blob: d4af1536ccd24018a142cb0e8fbd05ef2ae3045d [file] [log] [blame]
#pragma once
#include <c10/core/DeviceType.h>
#include <c10/macros/Export.h>
#include <cstdint>
#include <ostream>
#include <string>
namespace c10 {
// Semantically, each value of BackendComponent identifies a "backend" for our
// dispatch. Some functionalities that we may dispatch to are allowed to
// register different handlers for each backend. The BackendComponent is then
// used to figure out which backend implementation to dispatch to.
// In implementation terms, the backend component identifies a specific "bit" in
// a DispatchKeySet. The bits in the DispatchKeySet are split between the bottom
// ~12 "BackendComponent" bits, while the remaining upper bits are assigned to
// functionalities. When we encounter a functionality bit that is known to be
// customizable per-backend, then we also look at the lower BackendComponent
// bits and take the highest bit to determine which backend's implementation to
// use.
// WARNING! If you add a new backend component to the end of this list,
// make sure you register it before Meta.
// Meta must be at the end so that meta key in tls triggers meta kernels.
// (But you shouldn't: private use keys should have higher precedence than all
// built-in keys)
// If you add a new (non-privateuse) backend here,
// make sure to add an Autograd<Backend> fallthrough kernel
// in aten/src/ATen/core/VariableFallbackKernel.cpp
#define C10_FORALL_BACKEND_COMPONENTS(_, extra) \
_(CPU, extra) \
_(CUDA, extra) \
_(HIP, extra) \
_(XLA, extra) \
_(MPS, extra) \
_(IPU, extra) \
_(XPU, extra) \
_(HPU, extra) \
_(VE, extra) \
_(Lazy, extra) \
_(MTIA, extra) \
_(PrivateUse1, extra) \
_(PrivateUse2, extra) \
_(PrivateUse3, extra) \
_(Meta, extra)
// WARNING! If we add a new per-backend functionality key that has higher
// priority than Autograd, then make sure you update EndOfRuntimeBackendKeys
#define C10_FORALL_FUNCTIONALITY_KEYS(_) \
_(Dense, ) \
_(Quantized, Quantized) \
_(Sparse, Sparse) \
_(NestedTensor, NestedTensor) \
_(AutogradFunctionality, Autograd)
enum class BackendComponent : uint8_t {
// A "backend" is colloquially used to refer to handlers for dispatch
// which actually implement the numerics of an operation in question.
//
// Due to the nature of the enum, these backends are specified in
// an ordered way, but for most backends this order is not semantically
// meaningful (e.g., it's valid to reorder these backends without changing
// semantics). The only situation when backend ordering is meaningful
// is when the backend participates in multiple dispatch with another
// backend; e.g., CPU and CUDA (cuda must have higher priority).
// These keys don't correspond to individual kernels.
// Instead, they represent the backends that are allowed to override specific
// pieces of functionality:
// - dense kernels (e.g. DispatchKey::CPU)
// - sparse kernels (e.g. DispatchKey::SparseCPU)
// - quantized kernels (e.g. DispatchKey::QuantizedCPU)
// - autograd kernels (e.g. DispatchKey::AutogradCPU)
// We reserve space in the runtime operator table for this full cross product
// of
// [backends in this enum] x [keys below that are explicitly marked as having
// per-backend functionality]
//
// A meta tensor is a tensor without any data associated with it. (They
// have also colloquially been referred to as tensors on the "null" device).
// A meta tensor can be used to dry run operators without actually doing any
// computation, e.g., add on two meta tensors would give you another meta
// tensor with the output shape and dtype, but wouldn't actually add anything.
InvalidBit = 0,
#define DEFINE_BACKEND_COMPONENT(n, _) n##Bit,
C10_FORALL_BACKEND_COMPONENTS(DEFINE_BACKEND_COMPONENT, unused)
#undef DEFINE_BACKEND_COMPONENT
// Define an alias to represent end of backend dispatch keys.
// If you add new backend keys after PrivateUse3, please also update it here.
EndOfBackendKeys = MetaBit,
};
// Semantically, a dispatch key identifies a possible "level" in our
// dispatch, for which a handler may be registered. Each handler corresponds
// to a type of functionality.
