| #include <torch/csrc/Exceptions.h> |
| #include <torch/csrc/python_headers.h> |
| |
| #include <cstdarg> |
| #include <exception> |
| #include <sstream> |
| #include <utility> |
| #include <vector> |
| |
| #include <fmt/format.h> |
| #include <torch/csrc/THP.h> |
| |
| #include <c10/util/StringUtil.h> |
| |
| PyObject *THPException_FatalError, *THPException_LinAlgError, |
| *THPException_OutOfMemoryError; |
| |
| #define ASSERT_TRUE(cond) \ |
| if (!(cond)) \ |
| return false |
| bool THPException_init(PyObject* module) { |
| ASSERT_TRUE( |
| THPException_FatalError = |
| PyErr_NewException("torch.FatalError", nullptr, nullptr)); |
| ASSERT_TRUE( |
| PyModule_AddObject(module, "FatalError", THPException_FatalError) == 0); |
| |
| // Set the doc string here since _add_docstr throws malloc errors if tp_doc is |
| // modified for an error class. |
| ASSERT_TRUE( |
| THPException_LinAlgError = PyErr_NewExceptionWithDoc( |
| "torch._C._LinAlgError", |
| "Error raised by torch.linalg function when the cause of error is a numerical inconsistency in the data.\n \ |
| For example, you can the torch.linalg.inv function will raise torch.linalg.LinAlgError when it finds that \ |
| a matrix is not invertible.\n \ |
| \n\ |
| Example:\n \ |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCKTEST_LAPACK)\n \ |
| >>> matrix = torch.eye(3, 3)\n \ |
| >>> matrix[-1, -1] = 0\n \ |
| >>> matrix\n \ |
| tensor([[1., 0., 0.],\n \ |
| [0., 1., 0.],\n \ |
| [0., 0., 0.]])\n \ |
| >>> torch.linalg.inv(matrix)\n \ |
| Traceback (most recent call last):\n \ |
| File \"<stdin>\", line 1, in <module>\n \ |
| torch._C._LinAlgError: torch.linalg.inv: The diagonal element 3 is zero, the inversion\n \ |
| could not be completed because the input matrix is singular.", |
| PyExc_RuntimeError, |
| nullptr)); |
| ASSERT_TRUE( |
| PyModule_AddObject(module, "_LinAlgError", THPException_LinAlgError) == |
| 0); |
| |
| ASSERT_TRUE( |
| THPException_OutOfMemoryError = PyErr_NewExceptionWithDoc( |
| "torch.cuda.OutOfMemoryError", |
| "Exception raised when CUDA is out of memory", |
| PyExc_RuntimeError, |
| nullptr)); |
| ASSERT_TRUE( |
| PyModule_AddObject( |
| module, "_OutOfMemoryError", THPException_OutOfMemoryError) == 0); |
| |
| return true; |
| } |
| |
| namespace torch { |
| |
| void processErrorMsgInplace(std::string& str) { |
| // Translate Aten types to their respective pytorch ones |
| constexpr std::array<std::pair<c10::string_view, c10::string_view>, 64> |
| changes{{ |
| {"Variable[SparseCUDAByteType]", "torch.cuda.sparse.ByteTensor"}, |
| {"Variable[SparseCUDACharType]", "torch.cuda.sparse.CharTensor"}, |
| {"Variable[SparseCUDADoubleType]", "torch.cuda.sparse.DoubleTensor"}, |
| {"Variable[SparseCUDAFloatType]", "torch.cuda.sparse.FloatTensor"}, |
| {"Variable[SparseCUDAIntType]", "torch.cuda.sparse.IntTensor"}, |
| {"Variable[SparseCUDALongType]", "torch.cuda.sparse.LongTensor"}, |
| {"Variable[SparseCUDAShortType]", "torch.cuda.sparse.ShortTensor"}, |
| {"Variable[SparseCUDAHalfType]", "torch.cuda.sparse.HalfTensor"}, |
| {"Variable[SparseCPUByteType]", "torch.sparse.ByteTensor"}, |
| {"Variable[SparseCPUCharType]", "torch.sparse.CharTensor"}, |
| {"Variable[SparseCPUDoubleType]", "torch.sparse.DoubleTensor"}, |
| {"Variable[SparseCPUFloatType]", "torch.sparse.FloatTensor"}, |
| {"Variable[SparseCPUIntType]", "torch.sparse.IntTensor"}, |
| {"Variable[SparseCPULongType]", "torch.sparse.LongTensor"}, |
| {"Variable[SparseCPUShortType]", "torch.sparse.ShortTensor"}, |
| {"Variable[SparseCPUHalfType]", "torch.sparse.HalfTensor"}, |
| {"Variable[CUDAByteType]", "torch.cuda.ByteTensor"}, |
| {"Variable[CUDACharType]", "torch.cuda.CharTensor"}, |
| {"Variable[CUDADoubleType]", "torch.cuda.DoubleTensor"}, |
