = torch.tensor([ |
| 31, 92, 65, 50, 34, 62, 22, 56, 74, 89 |
| ], dtype=torch.int64, device=device) |
| self.assertEqual(csr.col_indices(), col_indices) |
| |
| values = torch.tensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7], dtype=dtype, device=device) |
| self.assertEqual(csr.values(), values) |
| |
| @parametrize("blocksize", [2, 4]) |
| @dtypes((torch.double, torch.int32), (torch.double, torch.int64)) |
| @unittest.skipIf(not TEST_SCIPY, "SciPy not found") |
| @skipMeta |
| def test_csr_to_block_csr(self, device, dtypes, blocksize): |
| for shape in [(24, 24), (12, 24)]: |
| dtype, index_dtype = dtypes |
| m, k = shape |
| nnz = random.randint(0, m * k) |
| t = self.genSparseCSRTensor((m * blocksize, k * blocksize), nnz, dtype=dtype, |
| device=device, index_dtype=index_dtype) |
| st = sp.csr_matrix((t.values().cpu(), t.col_indices().cpu(), t.crow_indices().cpu()), shape=tuple(t.size())) |
| block_t = t.to_sparse_bsr((blocksize, blocksize)) |
| self.assertEqual(block_t.values().dim(), 3) |
| self.assertTrue(block_t.layout == torch.sparse_bsr) |
| block_st = st.tobsr(blocksize=(blocksize, blocksize)) |
| self.assertEqual(block_t.values().cpu(), block_st.data) |
| self.assertEqual(block_t.col_indices().cpu(), torch.tensor(block_st.indices).to(index_dtype)) |
| self.assertEqual(block_t.crow_indices().cpu(), torch.tensor(block_st.indptr).to(index_dtype)) |
| |
| @dtypes(torch.double) |
| @unittest.skipIf(not TEST_SCIPY, "SciPy not found") |
| def test_csr_to_block_csr_errors(self, device, dtype): |
| for index_dtype in [torch.int32, torch.int64]: |
| nnz = 15 |
| t = self.genSparseCSRTensor((16, 16), nnz, dtype=dtype, |
| device=device, index_dtype=index_dtype) |
| with self.assertRaisesRegex(RuntimeError, "must be square."): |
| block_t = t.to_sparse_bsr((2, 3)) |
| |
| with self.assertRaisesRegex(RuntimeError, r"size \(16, 16\) with block size \(5, 5\)"): |
| block_t = t.to_sparse_bsr((5, 5)) |
| |
| # TODO: Support auto generation of device check for sparse tensors |
| # See: https://github.com/pytorch/pytorch/issues/59058 |
| @onlyCUDA |
| @dtypes(torch.double) |
| def test_matmul_device_mismatch(self, device, dtype): |
| cpu = torch.rand((10, 10)) |
| cuda = cpu.cuda() |
| for s, m1, m2 in itertools.product((cpu, cuda), repeat=3): |
| csr = m1.to_sparse() |
| if s.device == csr.device == m2.device: |
| torch.addmm(s, csr, m2) |
| else: |
| with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): |
| torch.addmm(s, csr, m2) |
| |
| @skipCPUIfNoMklSparse |
| @skipCUDAIfNoSparseGeneric |
| @dtypes(*floating_and_complex_types()) |
| @dtypesIfCUDA(*floating_and_complex_types_and( |
| *[torch.half] if SM53OrLater else [], |
| *[torch.bfloat16] if SM80OrLater else [])) |
| def test_csr_matvec(self, device, dtype): |
| |
| if TEST_WITH_ROCM and (dtype == torch.half or dtype == torch.bfloat16): |
| self.skipTest("ROCm doesn't work with half dtypes correctly.") |
| |
| side = 100 |
| for index_dtype in [torch.int32, torch.int64]: |
| csr = self.genSparseCSRTensor((side, side), 1000, device=device, dtype=dtype, index_dtype=index_dtype) |
| vec = torch.randn(side, dtype=dtype, device=device) |
| |
| res = csr.matmul(vec) |
| expected = csr.to_dense().matmul(vec) |
| |
| self.assertEqual(res, expected) |
| |
| bad_vec = torch.randn(side + 10, dtype=dtype, device=device) |
| err_msg = "size mismatch, got" |
| with self.assertRaisesRegex(RuntimeError, err_msg): |
| csr.matmul(bad_vec) |
| |
| @onlyCUDA |
| @unittest.skipIf(not (CUDA11OrLater or TEST_WITH_ROCM), "Only CUDA 11+ is supported") |
| @skipCUDAIfRocmVersionLessThan((5, 2)) |
| @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) |
| def test_baddbmm(self, device, dtype): |
| def run_test(c, a, a_batched, b, op_b=False, op_out=False, *, dtype=None, device=None): |
| alpha = complex(random.random(), random.random()) if dtype.is_complex else random.random() |
| beta = complex(random.random(), random.random()) if dtype.is_complex else random.random() |
| b = b.mH if (op_b and a.shape == b.shape) else b |
| |
| actual = torch.baddbmm(c, a_batched, b, alpha=alpha, beta=beta) |
| |
| out = torch.empty_like(c.mH if op_out and a.shape == b.shape else c) |
| torch.baddbmm(c, a_batched, b, alpha=alpha, beta=beta, out=out) |
| |
| expected = [torch.addmm(c[i], a, b[i], alpha=alpha, beta=beta) for i in range(c.shape[0])] |
| expected = torch.stack(expected, 0) |
| |
| self.assertEqual(actual, out) |
| self.assertEqual(actual, expected) |
| |
| for index_dtype in [torch.int32, torch.int64]: |
| for (m, n, k), batch_size, noncontiguous in zip(itertools.product([2, 5], repeat=3), [1, 3], [True, False]): |
| nnz = random.randint(0, m * k) |
| a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype) |
| |
| # a_batched is a regular CSR tensor but with a batch dimension in the shape |
| a_batched = torch._sparse_csr_tensor_unsafe( |
| a.crow_indices(), a.col_indices(), a.values(), (batch_size, m, k)) |
| |
| b = make_tensor((batch_size, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous) |
| c = make_tensor((batch_size, m, n), dtype=dtype, device=device, noncontiguous=noncontiguous) |
| for op_b, op_out in itertools.product([True, False], repeat=2): |
| run_test(c, a, a_batched, b, op_b, op_out, dtype=dtype, device=device) |
| |
| @onlyCUDA |
| @unittest.skipIf(not CUDA11OrLater, "Only CUDA 11+ is supported") |
| @skipCUDAIfNoSparseGeneric |
| @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) |
| def test_bmm(self, device, dtype): |
| def run_test(a, a_batched, b, op_b=False, op_out=False, *, dtype=None, device=None): |
| b = b.mH if (op_b and a.shape == b.shape) else b |
| |
| actual = torch.bmm(a_batched, b) |
| |
| out = torch.empty_like(actual.mH if op_out and a.shape == b.shape else actual) |
| torch.bmm(a_batched, b, out=out) |
| |
| expected = [torch.mm(a, b[i]) for i in range(b.shape[0])] |
| expected = torch.stack(expected, 0) |
| |
| self.assertEqual(actual, out) |
| self.assertEqual(actual, expected) |
| |
| for index_dtype in [torch.int32, torch.int64]: |
| for (m, n, k), batch_size, noncontiguous in zip(itertools.product([2, 5], repeat=3), [1, 3], [True, False]): |
| nnz = random.randint(0, m * k) |
| a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype) |
| |
| # a_batched is a regular CSR tensor but with a batch dimension in the shape |
| a_batched = torch._sparse_csr_tensor_unsafe( |
| a.crow_indices(), a.col_indices(), a.values(), (batch_size, m, k)) |
| |
| b = make_tensor((batch_size, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous) |
| for op_b, op_out in itertools.product([True, False], repeat=2): |
| run_test(a, a_batched, b, op_b, op_out, dtype=dtype, device=device) |
| |
| def run_test_block_addmm_addmv(self, |
| addmv_addmm, |
| c, |
| a, |
| b, |
| op_b=False, |
| op_out=False, |
| *, |
| dtype=None, |
| device=None, |
| ref=_npref_block_addmm_addmv): |
| alpha = complex(random.random(), random.random()) if dtype.is_complex else random.random() |
| beta = complex(random.random(), random.random()) if dtype.is_complex else random.random() |
| b = b.mH if (op_b and a.shape == b.shape) else b |
| |
| actual = addmv_addmm(c, a, b, alpha=alpha, beta=beta) |
| |
| out = torch.empty_like(c.mH if op_out and a.shape == b.shape else c) |
| addmv_addmm(c, a, b, alpha=alpha, beta=beta, out=out) |
| expected = ref(c, a, b, alpha, beta) |
| |
| self.assertEqual(actual, out) |
| self.assertEqual(actual, expected) |
| |
| # TODO: block_size 1 is broken |
| @parametrize("block_size", [2, 3]) |
| @parametrize("index_dtype", [torch.int32, torch.int64]) |
| @parametrize("noncontiguous", [True, False]) |
| @skipCPUIfNoMklSparse |
| @unittest.skipIf(not TEST_SCIPY, "SciPy not found") |
| @dtypes(*floating_and_complex_types()) |
| @dtypesIfCUDA(*floating_and_complex_types_and( |
| *[torch.half] if SM53OrLater else [], |
| *[torch.bfloat16] if SM80OrLater else [])) |
| @precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3, |
| torch.float64: 1e-5, torch.complex128: 1e-5, |
| torch.float16: 1e-3, torch.bfloat16: 1e-3}) |
| def test_block_addmm(self, device, dtype, index_dtype, block_size, noncontiguous): |
| |
| def make_transposed_addmm_op(f): |
| |
| def tt(t): |
| if isinstance(t, torch.Tensor): |
| return t.transpose(-2, -1) |
| else: |
| # assume numpy/scipy spmatrix |
| return t.transpose() |
| |
| @functools.wraps(f) |
| def wrapper(c, a, b, alpha=None, beta=None, out=None): |
| if out is not None: |
| # the ref takes no out kwarg |
| assert isinstance(out, torch.Tensor) |
| # tranpose inplace to propogate out to checking context |
| out.transpose_(-2, -1) |
| return f(tt(c), tt(b), tt(a), alpha=alpha, beta=beta, out=out) |
| else: |
| return f(tt(c), tt(b), tt(a), alpha=alpha, beta=beta) |
| |
| return wrapper |
| |
| def ref_sp_numpy(c, a, b, alpha=None, beta=None, out=None): |
| |
| def prep_input(t): |
| |
| def to_sp_block_compressed(t): |
| |
| if t.layout is torch.sparse_bsc: |
| tt = t.transpose(-1, -2) |
| else: |
| tt = t |
| |
| t_sp_bsr = sp.bsr_matrix( |
| ( |
| tt.values().cpu().numpy(), |
| tt.col_indices().cpu().numpy(), |
| tt.crow_indices().cpu().numpy(), |
| ), |
| shape=tt.shape, |
| ) |
| |
| if t.layout is torch.sparse_bsc: |
| return t_sp_bsr.transpose() |
| else: |
| return t_sp_bsr |
| |
| if t.layout is not torch.strided: |
| return to_sp_block_compressed(t) |
| else: |
| return t.cpu().resolve_conj().numpy() |
| |
| res = _npref_block_addmm_addmv( |
| *map(lambda t: prep_input(t), (c, a, b)), |
| alpha, |
| beta |
| ) |