//
// In implementation terms, the dispatch key identifies a specific "bit" in a
// DispatchKeySet. Higher bit indexes get handled by dispatching first (because
// we "count leading zeros" when we extract the highest priority dispatch
// key.)
//
// Note [DispatchKey Classification]
// This enum actually contains several types of keys, which are explained
// in more detail further down:
// (1) non-customizable backends (e.g. FPGA)
// (2) non-customizable functionalities (e.g. Functionalize)
// (3) functionalized that are customizable per backend (e.g. Dense, Sparse,
// AutogradFunctionality) (4) per-backend instances of customizable
// functionalities (e.g. CPU, SparseCPU, AutogradCPU) (5) alias keys (e.g.
// CompositeImplicitAutograd)
//
// Of the categories above, it's important to note:
// (a) which keys are assigned individual bits in a DispatchKeySet
// (b) which keys are assigned individual slots in the runtime operator table
// ("Runtime keys")
//
// (1), (2) and (3) all get their own dedicated bits in the DispatchKeySet.
// (1), (2) and (4) all get their own dedicated slots in the runtime operator
// table.
// See Note [DispatchKeySet Internal Representation] for more details.
//
// NOTE: Keep the list in sync with `DispatchKey` in torchgen/model.py
enum class DispatchKey : uint16_t {
// ~~~~~~~~~~~~~~~~~~~~~~~~~~ UNDEFINED ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
// This is not a "real" functionality, but it exists to give us a "nullopt"
// element we can return for cases when a DispatchKeySet contains no elements.
// You can think a more semantically accurate definition of DispatchKey is:
//
// using DispatchKey = optional<RealDispatchKey>
//
// and Undefined == nullopt. We didn't actually represent
// it this way because optional<RealDispatchKey> would take two
// words, when DispatchKey fits in eight bits.
Undefined = 0,
// Define an alias for Undefined to represent CatchAll (long term
// this will get eliminated, but for now it's convenient)
CatchAll = Undefined,
// ~~~~~~~~~~~~~~~~~~~~~~~~~~ Functionality Keys ~~~~~~~~~~~~~~~~~~~~~~ //
// Every value in the enum (up to EndOfFunctionalityKeys)
// corresponds to an individual "functionality" that can be dispatched to.
// This is represented in the DispatchKeySet by assigning each of these enum
// values
// to each of the remaining (64 - len(BackendComponent)) bits.
//
// Most of these functionalities have a single handler assigned to them,
// making them "runtime keys".
// That map to a single slot in the runtime operator table.
//
// A few functionalities are allowed to be customizable per backend.
// See [Note: Per-Backend Functionality Dispatch Keys] for details.
// See [Note: Per-Backend Functionality Dispatch Keys]
Dense,
// Below are non-extensible backends.
// These are backends that currently don't have their own overrides for
// Autograd/Sparse/Quantized kernels,
// and we therefore don't waste space in the runtime operator table allocating
// space for them.
// If any of these backends ever need to customize, e.g., Autograd, then we'll
// need to add a DispatchKey::*Bit for them.
// TODO: put this in BackendComponents
FPGA, // Xilinx support lives out of tree at
// https://gitlab.com/pytorch-complex/vitis_kernels
// TODO: put this in BackendComponents
// ONNX Runtime, lives out of tree at https://github.com/pytorch/ort and
// https://github.com/microsoft/onnxruntime, and is also used to test general
// backend/extension machinery in the core. cf:
// - test/cpp_extensions/ort_extension.cpp
// - test/test_torch.py
// - aten/src/ATen/test/extension_backend_test.cpp
ORT,
Vulkan, // TODO: put this in BackendComponents
Metal, // TODO: put this in BackendComponents
// See [Note: Per-Backend Functionality Dispatch Keys]
Quantized,
// This backend is to support custom RNGs; it lets you go
// to a different kernel if you pass in a generator that is not a
// traditional CPUGeneratorImpl/CUDAGeneratorImpl. To make use of this
// key:
// 1) set it as a second parameter of at::Generator constructor call in
// the user-defined PRNG class.