| {"Variable[CUDAFloatType]", "torch.cuda.FloatTensor"}, |
| {"Variable[CUDAIntType]", "torch.cuda.IntTensor"}, |
| {"Variable[CUDALongType]", "torch.cuda.LongTensor"}, |
| {"Variable[CUDAShortType]", "torch.cuda.ShortTensor"}, |
| {"Variable[CUDAHalfType]", "torch.cuda.HalfTensor"}, |
| {"Variable[CPUByteType]", "torch.ByteTensor"}, |
| {"Variable[CPUCharType]", "torch.CharTensor"}, |
| {"Variable[CPUDoubleType]", "torch.DoubleTensor"}, |
| {"Variable[CPUFloatType]", "torch.FloatTensor"}, |
| {"Variable[CPUIntType]", "torch.IntTensor"}, |
| {"Variable[CPULongType]", "torch.LongTensor"}, |
| {"Variable[CPUShortType]", "torch.ShortTensor"}, |
| {"Variable[CPUHalfType]", "torch.HalfTensor"}, |
| {"SparseCUDAByteType", "torch.cuda.sparse.ByteTensor"}, |
| {"SparseCUDACharType", "torch.cuda.sparse.CharTensor"}, |
| {"SparseCUDADoubleType", "torch.cuda.sparse.DoubleTensor"}, |
| {"SparseCUDAFloatType", "torch.cuda.sparse.FloatTensor"}, |
| {"SparseCUDAIntType", "torch.cuda.sparse.IntTensor"}, |
| {"SparseCUDALongType", "torch.cuda.sparse.LongTensor"}, |
| {"SparseCUDAShortType", "torch.cuda.sparse.ShortTensor"}, |
| {"SparseCUDAHalfType", "torch.cuda.sparse.HalfTensor"}, |
| {"SparseCPUByteType", "torch.sparse.ByteTensor"}, |
| {"SparseCPUCharType", "torch.sparse.CharTensor"}, |
| {"SparseCPUDoubleType", "torch.sparse.DoubleTensor"}, |
| {"SparseCPUFloatType", "torch.sparse.FloatTensor"}, |
| {"SparseCPUIntType", "torch.sparse.IntTensor"}, |
| {"SparseCPULongType", "torch.sparse.LongTensor"}, |
| {"SparseCPUShortType", "torch.sparse.ShortTensor"}, |
| {"SparseCPUHalfType", "torch.sparse.HalfTensor"}, |
| {"CUDAByteType", "torch.cuda.ByteTensor"}, |
| {"CUDACharType", "torch.cuda.CharTensor"}, |
| {"CUDADoubleType", "torch.cuda.DoubleTensor"}, |
| {"CUDAFloatType", "torch.cuda.FloatTensor"}, |
| {"CUDAIntType", "torch.cuda.IntTensor"}, |
| {"CUDALongType", "torch.cuda.LongTensor"}, |
| {"CUDAShortType", "torch.cuda.ShortTensor"}, |
| {"CUDAHalfType", "torch.cuda.HalfTensor"}, |
| {"CPUByteType", "torch.ByteTensor"}, |
| {"CPUCharType", "torch.CharTensor"}, |
| {"CPUDoubleType", "torch.DoubleTensor"}, |
| {"CPUFloatType", "torch.FloatTensor"}, |
| {"CPUIntType", "torch.IntTensor"}, |
| {"CPULongType", "torch.LongTensor"}, |
| {"CPUShortType", "torch.ShortTensor"}, |
| {"CPUHalfType", "torch.HalfTensor"}, |
| }}; |
| |
| // Avoid doing any work if no types need translated |
| if (str.find("Type") == str.npos) { |
| return; |
| } |
| for (const auto& it : changes) { |
| c10::ReplaceAll(str, it.first, it.second); |
| } |
| } |
| |
| std::string processErrorMsg(std::string str) { |
| processErrorMsgInplace(str); |
| return str; |
| } |
| |
| static std::string formatMessage(const char* format, va_list fmt_args) { |
| static const size_t ERROR_BUF_SIZE = 1024; |
| // NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays) |
| char error_buf[ERROR_BUF_SIZE]; |
| vsnprintf(error_buf, ERROR_BUF_SIZE, format, fmt_args); |
| |
| // Ensure that the string is null terminated |
| error_buf[sizeof(error_buf) / sizeof(*error_buf) - 1] = 0; |
| |
| return std::string(error_buf); |
| } |
| |
| void translate_exception_to_python(const std::exception_ptr& e_ptr) { |
| try { |
| TORCH_INTERNAL_ASSERT( |
| e_ptr, |
| "translate_exception_to_python " |
| "called with invalid exception pointer"); |
| std::rethrow_exception(e_ptr); |
| } |
| CATCH_ALL_ERRORS(return ) |
| } |
| |
| IndexError::IndexError(const char* format, ...) { |
| va_list fmt_args; |
| va_start(fmt_args, format); |
| msg = formatMessage(format, fmt_args); |
| va_end(fmt_args); |
| } |
| |
| TypeError::TypeError(const char* format, ...) { |
| va_list fmt_args; |
| va_start(fmt_args, format); |
| msg = formatMessage(format, fmt_args); |
| va_end(fmt_args); |
| } |
| |