| |
| if out is not None: |
| out.copy_(res) |
| return out |
| else: |
| return res |
| |
| def ref_half_bfloat16(c, a, b, alpha=None, beta=None, out=None): |
| res = alpha * (a.to_dense().to(torch.float32) @ b.to_dense().to(torch.float32)).to(a.dtype) + beta * c |
| if out is not None: |
| out.copy_(res) |
| return out |
| else: |
| return res |
| |
| if dtype in (torch.half, torch.bfloat16): |
| ref = ref_half_bfloat16 |
| else: |
| ref = ref_sp_numpy |
| |
| for (m, n, k) in itertools.product([2, 5], repeat=3): |
| nnz = random.randint(0, m * k) |
| a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype) |
| a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device) |
| a_data = a_data.mT if noncontiguous else a_data |
| a = torch._sparse_bsr_tensor_unsafe(a.crow_indices(), a.col_indices(), |
| a_data, (m * block_size, k * block_size)) |
| b = make_tensor((k * block_size, n * block_size), dtype=dtype, device=device, noncontiguous=noncontiguous) |
| c = make_tensor((m * block_size, n * block_size), dtype=dtype, device=device, noncontiguous=noncontiguous) |
| for op_b, op_out in itertools.product([True, False], repeat=2): |
| self.run_test_block_addmm_addmv(torch.addmm, c, a, b, op_b, op_out, dtype=dtype, device=device, ref=ref) |
| self.run_test_block_addmm_addmv(make_transposed_addmm_op(torch.addmm), |
| c, |
| a, |
| b, |
| op_b, |
| op_out, |
| dtype=dtype, |
| device=device, |
| ref=make_transposed_addmm_op(ref)) |
| |
| @parametrize("block_size", [2, 3]) |
| @parametrize("index_dtype", [torch.int32, torch.int64]) |
| @parametrize("noncontiguous", [True, False]) |
| @skipCPUIfNoMklSparse |
| @unittest.skipIf(not TEST_SCIPY, "SciPy not found") |
| @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) |
| def test_block_addmv(self, device, dtype, index_dtype, block_size, noncontiguous): |
| # TODO: Explicitly disable block size 1 support |
| # if (TEST_WITH_ROCM or not TEST_CUSPARSE_GENERIC) and block_size == 1: |
| # return |
| for (m, k) in itertools.product([2, 5], repeat=2): |
| nnz = random.randint(0, m * k) |
| if not noncontiguous: |
| a = self.genSparseCSRTensor((m * block_size, k * block_size), nnz, |
| dtype=dtype, device=device, index_dtype=index_dtype) |
| a = a.to_sparse_bsr((block_size, block_size)) |
| else: |
| a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype) |
| a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device) |
| a_data = a_data.mT if noncontiguous else a_data # Test column-major blocks |
| a = torch._sparse_bsr_tensor_unsafe(a.crow_indices(), a.col_indices(), |
| a_data, (m * block_size, k * block_size)) |
| b = make_tensor((k * block_size,), dtype=dtype, device=device, noncontiguous=noncontiguous) |
| c = make_tensor((m * block_size,), dtype=dtype, device=device, noncontiguous=noncontiguous) |
| self.run_test_block_addmm_addmv(torch.addmv, c, a, b, dtype=dtype, device=device) |
| |
| @parametrize("block_size", [2, 3]) |
| @parametrize("index_dtype", [torch.int32, torch.int64]) |
| @parametrize("noncontiguous", [True, False]) |
| @skipCPUIfNoMklSparse |
| @unittest.skipIf(not TEST_SCIPY, "SciPy not found") |
| @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) |
| def test_block_triangular_solve(self, device, dtype, index_dtype, block_size, noncontiguous): |
| def run_test(a, b, upper, transpose, unitriangular, op_out): |
| if unitriangular and self.device_type == 'cpu': |
| # TODO: When unitriangular=True results are not correct on CPU |
| return |
| |
| if not upper and self.device_type == 'cpu': |
| # TODO: When upper=False some generated inputs might crash on CPU |
| return |
| |
| actual = torch.triangular_solve(b, a, upper=upper, unitriangular=unitriangular, transpose=transpose) |
| actual_X = actual.solution |
| actual_A_clone = actual.cloned_coefficient |
| self.assertTrue(actual_A_clone.numel() == 0) |
| if a._nnz() == 0: |
| self.assertTrue(actual_X.isnan().all()) |
| return |
| |
| # TODO: replace with torch method when implemented to_dense() on block sparse tensor |
| a_bsr = sp.bsr_matrix( |
| ( |
| a.values().cpu().numpy(), |
| a.col_indices().cpu().numpy(), |
| a.crow_indices().cpu().numpy(), |
| ), |
| shape=a.shape, |
| ) |
| expected_X, _ = torch.triangular_solve( |
| b, |
| torch.tensor(a_bsr.todense(), device=device), |
| transpose=transpose, |
| upper=upper, |
| unitriangular=unitriangular) |
| |
| if expected_X.isnan().any(): |
| # TODO: zeros on the diagonal are not handled for CPU path |
| # there's no way to query this info from MKL |
| if self.device_type == 'cuda' and not TEST_WITH_ROCM: |
| self.assertTrue(actual_X.isnan().any() or actual_X.isinf().any()) |
| return |
| |
| self.assertEqual(actual_X, expected_X) |
| |
| out = torch.empty_like(b.mH if op_out and a.shape == b.shape else b) |
| torch.triangular_solve( |
| b, a, |
| upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone) |
| ) |
| self.assertEqual(out, actual_X) |
| self.assertEqual(out, expected_X) |
| |
| for (m, k) in itertools.product([2, 3], [1, 3]): |
| nnz = random.randint(0, m * m) |
| if not noncontiguous: |
| a = self.genSparseCSRTensor((m * block_size, m * block_size), nnz, |
| dtype=dtype, device=device, index_dtype=index_dtype) |
| a = a.to_sparse_bsr((block_size, block_size)) |
| else: |
| a = self.genSparseCSRTensor((m, m), nnz, dtype=dtype, device=device, index_dtype=index_dtype) |
| a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device) |
| a_data = a_data.mT if noncontiguous else a_data # Test column-major blocks |
| a = torch._sparse_bsr_tensor_unsafe(a.crow_indices(), a.col_indices(), |
| a_data, (m * block_size, m * block_size)) |
| b = make_tensor((m * block_size, k), dtype=dtype, device=device, noncontiguous=noncontiguous) |
| |
| for (upper, unitriangular, transpose, op_out) in itertools.product([True, False], repeat=4): |
| run_test(a, b, upper, unitriangular, transpose, op_out) |
| |
| @skipCPUIfNoMklSparse |
| @unittest.skipIf(not CUDA11OrLater, "Only CUDA 11+ is supported") |
| @dtypes(torch.double) |
| def test_mm(self, device, dtype): |
| def test_shape(di, dj, dk, nnz0=None, nnz1=None): |
| for index_dtype in [torch.int32, torch.int64]: |
| alpha = random.random() |
| beta = random.random() |
| |
| def _test_addmm(t, x, y): |
| # TODO: addmm doesn't support strided result for sparse inputs. |
| # res = beta * t + alpha * (x @ y) |
| res = torch.addmm(t, x, y, beta=beta, alpha=alpha) |
| expected = torch.addmm(t, x.to_dense(), y.to_dense(), beta=beta, alpha=alpha) |
| self.assertEqual(res, expected) |
| |
| res = torch.addmm(t, x, y) |
| expected = torch.addmm(t, x.to_dense(), y.to_dense()) |
| self.assertEqual(res, expected) |
| |
| def _test_mm(x, y): |
| res = torch.mm(x, y) |
| expected = torch.mm(x.to_dense(), y.to_dense()) |
| if x.layout is torch.strided or y.layout is torch.strided: |
| self.assertEqual(res.layout, torch.strided) |
| else: |
| self.assertEqual(res.layout, torch.sparse_csr) |
| self.assertEqual(res.to_dense(), expected) |
| |
| def _test(t, x, y): |
| _test_addmm(t, x, y) |
| _test_mm(x, y) |
| |
| if nnz0 is None: |
| nnz0 = random.randint(di * dk // 2, di * dk) |
| t = torch.randn(di, dj, dtype=dtype, device=device) |
| x = self.genSparseCSRTensor((di, dk), nnz0, device=device, dtype=dtype, index_dtype=index_dtype) |
| y = torch.randn(dk, dj, dtype=dtype, device=device) |
| _test(t, x, y) |
| |
| t = torch.randn(di, dj, dtype=dtype, device=device) |
| x = self.genSparseCSCTensor((di, dk), nnz0, device=device, dtype=dtype, index_dtype=index_dtype) |
| y = torch.randn(dk, dj, dtype=dtype, device=device) |
| _test(t, x, y) |
| |
| if nnz1 is None: |
| nnz1 = random.randint(dk * dj // 2, dk * dj) |
| t = torch.randn(di, dj, dtype=dtype, device=device) |
| x = torch.randn(di, dk, dtype=dtype, device=device) |
| y = self.genSparseCSRTensor((dk, dj), nnz1, device=device, dtype=dtype, index_dtype=index_dtype) |
| _test(t, x, y) |
| |
| t = torch.randn(di, dj, dtype=dtype, device=device) |
| x = torch.randn(di, dk, dtype=dtype, device=device) |
| y = self.genSparseCSCTensor((dk, dj), nnz1, device=device, dtype=dtype, index_dtype=index_dtype) |
| _test(t, x, y) |
| |
| x_shape, y_shape = x.shape, y.shape |
| |
| gen_csr_csc = [self.genSparseCSRTensor, self.genSparseCSCTensor] |
| |
| # Test mm({CSR, CSC}, {CSR, CSC}) |
| for gen_x, gen_y in itertools.product(gen_csr_csc, gen_csr_csc): |
| x = gen_x(x_shape, nnz0, device=device, dtype=dtype, index_dtype=index_dtype) |
| y = gen_y(y_shape, nnz1, device=device, dtype=dtype, index_dtype=index_dtype) |
| _test_mm(x, y) |
| |
| for i in [2, 4]: |
| for j in [2, 4, 7]: |
| for k in [2, 3, 7]: |
| test_shape(i, j, k) |
| test_shape(4, 4, 4, 0, 0) |
| |
| @skipCPUIfNoMklSparse |
| @dtypes(*floating_and_complex_types()) |
| @dtypesIfCUDA(*floating_and_complex_types_and( |
| *[torch.half] if SM53OrLater and TEST_CUSPARSE_GENERIC else [], |
| *[torch.bfloat16] if SM80OrLater and TEST_CUSPARSE_GENERIC else [])) |
| @precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2}) |
| def test_sparse_mm(self, device, dtype): |
| def test_shape(d1, d2, d3, nnz, transposed, index_dtype): |
| if transposed: |
| D = torch.randn(d3, d2, dtype=dtype, device=device).t_() |
| else: |
| D = torch.randn(d2, d3, dtype=dtype, device=device) |
| S = self.genSparseCSRTensor((d1, d2), nnz, device=device, dtype=dtype, index_dtype=index_dtype) |
| S_dense = S.to_dense() |
| self.assertEqual(torch.sparse.mm(S, D), torch.mm(S_dense, D)) |
| |
| for index_dtype in [torch.int32, torch.int64]: |
| test_shape(7, 8, 9, 20, False, index_dtype) |