// 2) use it as a dispatch key while registering custom kernels
// (templatized kernels specialized for user-defined PRNG class)
// intended for out of tree use; tested by aten/src/ATen/test/rng_test.cpp
CustomRNGKeyId,
// TODO: Make Mkldnn a functionality key, so we can give it Meta
// support
// Here are backends which specify more specialized operators
// based on the layout of the tensor. Note that the sparse backends
// are one case where ordering matters: sparse multi-dispatches with
// the corresponding dense tensors, and must be handled before them.
MkldnnCPU, // registered at build/aten/src/ATen/RegisterMkldnnCPU.cpp
// NB: not to be confused with MKLDNN, which is Caffe2 only
// See [Note: Per-Backend Functionality Dispatch Keys]
Sparse,
// TODO: Make SparseCsr a functionality key
SparseCsrCPU,
SparseCsrCUDA,
NestedTensor,
// In some situations, it is not immediately obvious what the correct
// backend for function is, because the function in question doesn't
// have any "tensor" arguments. In this case, a BackendSelect function
// can be registered to implement the custom determination of the
// correct backend.
BackendSelect,
Python,
// Out-of-core key for Fake Tensor in torchdistx.
// See https://pytorch.org/torchdistx/latest/fake_tensor.html
// TODO: delete this in favor of Python-implemented fake tensor
Fake,
// See Note [Out-of-tree vmap+grad prototype]. The purpose of this key
// is to insert code after the "autograd subsystem" runs, so this key should
// be directly after ADInplaceOrView and all of the autograd keys.
FuncTorchDynamicLayerBackMode,
// Alias and mutation removal.
// If some backends want to opt into only alias removal or only mutation
// removal,
// we can consider adding separate keys dedicated to those individual passes.
// See Note [Functionalization Pass In Core] for details.
Functionalize,
// The named dispatch key is set for any tensors with named dimensions.
// Although we have a dispatch key for named tensors, for historical reasons,
// this dispatch key doesn't do any of the substantive functionality for named
// tensor (though, hypothetically, it could!) At the moment, it's just
// responsible for letting us give good error messages when operations
// don't support named tensors.
//
// NB: If you ever consider moving named tensor functionality into
// this dispatch key, note that it might be necessary add another dispatch
// key that triggers before composite operators, in case a composite operator
// has named dimension propagation that doesn't match that of its
// constituent parts.
// TODO: delete this once torchdim lands in functorch
Named,
// The Conjugate dispatch key is set for any tensors that need to perform
// conjugation
// This is implemented at a dispatch level right before any backends run
Conjugate,
// The Negative dispatch key is set for any tensors that need to perform
// negation
// This is implemented at a dispatch level right before any backends run
Negative,
ZeroTensor, // registered at build/aten/src/ATen/RegisterZeroTensor.cpp
// Note [ADInplaceOrView key]
// ADInplaceOrView key is used by inplace or view ops to register a kernel
// that does additional setup for future autograd computation.
//
// 1. For inplace ops this kernel does version bump
// 2. For view ops this kernel does `as_view` setup where we properly setup
// DifferentiableViewMeta on the view tensors.
//
// For other ops it's fallthrough kernel since there's no extra
// work to do.
//
// Note [Dream: skip VariableType kernel when requires_grad=false]
//
// In an ideal world where we can skip VariableType kernel for inputs
// with requires_grad=false, instead of a fallthrough kernel, we'll
// register a kernel shown below to all functional ops as well:
// torch::Tensor my_functional_op(...) {
// {
// // Note for every op in VariableType, you need to go through
// // `AutoDispatchBelowADInplaceOrView` guard exactly once to add the
// // key to TLS excluded set. If you don't go through it at all,
// // inplace/view ops called through `at::` inside your backend
// // kernel will dispatch to ADInplaceOrView kernels and do a lot
// // of extra work.
// at::AutoDispatchBelowADInplaceOrView guard;
// at::redispatch::my_functional_op(...);
// }
// }
// But this work is currently blocked since it adds an extra dispatch
// for all ops and it's non-trivial overhead at model level(a few percents).
