blob: 5e90445560bc70a2938d51415067bed2a69f3e43 [file] [log] [blame]
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iomanip>
#include <string>
#include <vector>
#include <ATen/ATen.h>
#include <caffe2/core/timer.h>
#include <caffe2/utils/string_utils.h>
#include <torch/csrc/autograd/grad_mode.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/script.h>
#include <c10/mobile/CPUCachingAllocator.h>
C10_DEFINE_string(
refmodel,
"",
"The reference torch script model to compare against.");
C10_DEFINE_string(
model,
"",
"The torch script model to compare to the reference model.");
C10_DEFINE_string(
input_dims,
"",
"Alternate to input_files, if all inputs are simple "
"float TensorCPUs, specify the dimension using comma "
"separated numbers. If multiple input needed, use "
"semicolon to separate the dimension of different "
"tensors.");
C10_DEFINE_string(input_type, "", "Input type (uint8_t/float)");
C10_DEFINE_string(
input_memory_format,
"contiguous_format",
"Input memory format (contiguous_format/channels_last)");
C10_DEFINE_int(input_max, 1, "The maximum value inputs should have");
C10_DEFINE_int(input_min, -1, "The minimum value inputs should have");
C10_DEFINE_bool(
no_inputs,
false,
"Whether the model has any input. Will ignore other input arguments if true");
C10_DEFINE_bool(
use_caching_allocator,
false,
"Whether to cache allocations between inference iterations");
C10_DEFINE_bool(
print_output,
false,
"Whether to print output with all one input tensor.");
C10_DEFINE_int(iter, 10, "The number of iterations to run.");
C10_DEFINE_int(report_freq, 1000, "An update will be reported every n iterations");
C10_DEFINE_int(pytext_len, 0, "Length of input sequence.");
C10_DEFINE_string(
backend,
"cpu",
"what backend to use for model (vulkan, cpu, metal) (default=cpu)");
C10_DEFINE_string(
refbackend,
"cpu",
"what backend to use for model (vulkan, cpu, metal) (default=cpu)");
C10_DEFINE_string(tolerance, "1e-5", "tolerance to use for comparison");
C10_DEFINE_int(nthreads, 1, "Number of threads to launch. Useful for checking correct concurrent behaviour.");
C10_DEFINE_bool(
report_failures,
true,
"Whether to report error during failed iterations");
bool checkRtol(
const at::Tensor& diff,
const std::vector<at::Tensor>& inputs,
float tolerance,
bool report) {
float maxValue = 0.0f;
for (const auto& tensor : inputs) {
maxValue = fmax(tensor.abs().max().item<float>(), maxValue);
}
float threshold = tolerance * maxValue;
float maxDiff = diff.abs().max().item<float>();
bool passed = maxDiff < threshold;
if (!passed && report) {
std::cout << "Check FAILED! Max diff allowed: "
<< std::setw(10) << std::setprecision(5) << threshold
<< " max diff: "
<< std::setw(10) << std::setprecision(5) << maxDiff
<< std::endl;
}
return passed;
}
void report_pass_rate(int passed, int total) {
int pass_rate = static_cast<int>(static_cast<float>(passed) / static_cast<float>(total) * 100);
std::cout << "Output was equal within tolerance " << passed << "/"
<< total
<< " times. Pass rate: " << pass_rate
<< std::setprecision(2) << "%" << std::endl;
}
std::vector<std::string> split(
char separator,
const std::string& string,
bool ignore_empty = true) {
std::vector<std::string> pieces;
std::stringstream ss(string);
std::string item;
while (getline(ss, item, separator)) {
if (!ignore_empty || !item.empty()) {
pieces.push_back(std::move(item));
}
}
return pieces;
}
std::vector<c10::IValue> create_inputs(
std::vector<c10::IValue>& refinputs,
std::vector<c10::IValue>& inputs,
std::string& refbackend,
std::string& backend,
const int range_min,
const int range_max) {
if (FLAGS_no_inputs) {
return {};
}
CAFFE_ENFORCE_GE(FLAGS_input_dims.size(), 0, "Input dims must be specified.");
CAFFE_ENFORCE_GE(FLAGS_input_type.size(), 0, "Input type must be specified.");
std::vector<std::string> input_dims_list = split(';', FLAGS_input_dims);
std::vector<std::string> input_type_list = split(';', FLAGS_input_type);
std::vector<std::string> input_memory_format_list =
split(';', FLAGS_input_memory_format);
CAFFE_ENFORCE_GE(
input_dims_list.size(), 0, "Input dims not specified correctly.");
CAFFE_ENFORCE_GE(
input_type_list.size(), 0, "Input type not specified correctly.");
CAFFE_ENFORCE_GE(
input_memory_format_list.size(),
0,
"Input format list not specified correctly.");
CAFFE_ENFORCE_EQ(
input_dims_list.size(),