| test_shape(7, 8, 9, 20, True, index_dtype) |
| |
| @dtypes(*floating_and_complex_types()) |
| @dtypesIfCUDA(*floating_and_complex_types_and( |
| *[torch.half] if SM53OrLater and TEST_CUSPARSE_GENERIC else [], |
| *[torch.bfloat16] if SM80OrLater and TEST_CUSPARSE_GENERIC else [])) |
| @precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2}) |
| def test_sparse_addmm(self, device, dtype): |
| def test_shape(m, n, p, nnz, broadcast, index_dtype, alpha_beta=None): |
| if alpha_beta is None: |
| alpha = random.random() |
| beta = random.random() |
| else: |
| alpha, beta = alpha_beta |
| if broadcast: |
| D1 = make_tensor((), dtype=dtype, device=device) |
| else: |
| D1 = make_tensor([n, p], dtype=dtype, device=device) |
| D2 = make_tensor([m, p], dtype=dtype, device=device) |
| S = self.genSparseCSRTensor([n, m], nnz, dtype=dtype, device=device, index_dtype=index_dtype) |
| S_dense = S.to_dense() |
| Y = torch.sparse.addmm(D1, S, D2, beta=beta, alpha=alpha) |
| Y_dense = torch.addmm(D1, S_dense, D2, beta=beta, alpha=alpha) |
| self.assertEqual(Y, Y_dense) |
| |
| for index_dtype in [torch.int32, torch.int64]: |
| test_shape(7, 8, 9, 20, False, index_dtype, None) |
| test_shape(7, 8, 9, 20, True, index_dtype, None) |
| test_shape(7, 8, 9, 20, False, index_dtype, (1, 0)) |
| test_shape(7, 8, 9, 20, True, index_dtype, (1, 0)) |
| test_shape(7, 8, 9, 20, False, index_dtype, (1, 1)) |
| test_shape(7, 8, 9, 20, True, index_dtype, (1, 1)) |
| |
| @skipCPUIfNoMklSparse |
| @dtypes(*floating_and_complex_types()) |
| @precisionOverride({torch.double: 1e-8, torch.float: 1e-4, torch.bfloat16: 0.6, |
| torch.half: 1e-1, torch.cfloat: 1e-4, torch.cdouble: 1e-8}) |
| @dtypesIfCUDA(*floating_types_and(torch.complex64, |
| *[torch.bfloat16] if SM80OrLater else [], |
| *[torch.half] if SM53OrLater else [], |
| *[torch.complex128] if CUSPARSE_SPMM_COMPLEX128_SUPPORTED else [])) |
| @sparse_compressed_nonblock_layouts() |
| @skipCUDAIf( |
| not _check_cusparse_spgemm_available(), |
| "cuSparse Generic API SpGEMM is not available" |
| ) |
| def test_addmm_all_sparse_csr(self, device, dtype, layout): |
| M = torch.randn(10, 25, device=device).to(dtype) |
| m1 = torch.randn(10, 50, device=device).to(dtype) |
| m2 = torch.randn(50, 25, device=device).to(dtype) |
| _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="all_sparse") |
| |
| # Test 0-strided |
| M = torch.randn(10, 1, device=device).to(dtype).expand(10, 25) |
| m1 = torch.randn(10, 1, device=device).to(dtype).expand(10, 50) |
| m2 = torch.randn(50, 25, device=device).to(dtype) |
| _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="all_sparse") |
| |
| # Test beta=0, M=nan |
| M = torch.full((10, 25), float('nan'), device=device).to(dtype) |
| m1 = torch.randn(10, 50, device=device).to(dtype) |
| m2 = torch.randn(50, 25, device=device).to(dtype) |
| _test_addmm_addmv(self, torch.addmm, M, m1, m2, beta=0, layout=layout, mode="all_sparse") |
| |
| # Test transpose |
| for t1, t2, t3, t4 in itertools.product([True, False], repeat=4): |
| def maybe_transpose(cond, m): |
| if not cond: |
| return m |
| return m.t().clone(memory_format=torch.contiguous_format).t() |
| |
| M = maybe_transpose(t1, torch.randn(10, 25, device=device).to(dtype)) |
| m1 = maybe_transpose(t2, torch.randn(10, 50, device=device).to(dtype)) |
| m2 = maybe_transpose(t3, torch.randn(50, 25, device=device).to(dtype)) |
| _test_addmm_addmv(self, torch.addmm, M, m1, m2, transpose_out=t4, layout=layout, mode="all_sparse") |
| |
| @onlyCPU |
| @skipCPUIfNoMklSparse |
| @dtypes(*floating_and_complex_types()) |
| @sparse_compressed_nonblock_layouts() |
| def test_addmm_dense_result(self, device, dtype, layout): |
| M = torch.randn(10, 25, device=device).to(dtype) |
| m1 = torch.randn(10, 50, device=device).to(dtype) |
| m2 = torch.randn(50, 25, device=device).to(dtype) |
| _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="dense_result") |
| |
| # Test 0-strided |
| M = torch.randn(10, 1, device=device).to(dtype).expand(10, 25) |
| m1 = torch.randn(10, 1, device=device).to(dtype).expand(10, 50) |
| m2 = torch.randn(50, 25, device=device).to(dtype) |
| _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="dense_result") |
| |
| # Test beta=0, M=nan |
| M = torch.full((10, 25), float('nan'), device=device).to(dtype) |
| m1 = torch.randn(10, 50, device=device).to(dtype) |
| m2 = torch.randn(50, 25, device=device).to(dtype) |
| _test_addmm_addmv(self, torch.addmm, M, m1, m2, beta=0, layout=layout, mode="dense_result") |
| |
| # Test transpose |
| for t1, t2, t3, t4 in itertools.product([True, False], repeat=4): |
| def maybe_transpose(cond, m): |
| if not cond: |
| return m |
| return m.t().clone(memory_format=torch.contiguous_format).t() |
| |
| M = maybe_transpose(t1, torch.randn(10, 25, device=device).to(dtype)) |
| m1 = maybe_transpose(t2, torch.randn(10, 50, device=device).to(dtype)) |
| m2 = maybe_transpose(t3, torch.randn(50, 25, device=device).to(dtype)) |
| _test_addmm_addmv(self, torch.addmm, M, m1, m2, transpose_out=t4, layout=layout, mode="dense_result") |
| |
| @parametrize("k", [0, 1, 8]) |
| @parametrize("n", [0, 1, 10]) |
| @parametrize("m", [0, 1, 25]) |
| @skipCPUIfNoMklSparse |
| @dtypes(*floating_and_complex_types()) |
| @dtypesIfCUDA(*floating_types_and(torch.complex64, |
| *[torch.bfloat16] if SM80OrLater else [], |
| *[torch.half] if SM53OrLater else [], |
| *[torch.complex128] if CUSPARSE_SPMM_COMPLEX128_SUPPORTED else [])) |
| @skipCUDAIf( |
| not _check_cusparse_spgemm_available(), |
| "cuSparse Generic API SpGEMM is not available" |
| ) |
| @precisionOverride({torch.double: 1e-8, torch.float: 1e-4, torch.bfloat16: 0.6, |
| torch.half: 1e-1, torch.cfloat: 1e-4, torch.cdouble: 1e-8}) |
| def test_addmm_sizes_all_sparse_csr(self, device, dtype, m, n, k): |
| M = torch.randn(n, m, device=device).to(dtype) |
| m1 = torch.randn(n, k, device=device).to(dtype) |
| m2 = torch.randn(k, m, device=device).to(dtype) |
| _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=torch.sparse_csr, mode="all_sparse") |
| |
| M = torch.randn(n, m, device=device).to(dtype).to_sparse_csr() |
| m1 = torch.randn(n, k + 1, device=device).to(dtype).to_sparse_csr() |
| m2 = torch.randn(k, m, device=device).to(dtype).to_sparse_csr() |
| self.assertRaisesRegex(RuntimeError, f"{n}x{k + 1}.*{k}x{m}", lambda: torch.addmm(M, m1, m2)) |
| self.assertRaisesRegex(RuntimeError, f"{n}x{k + 1}.*{k}x{m}", lambda: torch.mm(m1, m2)) |
| |
| @skipCPUIfNoMklSparse |
| @dtypes(torch.float) |
| def test_addmm_errors(self, device, dtype): |
| # test that the errors are the same for dense and sparse versions |
| import re |
| |
| def test1(*, is_sparse): |
| # shapes must be compatible for matrix multiplication |
| a = make_tensor((2, 3), dtype=dtype, device=device) |
| if is_sparse: |
| a_sparse = a.to_sparse_csr() |
| return torch.addmm(a, a_sparse, a) |
| else: |
| return torch.addmm(a, a, a) |
| |
| def test2(*, is_sparse): |
| # mat2 must be a matrix |
| a = make_tensor((2, 3), dtype=dtype, device=device) |
| if is_sparse: |
| a_sparse = a.to_sparse_csr() |
| return torch.addmm(a, a_sparse, a.unsqueeze(0)) |
| else: |
| return torch.addmm(a, a, a.unsqueeze(0)) |
| |
| def test3(*, is_sparse): |
| # the first input needs to be 1D or 2D |
| a = make_tensor((3, 3), dtype=dtype, device=device) |
| if is_sparse: |
| a_sparse = a.to_sparse_csr() |
| return torch.addmm(a.unsqueeze(0), a_sparse, a) |
| else: |
| return torch.addmm(a.unsqueeze(0), a, a) |
| |
| for test in (test1, test2, test3): |
| try: |
| test(is_sparse=False) |
| except RuntimeError as msg: |
| with self.assertRaisesRegex(RuntimeError, re.escape(str(msg))): |
| test(is_sparse=True) |
| |
| @skipCPUIfNoMklSparse |
| @dtypes(torch.float) |
| def test_mm_errors(self, device, dtype): |
| # test that the errors are the same for dense and sparse versions |
| import re |
| |
| def test1(*, is_sparse): |
| # shapes must be compatible for matrix multiplication |
| a = make_tensor((2, 3), dtype=dtype, device=device) |
| if is_sparse: |
| a_sparse = a.to_sparse_csr() |
| return torch.mm(a_sparse, a) |
| else: |
| return torch.mm(a, a) |
| |
| def test2(*, is_sparse): |
| # mat2 must be a matrix |
| a = make_tensor((2, 3), dtype=dtype, device=device) |
| if is_sparse: |
| a_sparse = a.to_sparse_csr() |
| return torch.mm(a_sparse, a.unsqueeze(0)) |
| else: |
| return torch.mm(a, a.unsqueeze(0)) |
| |
| for test in (test1, test2): |
| try: |
| test(is_sparse=False) |
| except RuntimeError as msg: |
| with self.assertRaisesRegex(RuntimeError, re.escape(str(msg))): |
| test(is_sparse=True) |
| |
| @dtypes(torch.float, torch.double) |
| def test_add(self, device, dtype): |
| def _test_spadd_shape(nnz, shape): |
| # sparse.to_dense() uses torch.add internally so if torch.add is wrong, |
| # the dense tensor will be wrong but this test would still pass |
| # there's a separate test that checks for the correctness of the .to_dense() call |
| x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) |
| y = torch.randn(*shape, dtype=dtype, device=device) |
| r = random.random() |
| |
| res = torch.add(y, x, alpha=r) |
| expected = y + r * x.to_dense() |
| self.assertEqual(res, expected) |
| |
| # Non contiguous dense tensor |
| s = list(shape) |
| s[0] = shape[-1] |
| s[-1] = shape[0] |
| y = torch.randn(*s, dtype=torch.double, device=device) |
| y.transpose_(0, len(s) - 1) |
| r = random.random() |
| |
| res = torch.add(y, x, alpha=r) |
| expected = y + r * x.to_dense() |
| |