// Thus our current approach takes advantage of the fact every kernel go
// through VariableType kernel first and pulls the
// `at::AutoDispatchBelowADInplaceOrView` guard of functional ops
// up to the `VariableType` kernel. Thus we only add the extra dispatch
// to view/inplace ops to minimize its perf impact to real models.
ADInplaceOrView,
// Note [Alias Dispatch Key : Autograd]
// All backends are oblivious to autograd; autograd is handled as a
// layer which happens on top of all backends. It inspects the autograd
// metadata of all inputs, determines what autograd metadata should be
// constructed by the output, and otherwise defers to the backend to
// actually do the numeric computation. Autograd contains
// the bulk of this logic.
// Autograd is now an alias dispatch key which by default maps to all
// backend-specific autograd keys.
// Backend-specific allow backends to override the default kernel registered
// to Autograd key as needed.
// For example, XLA wants to define autograd for einsum directly.
// Registering a custom autograd implementation at the XLA key won't work
// because we process Autograd before XLA. This key has higher priority and
// gets processed first. You generally should NOT redispatch after handling
// autograd here (since that would result in execution of the Autograd
// operator, which you're trying to skip). In AutogradXLA implementations,
// you are responsible for handling autograd yourself, or deferring to other
// operators which support autograd.
// Currently we only have backend-specific autograd keys for CPU/CUDA/XLA and
// reserved user-defined backends. All other in-tree backends share the
// AutogradOther key. We can add specific autograd key for those backends
// upon request.
AutogradOther,
// See [Note: Per-Backend Functionality Dispatch Keys]
AutogradFunctionality,
// NestedTensor is an example of something that isn't a "real backend"
// (because it mostly consists of redispatching kernels)
// but it would like to override autograd functionality in C++.
// We can handle cases like this by adding an extra functionality key
// exclusively for handling autograd for NestedTensor.
// lives out of tree at
// https://github.com/pytorch/nestedtensor
AutogradNestedTensor,
Tracer,
// TODO: make Autocast a functionality key
// Autocasting precedes VariableTypeId, to ensure casts are autograd-exposed
// and inputs are saved for backward in the post-autocast type.
AutocastCPU,
AutocastXPU,
AutocastIPU,
AutocastHPU,
AutocastXLA,
// AutocastXLA is only being used for TPUs. XLA GPUs continue to use
// AutocastCUDA.
AutocastCUDA,
AutocastPrivateUse1,
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~ WRAPPERS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
// There are a number of alternative modes which may want to handle before
// autograd; for example, error checking, tracing, profiling or vmap. They
// go here.
FuncTorchBatched, // See Note [Out-of-tree vmap+grad prototype]
// Dispatch key for BatchedTensorImpl wrapping a nested tensor.
BatchedNestedTensor,
FuncTorchVmapMode, // See Note [Out-of-tree vmap+grad prototype]
// This is the dispatch key for BatchedTensorImpl, which is used to implement
// batching rules for vmap.
Batched,
// When we are inside a vmap, all tensors dispatch on this key.
// See Note: [DispatchKey::VmapMode usage] for more details.
VmapMode,
FuncTorchGradWrapper, // See Note [Out-of-tree vmap+grad prototype]
// Out-of-core key for Deferred Module Initialization in torchdistx.
// See https://pytorch.org/torchdistx/latest/deferred_init.html
DeferredInit,
// Used by Python key logic to know the set of tls on entry to the dispatcher
// This kernel assumes it is the top-most non-functorch-related DispatchKey.
// If you add a key above, make sure to update the fallback implementation for
// this.
PythonTLSSnapshot,
// This key should be at the very top of the dispatcher
FuncTorchDynamicLayerFrontMode, // See Note [Out-of-tree vmap+grad prototype]
// TESTING: This is intended to be a generic testing tensor type id.
// Don't use it for anything real; its only acceptable use is within a single
// process test. Use it by creating a TensorImpl with this DispatchKey, and
// then registering operators to operate on this type id. See
// aten/src/ATen/core/dispatch/backend_fallback_test.cpp for a usage example.
TESTING_ONLY_GenericWrapper,
// TESTING: This is intended to be a generic testing tensor type id.