input_type_list.size(),
"Input dims and type should have the same number of items.");
CAFFE_ENFORCE_EQ(
input_dims_list.size(),
input_memory_format_list.size(),
"Input dims and format should have the same number of items.");
for (size_t i = 0; i < input_dims_list.size(); ++i) {
auto input_dims_str = split(',', input_dims_list[i]);
std::vector<int64_t> input_dims;
input_dims.reserve(input_dims_str.size());
for (const auto& s : input_dims_str) {
input_dims.push_back(std::stoi(s));
}
at::ScalarType input_type;
if (input_type_list[i] == "float") {
input_type = at::ScalarType::Float;
} else if (input_type_list[i] == "uint8_t") {
input_type = at::ScalarType::Byte;
} else if (input_type_list[i] == "int64") {
input_type = at::ScalarType::Long;
} else {
CAFFE_THROW("Unsupported input type: ", input_type_list[i]);
}
at::MemoryFormat input_memory_format;
if (input_memory_format_list[i] == "channels_last") {
if (input_dims.size() != 4u) {
CAFFE_THROW(
"channels_last memory format only available on 4D tensors!");
}
input_memory_format = at::MemoryFormat::ChannelsLast;
} else if (input_memory_format_list[i] == "contiguous_format") {
input_memory_format = at::MemoryFormat::Contiguous;
} else {
CAFFE_THROW(
"Unsupported input memory format: ", input_memory_format_list[i]);
}
const auto input_tensor = torch::rand(
input_dims,
at::TensorOptions(input_type).memory_format(input_memory_format))*(range_max - range_min) - range_min;
if (refbackend == "vulkan") {
refinputs.emplace_back(input_tensor.vulkan());
} else {
refinputs.emplace_back(input_tensor);
}
if (backend == "vulkan") {
inputs.emplace_back(input_tensor.vulkan());
} else {
inputs.emplace_back(input_tensor);
}
}
if (FLAGS_pytext_len > 0) {
auto stensor = FLAGS_pytext_len * at::ones({1}, torch::kI64);
if (refbackend == "vulkan") {
refinputs.emplace_back(stensor.vulkan());
} else {
refinputs.emplace_back(stensor);
}
if (backend == "vulkan") {
inputs.emplace_back(stensor.vulkan());
} else {
inputs.emplace_back(stensor);
}
}
return inputs;
}
void run_check(float tolerance) {
torch::jit::Module module = torch::jit::load(FLAGS_model);
torch::jit::Module refmodule = torch::jit::load(FLAGS_refmodel);
module.eval();
refmodule.eval();
std::thread::id this_id = std::this_thread::get_id();
std::cout << "Running check on thread " << this_id << "." << std::endl;
int passed = 0;
for (int i = 0; i < FLAGS_iter; ++i) {
std::vector<c10::IValue> refinputs;
std::vector<c10::IValue> inputs;
create_inputs(
refinputs, inputs,
FLAGS_refbackend, FLAGS_backend,
FLAGS_input_min, FLAGS_input_max);
const auto refoutput = refmodule.forward(refinputs).toTensor().cpu();
const auto output = module.forward(inputs).toTensor().cpu();
bool check = checkRtol(
refoutput-output,
{refoutput, output},
tolerance,
FLAGS_report_failures);
if (check) {
passed += 1;
}
else if (FLAGS_report_failures) {
std::cout << " (Iteration " << i << " failed)" << std::endl;
}
if (i > 0 && (i+1) % FLAGS_report_freq == 0) {
report_pass_rate(passed, i+1);
}
}
report_pass_rate(passed, FLAGS_iter);
}
int main(int argc, char** argv) {
c10::SetUsageMessage(
"Run accuracy comparison to a reference model for a pytorch model.\n"
"Example usage:\n"
"./compare_models_torch"
" --refmodel=<ref_model_file>"
" --model=<model_file>"
" --iter=20");
if (!c10::ParseCommandLineFlags(&argc, &argv)) {
std::cerr << "Failed to parse command line flags!" << std::endl;
return 1;
}
if (FLAGS_input_min >= FLAGS_input_max) {
std::cerr << "Input min: " << FLAGS_input_min
<< " should be less than input max: "
<< FLAGS_input_max << std::endl;
return 1;
}
std::stringstream ss(FLAGS_tolerance);
float tolerance = 0;
ss >> tolerance;
std::cout << "tolerance: " << tolerance << std::endl;
c10::InferenceMode mode;
torch::autograd::AutoGradMode guard(false);
torch::jit::GraphOptimizerEnabledGuard no_optimizer_guard(false);
c10::CPUCachingAllocator caching_allocator;
c10::optional<c10::WithCPUCachingAllocatorGuard> caching_allocator_guard;
if (FLAGS_use_caching_allocator) {
caching_allocator_guard.emplace(&caching_allocator);
}
std::vector<std::thread> check_threads;
check_threads.reserve(FLAGS_nthreads);
for (int i = 0; i < FLAGS_nthreads; ++i) {
check_threads.emplace_back(std::thread(run_check, tolerance));
}
for (std::thread& th : check_threads) {
if (th.joinable()) {
th.join();
}
}
return 0;
}