| self.assertEqual(res, expected) |
| |
| ns = [2, 5] |
| batch_shapes = [(), (2,), (2, 3)] |
| for b, m, n in itertools.product(batch_shapes, ns, ns): |
| _test_spadd_shape(0, (*b, m, n)) |
| _test_spadd_shape(m * n // 2, (*b, m, n)) |
| _test_spadd_shape(m * n, (*b, m, n)) |
| |
| @dtypes(torch.float, torch.double) |
| def test_mul(self, device, dtype): |
| # TODO: This whole test should be migrated to OpInfos |
| def _test_spadd_shape(fn, nnz, shape): |
| x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) |
| y = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) |
| |
| # Forward comparison |
| res_sparse_sparse = fn(y, x) |
| res_dense_sparse = fn(y.to_dense(), x) |
| res_sparse_dense = fn(y, x.to_dense()) |
| expected = fn(y.to_dense(), x.to_dense()).to_sparse_csr() |
| self.assertEqual(res_sparse_sparse, expected) |
| # TODO: While result of mul(dense, csr) is csr, it is not fully compressed. |
| # That means it may contain materialized zeros, since the dense argument |
| # is converted according to the sparsity pattern of csr. In the future |
| # we might require the result to be fully compressed. |
| self.assertEqual(res_dense_sparse.to_dense(), expected.to_dense()) |
| self.assertEqual(res_sparse_dense.to_dense(), expected.to_dense()) |
| |
| # Grad comparison |
| x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) |
| y = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) |
| z = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) |
| |
| # csr * csr -> csr with csr, csr gradients |
| x_a = x.clone().requires_grad_() |
| y_a = y.clone().requires_grad_() |
| |
| fn(y_a, x_a).backward(z) |
| |
| x_dense_a = x.to_dense().requires_grad_() |
| y_dense_a = y.to_dense().requires_grad_() |
| |
| fn(y_dense_a, x_dense_a).backward(z.to_dense()) |
| |
| self.assertEqual(x_a.grad.layout, torch.sparse_csr) |
| self.assertEqual(y_a.grad.layout, torch.sparse_csr) |
| |
| self.assertEqual(x_a.grad.to_dense(), x_dense_a.grad) |
| self.assertEqual(y_a.grad.to_dense(), y_dense_a.grad) |
| |
| # TODO: Currently strided Tensors cannot have csr gradients |
| # dense * csr -> csr with csr, dense gradients |
| x_a = x.clone().requires_grad_() |
| y_a = y.to_dense().clone().requires_grad_() |
| err_msg = "Function MulBackward0 returned an invalid gradient at index 0 - expected layout Strided but got SparseCsr" |
| with self.assertRaisesRegex(RuntimeError, err_msg): |
| fn(y_a, x_a).backward(z) |
| |
| # csr * dense -> csr with dense, csr gradients |
| x_a = x.to_dense().clone().requires_grad_() |
| y_a = y.clone().requires_grad_() |
| err_msg = "Function MulBackward0 returned an invalid gradient at index 1 - expected layout Strided but got SparseCsr" |
| with self.assertRaisesRegex(RuntimeError, err_msg): |
| fn(y_a, x_a).backward(z) |
| |
| _test_spadd_shape(torch.mul, 100, [100, 100]) |
| _test_spadd_shape(torch.mul, 0, [100, 100]) |
| _test_spadd_shape(torch.mul, 100, [100, 1]) |
| _test_spadd_shape(torch.mul, 100, [1, 100]) |
| |
| @skipCPUIfNoMklSparse |
| @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) |
| def test_sparse_add(self, device, dtype): |
| def run_test(m, n, index_dtype): |
| |
| alpha = random.random() |
| nnz1 = random.randint(0, m * n) |
| nnz2 = random.randint(0, m * n) |
| nnz3 = random.randint(0, m * n) |
| |
| if TEST_WITH_ROCM: |
| # ROCm fails when nnz = 0 |
| nnz1, nnz2, nnz3 = max(1, nnz1), max(1, nnz2), max(1, nnz3) |
| |
| S1 = self.genSparseCSRTensor([m, n], nnz1, dtype=dtype, device=device, index_dtype=index_dtype) |
| S2 = self.genSparseCSRTensor([m, n], nnz2, dtype=dtype, device=device, index_dtype=index_dtype) |
| S3 = self.genSparseCSRTensor([m, n], nnz3, dtype=dtype, device=device, index_dtype=index_dtype) |
| |
| expected = torch.add(S1.to_dense(), S2.to_dense(), alpha=alpha) |
| actual = torch.add(S1, S2, alpha=alpha, out=S3) |
| |
| self.assertEqual(actual.to_dense(), expected) |
| self.assertEqual(S3.to_dense(), expected) |
| |
| for index_dtype in [torch.int32, torch.int64]: |
| for m, n in itertools.product([3, 5], [3, 5]): |
| run_test(m, n, index_dtype) |
| |
| @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) |
| def test_sparse_add_errors(self, device, dtype): |
| def run_test(index_type): |
| a = self.genSparseCSRTensor((2, 2), 3, dtype=dtype, device=device, index_dtype=index_dtype) |
| b = self.genSparseCSRTensor((2, 1), 2, dtype=dtype, device=device, index_dtype=index_dtype) |
| with self.assertRaisesRegex(RuntimeError, "Expected input tensors to have the same shape"): |
| torch.add(a, b) |
| |
| for index_dtype in [torch.int32, torch.int64]: |
| run_test(index_dtype) |
| |
| @skipCPUIfNoMklSparse |
| @skipCUDAIf( |
| not _check_cusparse_triangular_solve_available(), |
| "cuSparse Generic API SpSV is not available" |
| ) |
| @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) |
| @precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3, |
| torch.float64: 1e-8, torch.complex128: 1e-8}) |
| def test_sparse_triangular_solve(self, device, dtype): |
| |
| def run_test(n, k, upper, unitriangular, transpose, zero): |
| triangle_function = torch.triu if upper else torch.tril |
| make_A = torch.zeros if zero else make_tensor |
| A = make_A((n, n), dtype=dtype, device=device) |
| A = triangle_function(A) |
| A_sparse = A.to_sparse_csr() |
| B = make_tensor((n, k), dtype=dtype, device=device) |
| |
| expected = torch.triangular_solve(B, A, upper=upper, unitriangular=unitriangular, transpose=transpose) |
| expected_X = expected.solution |
| |
| actual = torch.triangular_solve(B, A_sparse, upper=upper, unitriangular=unitriangular, transpose=transpose) |
| actual_X = actual.solution |
| actual_A_clone = actual.cloned_coefficient |
| self.assertTrue(actual_A_clone.numel() == 0) |
| if A_sparse._nnz() == 0: |
| self.assertTrue(actual_X.isnan().all()) |
| return |
| self.assertEqual(actual_X, expected_X) |
| |
| # test out with C contiguous strides |
| out = torch.empty_strided((n, k), (k, 1), dtype=dtype, device=device) |
| torch.triangular_solve( |
| B, A_sparse, |
| upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone) |
| ) |
| self.assertEqual(out, expected_X) |
| |
| # test out with F contiguous strides |
| out = torch.empty_strided((n, k), (1, n), dtype=dtype, device=device) |
| torch.triangular_solve( |
| B, A_sparse, |
| upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone) |
| ) |
| self.assertEqual(out, expected_X) |
| self.assertEqual(out.stride(), (1, n)) |
| |
| # test out with discontiguous strides |
| out = torch.empty_strided((2 * n, k), (1, 2 * n), dtype=dtype, device=device)[::2] |
| if n > 0 and k > 0: |
| self.assertFalse(out.is_contiguous()) |
| self.assertFalse(out.t().is_contiguous()) |
| before_stride = out.stride() |
| torch.triangular_solve( |
| B, A_sparse, |
| upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone) |
| ) |
| self.assertEqual(out, expected_X) |
| self.assertEqual(out.stride(), before_stride) |
| |
| ks = [0, 1, 3] |
| ns = [5, 3, 0] |
| for (k, n), (upper, unitriangular, transpose, zero) in itertools.product(itertools.product(ks, ns), |
| itertools.product([True, False], repeat=4)): |
| run_test(n, k, upper, unitriangular, transpose, zero) |
| |
| @skipCUDAIfRocm |
| @skipCUDAIf( |
| not _check_cusparse_sddmm_available(), |
| "cuSparse Generic API SDDMM is not available" |
| ) |
| @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) |
| @precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3, |
| torch.float64: 1e-8, torch.complex128: 1e-8}) |
| def test_sampled_addmm(self, device, dtype): |
| def run_test(c, a, b, op_a, op_b, *, alpha=None, beta=None): |
| if dtype.is_complex: |
| alpha = random.random() + 0.3j if alpha is None else alpha |
| beta = random.random() + 0.6j if beta is None else beta |
| else: |
| alpha = random.random() if alpha is None else alpha |
| beta = random.random() if beta is None else beta |
| |
| if op_a and a.shape == b.shape: |
| a = a.mH |
| if op_b and a.shape == b.shape: |
| b = b.mH |
| |
| actual = torch.sparse.sampled_addmm(c, a, b, alpha=alpha, beta=beta) |
| |
| out = torch.sparse_csr_tensor( |
| *map(torch.clone, (actual.crow_indices(), actual.col_indices())), |
| torch.empty_like(actual.values()), |
| size=actual.shape |
| ) |
| torch.sparse.sampled_addmm(c, a, b, alpha=alpha, beta=beta, out=out) |
| |
| spy_c = torch.sparse_csr_tensor(c.crow_indices(), c.col_indices(), torch.ones_like(c.values()), size=c.shape) |
| expected = alpha * (a @ b) * spy_c.to_dense() + beta * c.to_dense() |
| self.assertEqual(actual.to_dense(), out.to_dense()) |
| self.assertEqual(actual.to_dense(), expected) |
| |
| mnk = list(itertools.product([2, 5], repeat=3)) |
| |
| # Add a test case for size 0 a and b tensors |
| mnk = mnk + [(5, 5, 0)] |
| |
| batch_shapes = [(), (2,), (2, 3)] if self.device_type == 'cuda' else [(), ] |
| tf = [True, False] |
| for index_dtype in [torch.int32, torch.int64]: |
| for (m, n, k), b, noncontiguous, bcast_c in itertools.product(mnk, batch_shapes, tf, tf): |
| if bcast_c and len(b) == 0: |
| continue |
| nnz = random.randint(0, m * n) |
| c_batch = () if bcast_c else b |
| c = self.genSparseCSRTensor((*c_batch, m, n), nnz, dtype=dtype, device=device, index_dtype=index_dtype) |
| a = make_tensor((*b, m, k), dtype=dtype, device=device, noncontiguous=noncontiguous) |
| b = make_tensor((*b, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous) |
| for op_a, op_b in itertools.product([True, False], repeat=2): |
| run_test(c, a, b, op_a, op_b) |
| |
| @skipCUDAIfRocm |