| ValueError::ValueError(const char* format, ...) { |
| va_list fmt_args; |
| va_start(fmt_args, format); |
| msg = formatMessage(format, fmt_args); |
| va_end(fmt_args); |
| } |
| |
| AttributeError::AttributeError(const char* format, ...) { |
| va_list fmt_args; |
| va_start(fmt_args, format); |
| msg = formatMessage(format, fmt_args); |
| va_end(fmt_args); |
| } |
| |
| LinAlgError::LinAlgError(const char* format, ...) { |
| va_list fmt_args; |
| va_start(fmt_args, format); |
| msg = formatMessage(format, fmt_args); |
| va_end(fmt_args); |
| } |
| |
| void PyWarningHandler::InternalHandler::process(const c10::Warning& warning) { |
| warning_buffer_.push_back(warning); |
| } |
| |
| PyWarningHandler::PyWarningHandler() noexcept(true) |
| : prev_handler_(c10::WarningUtils::get_warning_handler()), |
| in_exception_(false) { |
| c10::WarningUtils::set_warning_handler(&internal_handler_); |
| } |
| |
| // Get the Python warning type for a warning |
| PyObject* map_warning_to_python_type(const c10::Warning& warning) { |
| struct Visitor { |
| PyObject* operator()(const c10::UserWarning&) const { |
| return PyExc_UserWarning; |
| } |
| PyObject* operator()(const c10::DeprecationWarning&) const { |
| return PyExc_DeprecationWarning; |
| } |
| }; |
| return c10::visit(Visitor(), warning.type()); |
| } |
| |
| /// See NOTE [ Conversion Cpp Python Warning ] for noexcept justification |
| /// NOLINTNEXTLINE(bugprone-exception-escape) |
| PyWarningHandler::~PyWarningHandler() noexcept(false) { |
| c10::WarningUtils::set_warning_handler(prev_handler_); |
| auto& warning_buffer = internal_handler_.warning_buffer_; |
| |
| if (warning_buffer.size() > 0) { |
| // NOLINTNEXTLINE(cppcoreguidelines-init-variables) |
| PyObject *type, *value, *traceback; |
| pybind11::gil_scoped_acquire gil; |
| auto result = 0; |
| if (in_exception_) { |
| // This (combined with PyErr_Restore below) also works when no python |
| // error has been set yet |
| PyErr_Fetch(&type, &value, &traceback); |
| } |
| for (const auto& warning : warning_buffer) { |
| auto source_location = warning.source_location(); |
| auto msg = warning.msg(); |
| processErrorMsgInplace(msg); |
| if (source_location.file == nullptr) { |
| result = |
| PyErr_WarnEx(map_warning_to_python_type(warning), msg.c_str(), 1); |
| } else if (warning.verbatim()) { |
| // Sets the source location from the warning |
| // Note: PyErr_WarnExplicit will disregard Python's warning filter |
| // and always appear. This is in contrast to PyErr_WarnEx, |
| // which respects the warning filter. |
| result = PyErr_WarnExplicit( |
| /*category=*/map_warning_to_python_type(warning), |
| /*message=*/msg.c_str(), |
| /*filename=*/source_location.file, |
| /*lineno=*/source_location.line, |
| /*module=*/nullptr, |
| /*registry=*/nullptr); |
| } else { |
| // Lets Python set the source location and puts the C++ warning |
| // location into the message. |
| fmt::memory_buffer buf; |
| fmt::format_to( |
| buf, |
| FMT_STRING("{} (Triggered internally at {}:{}.)"), |
| msg, |
| source_location.file, |
| source_location.line); |
| buf.push_back('\0'); |
| result = |
| PyErr_WarnEx(map_warning_to_python_type(warning), buf.data(), 1); |
| } |
| if (result < 0) { |
| if (in_exception_) { |
| // PyErr_Print prints the traceback to sys.stderr and |
| // clears the error indicator |
| PyErr_Print(); |
| } else { |
| break; |
| } |
| } |
| } |
| warning_buffer.clear(); |
| if ((result < 0) && (!in_exception_)) { |
| /// A warning raised an error, we need to force the parent |
| /// function to return an error code. |
| throw python_error(); |
| } |
| if (in_exception_) { |
| // NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage) |
| PyErr_Restore(type, value, traceback); |
| } |
| } |
| } |
| |
| } // namespace torch |