| @skipCUDAIf( |
| not _check_cusparse_sddmm_available(), |
| "cuSparse Generic API SDDMM is not available" |
| ) |
| @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) |
| def test_sampled_addmm_autograd(self, device, dtype): |
| from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm |
| |
| samples = list(sample_inputs_sparse_sampled_addmm(None, device, dtype, requires_grad=True)) |
| |
| for sample, dense_covector in zip(samples, [True, False]): |
| c = sample.input |
| a = sample.args[0] |
| b = sample.args[1] |
| |
| # Compute sparse result |
| output = torch.sparse.sampled_addmm(c, a, b, **sample.kwargs) |
| covector = torch.randn_like(output).to_dense() if dense_covector else torch.randn_like(output) |
| output.backward(covector) |
| |
| # Compute dense result and compare with sparse result |
| c1, a1, b1 = map(lambda x: x.detach().to_dense().requires_grad_(True), [c, a, b]) |
| dense_output = sample.kwargs['alpha'] * (a1 @ b1) * torch.ones_like(c).to_dense() + sample.kwargs['beta'] * c1 |
| self.assertEqual(output, dense_output) |
| dense_covector = covector.to_dense() |
| dense_output.backward(dense_covector) |
| self.assertEqual(c.grad, c1.grad) |
| self.assertEqual(a.grad, a1.grad) |
| self.assertEqual(b.grad, b1.grad) |
| |
| @skipCUDAIfRocm |
| @onlyCUDA |
| @skipCUDAIf(True, "Causes CUDA memory exception, see https://github.com/pytorch/pytorch/issues/72177") |
| @skipCUDAIf( |
| not _check_cusparse_sddmm_available(), |
| "cuSparse Generic API SDDMM is not available" |
| ) |
| @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) |
| @precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3, |
| torch.float64: 1e-8, torch.complex128: 1e-8}) |
| def test_sampled_addmm_zero_sized(self, device, dtype): |
| def run_test(c, a, b): |
| actual = torch.sparse.sampled_addmm(c, a, b) |
| self.assertEqual(actual.shape, c.shape) |
| |
| for m, n, k in itertools.product([0, 5], repeat=3): |
| c = torch.empty(m, n, dtype=dtype, device=device, layout=torch.sparse_csr) |
| a = make_tensor((m, k), dtype=dtype, device=device) |
| b = make_tensor((k, n), dtype=dtype, device=device) |
| run_test(c, a, b) |
| |
| @onlyCUDA |
| @skipCUDAIf( |
| not (TEST_WITH_ROCM or _check_cusparse_sddmm_available()), |
| "cuSparse Generic API SDDMM is not available" |
| ) |
| @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) |
| def test_sampled_addmm_errors(self, device, dtype): |
| # test that the errors are the same for dense and sparse sampled versions |
| # import re |
| |
| # shapes must be compatible for matrix multiplication |
| a = make_tensor((2, 3), dtype=dtype, device=device) |
| a_sparse = a.to_sparse_csr() |
| with self.assertRaisesRegex(RuntimeError, r"cannot be multiplied"): |
| torch.sparse.sampled_addmm(a_sparse, a, a) |
| |
| # mat1 must be a matrix |
| with self.assertRaisesRegex(RuntimeError, r"Expected mat1 to be a matrix"): |
| torch.sparse.sampled_addmm(a_sparse, a[..., 0, :], a) |
| |
| # mat2 must be a matrix |
| with self.assertRaisesRegex(RuntimeError, r"Expected mat2 to be a matrix"): |
| torch.sparse.sampled_addmm(a_sparse, a, a[..., 0, :]) |
| |
| a = make_tensor((2, 2), dtype=dtype, device=device) |
| b = make_tensor((3, 3), dtype=dtype, device=device) |
| b_sparse = b.to_sparse_csr() |
| with self.assertRaisesRegex(RuntimeError, r"self.shape\[-2\] must match mat1.shape\[-2\]"): |
| torch.sparse.sampled_addmm(b_sparse, a, a) |
| |
| b = make_tensor((2, 3), dtype=dtype, device=device) |
| b_sparse = b.to_sparse_csr() |
| with self.assertRaisesRegex(RuntimeError, r"self.shape\[-1\] must match mat2.shape\[-1\]"): |
| torch.sparse.sampled_addmm(b_sparse, a, a) |
| |
| a = make_tensor((2, 2), dtype=dtype, device=device) |
| a_sparse = a.to_sparse_csr() |
| with self.assertRaisesRegex(RuntimeError, r"Expected mat1 to have strided layout"): |
| torch.sparse.sampled_addmm(a_sparse, a_sparse, a_sparse) |
| |
| with self.assertRaisesRegex(RuntimeError, r"Expected mat2 to have strided layout"): |
| torch.sparse.sampled_addmm(a_sparse, a, a_sparse) |
| |
| @skipMeta |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| def test_coo_csr_conversion(self, device, dtype): |
| for m, n in itertools.product([5, 2, 0], [5, 2, 0]): |
| size = (m, n) |
| dense = make_tensor(size, dtype=dtype, device=device) |
| coo_sparse = dense.to_sparse() |
| csr_sparse = coo_sparse.to_sparse_csr() |
| |
| self.assertEqual(csr_sparse.to_dense(), dense) |
| |
| @skipMeta |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| def test_csr_coo_conversion(self, device, dtype): |
| for m, n in itertools.product([5, 2, 0], [5, 2, 0]): |
| size = (m, n) |
| dense = make_tensor(size, dtype=dtype, device=device) |
| csr_sparse = dense.to_sparse_csr() |
| coo_sparse = csr_sparse.to_sparse() |
| |
| self.assertEqual(coo_sparse.to_dense(), dense) |
| |
| # Currently, there is no rule in PyTorch for filling zeros in the outputs |
| # from operations on Sparse CSR tensors. Hence only those operators are supported |
| # which have 0->0 correspondence, example: sin(0) = 0, tan(0) = 0 but |
| # cos(0) = 1 (and hence it's not supported). |
| # Note: here, we do this test only for unary operators |
| @ops(sparse_csr_unary_ufuncs) |
| def test_zero_to_zero_correspondence_unary(self, device, dtype, op): |
| zero = torch.zeros((1, 2), dtype=dtype, device=device) |
| tensor_explicit_zeros = torch.sparse_csr_tensor([0, 1], [1], [0], dtype=dtype, device=device) |
| |
| output_zero = op(zero) |
| expected_zero = zero.to(output_zero.dtype) |
| |
| output_explicit_zeros = op(tensor_explicit_zeros).to_dense() |
| expected_explicit_zeros = tensor_explicit_zeros.to_dense().to(output_explicit_zeros.dtype) |
| |
| for (output, expected) in [ |
| (output_zero, expected_zero), |
| (output_explicit_zeros, expected_explicit_zeros) |
| ]: |
| self.assertEqual(output, expected, f"This operator ({op.name}) should not be supported for " |
| "Sparse CSR as it breaks 0->0 correspondence.") |
| |
| for inp in [zero.to_sparse_csr(), tensor_explicit_zeros]: |
| self.assertEqual(op(inp).values().numel(), inp.values().numel(), |
| f"{op.name} fails to preserve sparsity pattern.") |
| |
| @ops(sparse_csr_unary_ufuncs) |
| def test_sparse_csr_unary_out(self, device, dtype, op): |
| samples = op.sample_inputs(device, dtype) |
| |
| if not op.supports_out: |
| self.skipTest("Skipped! Out not supported") |
| |
| for sample in samples: |
| assert torch.is_tensor(sample.input) |
| # Sparse CSR only supports 2D tensors as inputs |
| # Fail early to prevent silent success with this test |
| if sample.input.ndim != 2: |
| raise ValueError("Expected 2D tensor but got tensor with dimension: {sample.input.ndim}.") |
| |
| sample.input = sample.input.to_sparse_csr() |
| expect = op(sample.input, *sample.args, **sample.kwargs) |
| |
| out = self.genSparseCSRTensor(sample.input.size(), sample.input._nnz(), |
| device=sample.input.device, dtype=expect.dtype, |
| index_dtype=sample.input.crow_indices().dtype) |
| op(sample.input, *sample.args, **sample.kwargs, out=out) |
| |
| self.assertEqual(out, expect) |
| |
| @ops(sparse_csr_unary_ufuncs) |
| def test_sparse_csr_unary_inplace(self, device, dtype, op): |
| samples = op.sample_inputs(device, dtype) |
| |
| if op.inplace_variant is None: |
| self.skipTest("Skipped! Inplace variant not supported!") |
| |
| for sample in samples: |
| assert torch.is_tensor(sample.input) |
| # Sparse CSR only supports 2D tensors as inputs |
| # Fail early to prevent silent success with this test |
| if sample.input.ndim != 2: |
| raise ValueError("Expected 2D tensor but got tensor with dimension: {sample.input.ndim}.") |
| |
| sample.input = sample.input.to_sparse_csr() |
| expect = op(sample.input, *sample.args, **sample.kwargs) |
| |
| if not torch.can_cast(expect.dtype, dtype): |
| with self.assertRaisesRegex(RuntimeError, "result type"): |
| op.inplace_variant(sample.input, *sample.args, **sample.kwargs) |
| continue |
| |
| if sample.input.is_complex() and op.name == "abs": |
| with self.assertRaisesRegex(RuntimeError, "not supported"): |
| op.inplace_variant(sample.input, *sample.args, **sample.kwargs) |
| continue |
| |
| actual = op.inplace_variant(sample.input, *sample.args, **sample.kwargs) |
| |
| self.assertIs(actual, sample.input) |
| self.assertEqual(actual, expect) |
| |
| @ops(sparse_csr_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, torch.cdouble]) |
| def test_autograd_sparse_csr_unary(self, device, dtype, op): |
| if op.name not in UNARY_EWISE_CSR_ALLOW_AUTOGRAD: |
| self.skipTest(f"Skipped! Unary op {op.name} not supported with CSR input and autograd") |
| |
| samples = list(op.sample_inputs(device, dtype)) |
| |
| # Fail early to prevent silent success with this test |
| ndims_equals_2d = (s.input.ndim == 2 for s in samples) |
| if not any(ndims_equals_2d): |
| raise ValueError("Expected at least one 2D tensor in samples.") |
| |
| for sample in samples: |
| sparse_input = sample.input.to_sparse_csr().requires_grad_(True) |
| |
| def fn(input): |
| output = op.gradcheck_wrapper(op.get_op(), input, *sample.args, **sample.kwargs) |
| if sample.output_process_fn_grad is not None: |
| return sample.output_process_fn_grad(output) |
| return output |
| |
| # Compute sparse result |
| output = fn(sparse_input) |
| covector = torch.randn_like(output) |
| output.backward(covector) |
| self.assertTrue(torch.is_tensor(sparse_input.grad)) |
| self.assertTrue(sparse_input.grad.is_sparse_csr) |
| |
| # Compute dense result and compare with sparse result |
| dense_input = sparse_input.detach().to_dense().requires_grad_(True) |
| dense_output = fn(dense_input) |
| dense_covector = covector.to_dense() |
| dense_output.backward(dense_covector) |
| self.assertEqual(sparse_input.grad, dense_input.grad) |
| |
| @skipCUDAIfRocm |
| @skipCUDAIf( |
| not _check_cusparse_sddmm_available(), |
| "cuSparse Generic API SDDMM is not available" |
| ) |
| @dtypes(torch.float64) |
| def test_autograd_dense_output_addmm(self, device, dtype): |
| from torch.testing._internal.common_methods_invocations import sample_inputs_addmm |
| |
| samples = list(sample_inputs_addmm(None, device, dtype, requires_grad=True)) |
| |
| # Fail early to prevent silent success with this test |
| ndims_equals_2d = (s.args[0].ndim == 2 for s in samples) |
| if not any(ndims_equals_2d): |
| raise ValueError("Expected at least one 2D tensor in samples to convert to sparse.") |
| |
| for sample in samples: |
| a = sample.args[0].relu().to_sparse_csr() |
| |
| # This path tests the autograd path wrt dense inputs |
| for addmm in [torch.addmm, torch.sparse.addmm]: |
| |
| def fn(c, b): |
| output = addmm(c, a, b, **sample.kwargs) |
| if sample.output_process_fn_grad is not None: |
| return sample.output_process_fn_grad(output) |
| return output |
| |
| self.assertTrue(torch.autograd.gradcheck(fn, [sample.input, sample.args[1]], fast_mode=True)) |
| |
| # noncontiguous |
| c = make_tensor(sample.input.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) |
| b = make_tensor(sample.args[1].shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) |
| self.assertTrue(torch.autograd.gradcheck(fn, [c, b], fast_mode=True)) |
| |
| # Now test the autograd path wrt sparse inputs |
| for reverse in [True, False]: |
| c, b = sample.input, sample.args[1] |
| if reverse and a.shape != b.shape: |
| continue |
| |
| def fn(a): |
| inputs = (c, b, a) if reverse else (c, a, b) |
| output = addmm(*inputs, **sample.kwargs) |
| if sample.output_process_fn_grad is not None: |
| return sample.output_process_fn_grad(output) |
| return output |
| |
| # gradcheck doesn't work for sparse CSR yet, compare against dense path |
| # Compute sparse result |
| a = a.detach().requires_grad_(True) |
| output = fn(a) |
| covector = torch.randn_like(output) |
| output.backward(covector) |
| self.assertTrue(torch.is_tensor(a.grad)) |
| if addmm == torch.sparse.addmm: |
| self.assertTrue(a.grad.is_sparse_csr) |
| else: |
| self.assertTrue(a.grad.layout == torch.strided) |
| |
| # Compute dense result and compare with sparse result |
| dense_a = a.detach().to_dense().requires_grad_(True) |
| dense_output = fn(dense_a) |
| self.assertEqual(output, dense_output) |
| dense_covector = covector.to_dense() |
| dense_output.backward(dense_covector) |
| |
| if addmm == torch.sparse.addmm: |
| self.assertEqual(a.grad, dense_a.grad.sparse_mask(a)) |
| else: |
| self.assertEqual(a.grad, dense_a.grad) |
| |
| @skipCUDAIfRocm |
| @skipCPUIfNoMklSparse |
| @dtypes(torch.float64) |
| def test_autograd_dense_output_addmv(self, device, dtype): |
| from torch.testing._internal.common_methods_invocations import sample_inputs_addmv |
| |
| samples = list(sample_inputs_addmv(None, device, dtype, requires_grad=True)) |
| |
| # Fail early to prevent silent success with this test |
| ndims_equals_2d = (s.args[0].ndim == 2 for s in samples) |
| if not any(ndims_equals_2d): |
| raise ValueError("Expected at least one 2D tensor in samples to convert to sparse.") |
| |
| for sample in samples: |
| # TODO: Remove detach once we have autograd support for CSR input |
| a = sample.args[0].to_sparse_csr().detach() |
| |
| def fn(c, b): |
| output = torch.addmv(c, a, b, **sample.kwargs) |
| if sample.output_process_fn_grad is not None: |
| return sample.output_process_fn_grad(output) |
| return output |
| |
| self.assertTrue(torch.autograd.gradcheck(fn, [sample.input, sample.args[1]], fast_mode=True)) |
| |
| # noncontiguous |
| c = make_tensor(sample.input.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) |
| b = make_tensor(sample.args[1].shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) |
| self.assertTrue(torch.autograd.gradcheck(fn, [c, b], fast_mode=True)) |
| |
| @ops(binary_ops_with_dense_output, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, ]) |
| def test_autograd_dense_output(self, device, dtype, op): |
| if op.name == "mv" and no_mkl_sparse and self.device_type == 'cpu': |
| self.skipTest("MKL Sparse is not available") |
| if op.name == "mv" and TEST_WITH_ROCM and self.device_type == 'cuda': |
| # mv currently work only on CUDA |
| self.skipTest("ROCm is not supported") |
| |
| samples = list(op.sample_inputs(device, dtype, requires_grad=True)) |
| |
| # Fail early to prevent silent success with this test |
| ndims_equals_2d = (s.input.ndim == 2 for s in samples) |
| if not any(ndims_equals_2d): |
| raise ValueError("Expected at least one 2D tensor in samples.") |
| |
| # Here we assume that the signature is op(sparse_input, dense_input) -> dense_output |
| for sample in samples: |
| # TODO: Remove detach once we have autograd support for CSR input |
| sparse_input = sample.input.to_sparse_csr().detach() |
| |
| def fn(*args): |
| output = op.gradcheck_wrapper(op.get_op(), sparse_input, *args, **sample.kwargs) |
| if sample.output_process_fn_grad is not None: |
| return sample.output_process_fn_grad(output) |
| return output |
| |
| self.assertTrue(torch.autograd.gradcheck(fn, sample.args, fast_mode=True)) |
| |
| # noncontiguous |
| args = [make_tensor(a.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) for a in sample.args] |
| self.assertTrue(torch.autograd.gradcheck(fn, args, fast_mode=True)) |
| |
| @dtypes(*all_types_and_complex()) |
| def test_direct_coo_csr_conversion(self, device, dtype): |
| for m, n in itertools.product([5, 2, 0], [5, 2, 0]): |
| size = (m, n) |
| dense = make_tensor(size, dtype=dtype, device=device) |
| coo_sparse = dense.to_sparse_coo() |
| |
| self.assertEqual(coo_sparse.to_sparse_csr().to_sparse_coo(), coo_sparse) |
| |
| @skipMeta |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| def test_sum(self, device, dtype): |
| def run_test(shape, nnz, index_type): |
| a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype) |
| self.assertEqual(a.sum(), a.values().sum()) |
| if dtype in floating_types(): |
| a.requires_grad_(True) |
| a.sum().backward() |
| self.assertEqual(a.grad, torch.ones(shape, dtype=dtype, device=device)) |
| for shape, index_dtype in itertools.product( |
| [(10, 5), (10, 10)], |
| [torch.int32, torch.int64]): |
| run_test(shape, 0, index_dtype) |
| run_test(shape, max(shape), index_dtype) |
| run_test(shape, shape[0] * shape[1], index_dtype) |
| |
| |
| @skipMeta |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| @all_sparse_compressed_layouts() |
| def test_transpose(self, device, dtype, layout): |
| |
| def _check_transpose_view(subject, transpose): |
| self.assertTrue(transpose.values()._is_view()) |
| self.assertTrue(transpose._is_view()) |
| self.assertTrue(transpose._base is subject) |
| |
| def _check_layout_invariants(transpose): |
| self.assertEqual(transpose.device, torch.device(device)) |
| compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[transpose.layout] |
| compressed_indices, plain_indices = compressed_indices_mth(transpose), plain_indices_mth(transpose) |
| # note: invariant check for bsr/bsc values is too strict wrt to value contiguity (invariant 3.7) |
| if transpose.layout in (torch.sparse_bsr, torch.sparse_bsc): |
| n_batch = compressed_indices.dim() - 1 |
| n_dense = transpose.dim() - 2 - n_batch |
| self.assertTrue(transpose.values().is_contiguous() |
| or transpose.values().transpose(-2 - n_dense, -1 - n_dense).is_contiguous()) |
| torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, transpose.values().contiguous(), |
| transpose.shape, transpose.layout) |
| else: |
| torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, transpose.values(), |
| transpose.shape, transpose.layout) |
| |
| def check_good_transpose(subject, subject_dense, dim0, dim1, expected_layout): |
| transpose = subject.transpose(dim0, dim1) |
| # correct layout |
| self.assertEqual(transpose.layout, expected_layout) |
| # transpose must be return a view |
| _check_transpose_view(subject, transpose) |
| # result uses unsafe construction, so we check invariants |
| _check_layout_invariants(transpose) |
| self.assertEqual(transpose.to_dense(), subject_dense.transpose(dim0, dim1)) |
| |
| round_trip = transpose.transpose(dim0, dim1) |
| self.assertEqual(round_trip.layout, subject.layout) |
| # transpose must be return a view |
| _check_transpose_view(subject, round_trip) |
| # result uses unsafe construction, so we check invariants |
| _check_layout_invariants(round_trip) |
| self.assertEqual(round_trip.to_dense(), subject_dense) |
| |
| def check_same_dim_transpose(subject, subject_dense, dim): |
| transpose = subject.transpose(dim, dim) |
| # correct layout |
| self.assertEqual(transpose.layout, subject.layout) |
| # transpose must be return a view |
| _check_transpose_view(subject, transpose) |
| # result uses unsafe construction, so we check invariants |
| _check_layout_invariants(transpose) |
| self.assertEqual(transpose.to_dense(), subject_dense) |
| |
| def check_dim_type_mismatch_throws(subject, name0, dim0, name1, dim1): |
| mismatch_name = f"{dim0}\\({name0}\\) and {dim1}\\({name1}\\)" |
| err = r"transpose\(\): can only transpose dimensions of the same type \(Batch, Sparse, Dense\), got " + mismatch_name |
| |
| with self.assertRaisesRegex(RuntimeError, err): |
| subject.transpose(dim0, dim1) |
| |
| def run_test(shape, nnz, index_type, n_dense, blocksize=()): |
| subject = self.genSparseCompressedTensor(shape, |
| nnz, |
| layout=layout, |
| device=device, |
| index_dtype=index_type, |
| blocksize=blocksize, |
| dense_dims=n_dense, |
| dtype=dtype) |
| |
| |
| sparse0 = len(shape) - n_dense - 1 |
| sparse1 = sparse0 - 1 |
| |
| dense0 = sparse0 + 1 if n_dense > 0 else None |
| dense1 = dense0 + 1 if n_dense > 1 else None |
| |
| n_batch = len(shape) - n_dense - 2 |
| batch0 = sparse1 - 1 if n_batch > 0 else None |
| batch1 = 0 if n_batch > 1 else None |
| |
| sparse_dims = (sparse0, sparse1) |
| dense_dims = (dense0, dense1) |
| batch_dims = (batch0, batch1) |
| |
| named0 = [(name, d[0]) for name, d in zip(["Batch", "Sparse", "Dense"], (batch_dims, sparse_dims, dense_dims))] |
| named1 = [(name, d[1]) for name, d in zip(["Batch", "Sparse", "Dense"], (batch_dims, sparse_dims, dense_dims))] |
| |
| flipped_layout = { |
| torch.sparse_csr: torch.sparse_csc, |
| torch.sparse_csc: torch.sparse_csr, |
| torch.sparse_bsr: torch.sparse_bsc, |
| torch.sparse_bsc: torch.sparse_bsr |
| }[layout] |
| if n_dense > 0: |
| # expect all transpose to throw |
| for (name0, dim0), (name1, dim1) in itertools.product(named0, named1): |
| msg = r"transpose\(\): hybrid sparse compressed tensors with dense dimensions are not supported" |
| if (dim0 is not None) and (dim1 is not None): |
| with self.assertRaisesRegex(RuntimeError, msg): |
| subject.transpose(dim0, dim1) |
| else: |
| subject_dense = subject.to_dense() |
| for (name0, dim0), (name1, dim1) in itertools.product(named0, named1): |
| if dim0 is not None: |
| check_same_dim_transpose(subject, subject_dense, dim0) |
| |
| if dim1 is not None: |
| if name0 == name1: |
| expected_layout = flipped_layout if name0 == "Sparse" else layout |
| check_good_transpose(subject, subject_dense, dim0, dim1, expected_layout) |
| else: |
| check_dim_type_mismatch_throws(subject, name0, dim0, name1, dim1) |
| |
| # batch/sparse, sparse/dense only and full hybrid cases |
| shape_ndense = list(itertools.product([(2, 4, 6, 2), (10, 6, 4, 2), (2, 4, 4, 2, 6)], [0, 1, 2])) |
| # sparse only cases |
| shape_ndense += [[(4, 8), 0], [(2, 2), 0], [(8, 4), 0]] |
| for (shape, n_dense), index_dtype in itertools.product(shape_ndense, [torch.int32, torch.int64]): |
| n_batch = len(shape) - n_dense - 2 |
| sparse_shape = shape[n_batch: n_batch + 2] |
| if layout in (torch.sparse_bsr, torch.sparse_bsc): |
| # for blocked all combinations of 2,1 shoudl be valid blocksizes |
| run_test(shape, 0, index_dtype, n_dense, blocksize=(2, 2)) |
| run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(2, 2)) |
| run_test(shape, sparse_shape[0] * sparse_shape[1], index_dtype, n_dense, blocksize=(2, 2)) |
| # repeat the realistic sparseity case with varried block sizes |
| run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(2, 1)) |
| run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(1, 2)) |
| run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(1, 1)) |
| else: |
| run_test(shape, 0, index_dtype, n_dense) |
| run_test(shape, max(sparse_shape), index_dtype, n_dense) |
| run_test(shape, sparse_shape[0] * sparse_shape[1], index_dtype, n_dense) |
| |
| # TODO: This is a stopgap for a rigorous extension of our autograd tests |
| # to test the functionality of detach |
| @skipMeta |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| def test_exercise_detach(self, device, dtype): |
| shape = (3, 3) |
| nnz = 4 |
| for index_dtype in [torch.int32, torch.int64]: |
| inp = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype) |
| detached_inp = inp.detach() |
| self.assertEqual(inp, detached_inp) |
| |
| def _convert_to_layout(self, a, target_layout, blocksize=(2, 2)): |
| """ |
| Helper function to call the correct layout conversion |
| with reasonable defaults for the block size. Clearly there |
| is a need for a to.layout overload. |
| """ |
| if target_layout is torch.sparse_csr: |
| result = a.to_sparse_csr() |
| elif target_layout is torch.sparse_csc: |
| result = a.to_sparse_csc() |
| elif target_layout is torch.sparse_bsr: |
| result = a.to_sparse_bsr(blocksize) |
| elif target_layout is torch.sparse_bsc: |
| result = a.to_sparse_bsc(blocksize) |
| else: |
| raise NotImplementedError(repr(a)) |
| assert result.layout is target_layout |
| # to_sparse_xyz methods use unsafe construction of sparse |
| # compressed tensors. Here we explicitly validate the results |
| # to make sure that the sparse tensors are consistent with the |
| # corresponding sparse tensor invariants. |
| compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[result.layout] |
| compressed_indices, plain_indices = compressed_indices_mth(result), plain_indices_mth(result) |
| torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, result.values(), |
| result.shape, result.layout) |
| return result |
| |
| def _construct_sp_matrix(self, tensor, layout, blocksize=(2, 2)): |
| if tensor.layout in [torch.sparse_coo, torch.sparse_csr, torch.sparse_csc, torch.strided]: |
| tensor = tensor.to_dense() |
| else: |
| raise NotImplementedError(repr(tensor)) |
| if layout is torch.sparse_csr: |
| return sp.csr_matrix(tensor.cpu().numpy()) |
| if layout is torch.sparse_csc: |
| return sp.csc_matrix(tensor.cpu().numpy()) |
| if layout is torch.sparse_bsr: |
| return sp.bsr_matrix(tensor.cpu().numpy(), blocksize=blocksize).sorted_indices() |
| # No native scipy BSC support? |
| raise NotImplementedError(repr(tensor)) |
| |
| @skipMeta |
| @all_sparse_compressed_layouts('to_layout') |
| @all_sparse_compressed_layouts('from_layout') |
| def test_compressed_layout_conversions_coverage(self, device, from_layout, to_layout): |
| """ |
| This test performs a smoke test for covered conversion and verifies |
| that an exception is thrown for unsupported conversions. |
| """ |
| |
| allowed_pairwise_layouts_sets = { |
| frozenset({torch.sparse_csc}), |
| frozenset({torch.sparse_csr}), |
| frozenset({torch.sparse_csc, torch.sparse_csr}), |
| frozenset({torch.sparse_bsc}), |
| frozenset({torch.sparse_bsr}), |
| frozenset({torch.sparse_bsc, torch.sparse_bsr}), |
| frozenset({torch.sparse_csr, torch.sparse_bsr}), |
| } |
| block_layouts = (torch.sparse_bsr, torch.sparse_bsc) |
| |
| def _to_from_layout(layout_a, layout_b, a): |
| expect_error = True |
| if {layout_a, layout_b} in allowed_pairwise_layouts_sets: |
| expect_error = False |
| |
| # BSR -> CSR is not yet supported |
| if (layout_a, layout_b) == (torch.sparse_bsr, torch.sparse_csr): |
| expect_error = True |
| # CSR -> BSR only works for non-batched inputs |
| if (layout_a, layout_b) == (torch.sparse_csr, torch.sparse_bsr): |
| if a.dim() > 2: |
| expect_error = True |
| |
| b = self._convert_to_layout(a, layout_a) |
| if expect_error: |
| with self.assertRaises(RuntimeError): |
| self._convert_to_layout(b, layout_b) |
| else: |
| c = self._convert_to_layout(b, layout_b) |
| self.assertEqual(a.to_dense(), c.to_dense()) |
| |
| # change of blocksize upon conversion is not yet supported. |
| if b.layout in block_layouts: |
| for block_layout in block_layouts: |
| with self.assertRaisesRegex(RuntimeError, "blocksize does not match the blocksize"): |
| self._convert_to_layout(b, block_layout, blocksize=3) |
| |
| batch_dims = [(), (2,), (2, 2), (2, 2, 2)] |
| sparse_dims = (6, 12) |
| for batch_dim in batch_dims: |
| a = make_tensor(batch_dim + sparse_dims, dtype=torch.float, device=device) |
| _to_from_layout(from_layout, to_layout, a) |
| |
| @skipMeta |
| @all_sparse_compressed_layouts() |
| @batched_nonbatched() |
| @hybrid_nonhybrid() |
| @unittest.skipIf(not TEST_SCIPY, "SciPy not found") |
| def test_dense_to_from_sparse_compressed(self, device, hybrid, batched, layout): |
| """ |
| This test tests conversion from dense to/from CSR and CSC |
| by comparing to SciPy's implementation. |
| |
| TODO: Eventually this is meant to be merged into test_compressed_layout_conversions_coverage |
| """ |
| |
| # adjust this block as support is added |
| supports_batched_from_sparse = (torch.sparse_bsr, torch.sparse_bsc, torch.sparse_csr, torch.sparse_csc) |
| supports_batched_to_sparse = (torch.sparse_bsr, torch.sparse_bsc, torch.sparse_csr, torch.sparse_csc) |
| supports_hybrid_from_sparse = () |
| supports_hybrid_to_sparse = () |
| |
| blocked_layouts = (torch.sparse_bsr, torch.sparse_bsc) |
| |
| # helpers |
| |
| def _check_against_scipy_matrix(pt_matrix, dense, blocksize, **kwargs): |
| # scipy has no bsc layout, so we check against the bsr layout of the tranposed dense |
| if layout == torch.sparse_bsc: |
| sp_matrix = self._construct_sp_matrix(dense.t(), layout=torch.sparse_bsr, blocksize=blocksize[::-1]) |
| else: |
| sp_matrix = self._construct_sp_matrix(dense, layout=layout, blocksize=blocksize) |
| |
| compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout] |
| |
| self.assertEqual(layout, pt_matrix.layout) |
| if layout == torch.sparse_bsc: |
| self.assertEqual(sp_matrix.shape[::-1], pt_matrix.shape) |
| else: |
| self.assertEqual(sp_matrix.shape, pt_matrix.shape) |
| |
| self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix)) |
| self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix)) |
| if layout == torch.sparse_bsc: |
| # we must tranpose the blocks before comparing |
| self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values().transpose(-2, -1)) |
| else: |
| self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values()) |
| |
| def _check_hybrid_matrix(pt_matrix, dense, **kwargs): |
| # no support for dense dims, all layouts should skip before this failure |
| self.assertTrue(False, "not implemented") |
| |
| def _check_batched(pt_tensor, dense, check_batch=None, batch_shape=(), blocksize=(), **kwargs): |
| self.assertEqual(layout, pt_tensor.layout) |
| self.assertEqual(pt_tensor.shape, dense.shape) |
| compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout] |
| for batch_index in np.ndindex(batch_shape): |
| pt_matrix = pt_tensor[batch_index] |
| dense_matrix = dense[batch_index] |
| dense_matrix_pt = self._convert_to_layout(dense_matrix, layout, blocksize) |
| # sanity check, selecting batch of to_<layout> and dense[batch].to_<layout> should give the same result |
| self.assertEqual(pt_matrix, dense_matrix_pt) |
| check_batch(pt_matrix, dense_matrix, blocksize, **kwargs) |
| |
| def _generate_subject(sparse_shape, batch_shape, hybrid_shape): |
| shape = batch_shape + sparse_shape + hybrid_shape |
| n_batch_dim = len(batch_shape) |
| n_hybrid_dim = len(hybrid_shape) |
| # generate a dense tensor |
| dense = make_tensor(shape, dtype=torch.float, device=device) |
| |
| # introduce some sparsty, mask is sparse shape, element applies to entire dense sub-tensor (hybrid) and is |
| # applied to each batch |
| mask = make_tensor(sparse_shape, dtype=torch.bool, device=device) |
| # manually expand to match hybrid shape |
| if hybrid: |
| mask = mask.view(sparse_shape + tuple(1 for _ in range(n_hybrid_dim))) |
| mask = mask.expand(sparse_shape + hybrid_shape) |
| |
| # mask will broadcast over the batch dims if present |
| |
| return dense * mask |
| |
| expect_to_layout_support = True |
| expect_from_layout_support = True |
| # note: order is important here, the hybrid-ness decides the inner content check which is used to build the |
| # batched checker (if needed) |
| check_content = _check_against_scipy_matrix |
| if hybrid: |
| expect_to_layout_support = expect_to_layout_support and layout in supports_hybrid_to_sparse |
| expect_from_layout_support = expect_from_layout_support and layout in supports_hybrid_from_sparse |
| check_content = _check_hybrid_matrix |
| |
| if batched: |
| expect_to_layout_support = expect_to_layout_support and layout in supports_batched_to_sparse |
| expect_from_layout_support = expect_from_layout_support and layout in supports_batched_from_sparse |
| check_content = functools.partial(_check_batched, check_batch=check_content) |
| |
| sparse_sizes = [(6, 10), (0, 10), (6, 0), (0, 0)] |
| blocksizes = [(2, 2), (1, 1), (1, 2)] if layout in blocked_layouts else [()] |
| batch_sizes = [(3,), (1, 3), (2, 1, 3)] if batched else [()] |
| hybrid_sizes = [(4, ), (2, 2)] if hybrid else [()] |
| if not hybrid: |
| # general cases, always run, hybrid excluded untill dense->sparse api exists |
| for sparse_shape, blocksize, batch_shape, hybrid_shape in itertools.product( |
| sparse_sizes, blocksizes, batch_sizes, hybrid_sizes): |
| dense = _generate_subject(sparse_shape, batch_shape, hybrid_shape) |
| if expect_to_layout_support: |
| sparse = self._convert_to_layout(dense, layout, blocksize) |
| check_content(sparse, dense, blocksize=blocksize, batch_shape=batch_shape, hybrid_shape=hybrid_shape) |
| if expect_from_layout_support: |
| dense_back = sparse.to_dense() |
| self.assertEqual(dense, dense_back) |
| else: |
| with self.assertRaises(RuntimeError): |
| sparse.to_dense() |
| else: |
| with self.assertRaises(RuntimeError): |
| self._convert_to_layout(dense, layout, blocksize) |
| |
| # special cases for batched tensors |
| if batched and expect_to_layout_support: |
| # batched sparse tensors need only have the same number of non-zeros in each batch not nessesarily the |
| # same sparsity pattern in each batch |
| sparse_shape = sparse_sizes[0] |
| hybrid_shape = hybrid_sizes[0] |
| batch_shape = batch_sizes[0] |
| shape = batch_shape + sparse_shape + hybrid_shape |
| dense = make_tensor(shape, dtype=torch.float, device=device) |
| blocksize = blocksizes[0] |
| # number of elements/blocks in each batch (total not nnz) |
| batch_mask_shape = sparse_shape |
| if layout in blocked_layouts: |
| # if we are blocked the mask is genereated for the block valued elemetns |
| batch_mask_shape = sparse_shape[0] // blocksize[0], sparse_shape[1] // blocksize[1] |
| |
| |
| # random bool vector w/ length equal to max possible nnz for the sparse_shape |
| mask_source = make_tensor(batch_mask_shape, dtype=torch.bool, device=device).flatten() |
| n_batch = functools.reduce(lambda x, y: x * y, batch_shape, 1) |
| |
| # stack random permutations of the source for each batch |
| mask = torch.stack([mask_source[torch.randperm(mask_source.numel())] |
| for _ in range(n_batch)], dim=0).reshape(batch_shape + batch_mask_shape) |
| if layout in blocked_layouts: |
| # for blocked we need to do a bit of extra work to expand the mask from blocked-space to element-space |
| mask_shape = mask.shape |
| mask = mask.view(mask_shape + (1, 1)) |
| mask = mask.expand(mask_shape + blocksize) |
| mask = mask.transpose(-3, -2) |
| mask = mask.reshape_as(dense) |
| dense = dense * mask |
| sparse = self._convert_to_layout(dense, layout, blocksize) |
| check_content(sparse, dense, blocksize=blocksize, batch_shape=batch_shape, hybrid_shape=hybrid_shape) |
| |
| if expect_from_layout_support: |
| dense_back = sparse.to_dense() |
| self.assertEqual(dense, dense_back) |
| |
| # if batches have different nnz we expect the conversion to throw |
| mask_0 = mask[0] |
| mask_1 = mask[0].clone().fill_(True) |
| mask_2 = mask[0].clone().fill_(False) |
| mask_true = mask_source.clone().fill_(True) |
| mask_false = mask_source.clone().fill_(False) |
| mask = torch.stack([(mask_0, mask_1, mask_2)[i % 3] for i in range(n_batch)], dim=0).reshape(batch_shape + mask_0.shape) |
| dense = make_tensor(shape, dtype=torch.float, device=device) |
| dense = dense * mask |
| msg = "Expect the same number of specified elements per batch." |
| with self.assertRaisesRegex(RuntimeError, msg): |
| self._convert_to_layout(dense, layout, blocksize) |
| |
| # Should throw if there is a zero in the batch size |
| dense = make_tensor((0,) + shape, dtype=torch.float, device=device) |
| layout_code = str(layout).split("_")[-1] |
| msg = f"to_sparse_{layout_code}: Expected product of batch dimensions to be non-zero." |
| with self.assertRaisesRegex(RuntimeError, msg): |
| self._convert_to_layout(dense, layout, blocksize=blocksize) |
| |
| if hybrid: |
| # conversion from sparse -> dense should be blocked with dense dims |
| sparse_shape = sparse_sizes[0] |
| hybrid_shape = hybrid_sizes[0] |
| batch_shape = batch_sizes[0] |
| blocksize = blocksizes[0] |
| sparse_hybrid = self.genSparseCompressedTensor(batch_shape + sparse_shape + hybrid_shape, |
| nnz=4, |
| layout=layout, |
| device=device, |
| dtype=torch.float, |
| index_dtype=torch.int64, |
| blocksize=blocksize, |
| dense_dims=len(hybrid_shape)) |
| with self.assertRaises(RuntimeError): |
| sparse_hybrid.to_dense() |
| |
| # special cases for hybrid tensors |
| # todo: figure out what these are |
| # if hybrid and expect_to_layout_support: |
| |
| @skipMeta |
| @all_sparse_compressed_layouts() |
| @coalescedonoff |
| @dtypes(torch.double) |
| @unittest.skipIf(not TEST_SCIPY, "SciPy not found") |
| def test_sparse_to_sparse_compressed(self, device, dtype, coalesced, layout): |
| """ |
| This test tests conversion from COO to CSR and CSC and CSC to CSR and CSC |
| by comparing to SciPy's implementation. |
| |
| TODO: Eventually this is meant to be merged into test_compressed_layout_conversions_coverage |
| """ |
| if layout is torch.sparse_bsc: |
| # TODO: Remove this once support has been enabled |
| return |
| if layout is torch.sparse_bsr: |
| # TODO: Remove this once support has been enabled |
| return |
| |
| for shape in [(0, 10), (6, 0), (6, 10), (0, 0)]: |
| sparse_dim = 2 |
| nnz = shape[0] * shape[1] // 2 |
| sparse, _, _ = self.genSparseTensor(shape, sparse_dim, nnz, coalesced, device, dtype) |
| sp_matrix = self._construct_sp_matrix(sparse, layout) |
| pt_matrix = self._convert_to_layout(sparse, layout) |
| |
| compressed_indices_mth = { |
| torch.sparse_csr: torch.Tensor.crow_indices, |
| torch.sparse_csc: torch.Tensor.ccol_indices, |
| }[layout] |
| |
| plain_indices_mth = { |
| torch.sparse_csr: torch.Tensor.col_indices, |
| torch.sparse_csc: torch.Tensor.row_indices, |
| }[layout] |
| |
| self.assertEqual(layout, pt_matrix.layout) |
| self.assertEqual(sp_matrix.shape, pt_matrix.shape) |
| self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix)) |
| self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix)) |
| self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values()) |
| |
| sparse_csc = sparse.to_sparse_csc() |
| sp_matrix = self._construct_sp_matrix(sparse_csc, layout) |
| pt_matrix = self._convert_to_layout(sparse_csc, layout) |
| |
| self.assertEqual(layout, pt_matrix.layout) |
| self.assertEqual(sp_matrix.shape, pt_matrix.shape) |
| self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix)) |
| self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix)) |
| self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values()) |
| |
| |
| # e.g., TestSparseCSRCPU and TestSparseCSRCUDA |
| instantiate_device_type_tests(TestSparseCSR, globals()) |
| instantiate_device_type_tests(TestSparseCompressed, globals()) |
| |
| if __name__ == '__main__': |
| run_tests() |