// Don't use it for anything real; its only acceptable use is within a ingle
// process test. Use it by toggling the mode on and off via
// TESTING_ONLY_tls_generic_mode_set_enabled and then registering operators
// to operate on this type id. See
// aten/src/ATen/core/dispatch/backend_fallback_test.cpp
// for a usage example
TESTING_ONLY_GenericMode,
// This key is used for pre-dispatch tracing in make_fx.
// It has lower priority than the PythonDispatcher key
// because we use the PythonDispatcher to intercept the key from python,
// and avoid having to implement it in C++.
PreDispatch,
// This is a bypass that allows you to skip running the C++ dispatcher
// entirely
PythonDispatcher,
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FIN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
EndOfFunctionalityKeys, // End of functionality keys.
// ~~~~~~~~~~~~~~ "Dense" Per-Backend Dispatch keys ~~~~~~~~~~~~~~~~~~~~ //
// Here are backends which you think of as traditionally specifying
// how to implement operations on some device.
#define DEFINE_PER_BACKEND_KEYS_FOR_BACKEND(n, prefix) prefix##n,
#define DEFINE_PER_BACKEND_KEYS(fullname, prefix) \
StartOf##fullname##Backends, \
C10_FORALL_BACKEND_COMPONENTS( \
DEFINE_PER_BACKEND_KEYS_FOR_BACKEND, prefix) \
EndOf##fullname##Backends = prefix##Meta,
C10_FORALL_FUNCTIONALITY_KEYS(DEFINE_PER_BACKEND_KEYS)
#undef DEFINE_PER_BACKEND_KEYS
#undef DEFINE_PER_BACKEND_KEYS_FOR_BACKEND
EndOfRuntimeBackendKeys = EndOfAutogradFunctionalityBackends,
// ~~~~~~~~~~~~~~~~~~~~~~ Alias Dispatch Keys ~~~~~~~~~~~~~~~~~~~~~~~~~~ //
// Note [Alias Dispatch Keys]
// Alias dispatch keys are synthetic dispatch keys which map to multiple
// runtime dispatch keys. Alisa keys have precedence, but they are always
// lower precedence than runtime keys. You can register a kernel to an
// alias key, the kernel might be populated to the mapped runtime keys
// during dispatch table computation.
// If a runtime dispatch key has multiple kernels from alias keys, which
// kernel wins is done based on the precedence of alias keys (but runtime
// keys always have precedence over alias keys).
// Alias keys won't be directly called during runtime.
// See Note [Alias Dispatch Key : Autograd]
Autograd,
CompositeImplicitAutograd, // registered at
// build/aten/src/ATen/RegisterCompositeImplicitAutograd.cpp
// Note: The alias keyset for FuncTorchBatchedDecomposition is disjoint from
// all
// other alias keysets
// and so precedence order doesn't matter
FuncTorchBatchedDecomposition, // registered at
// build/aten/src/ATen/RegisterFuncTorchBatchedDecomposition.cpp
// Note: The alias keyset for CompositeImplicitAutogradNestedTensor is
// disjoint from all other alias keysets
CompositeImplicitAutogradNestedTensor, // registered at
// build/aten/src/ATen/RegisterCompositeImplicitAutogradNestedTensor.cpp
CompositeExplicitAutograd, // registered at
// build/aten/src/ATen/RegisterCompositeExplicitAutograd.cpp
// See Note [CompositeExplicitAutogradNonFunctional Key]
CompositeExplicitAutogradNonFunctional, // registered at
// build/aten/src/ATen/RegisterCompositeExplicitAutograd.cpp
// Define an alias key to represent end of alias dispatch keys.
// If you add new alias keys after Autograd, please also update it here.
StartOfAliasKeys = Autograd,
EndOfAliasKeys = CompositeExplicitAutogradNonFunctional, //
// ~~~~~~~~~~~~~~~~~~~~~~~~~ BC ALIASES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
// The aliases exist for backwards compatibility reasons, they shouldn't
// be used
CPUTensorId = CPU,
CUDATensorId = CUDA,
DefaultBackend = CompositeExplicitAutograd,
PrivateUse1_PreAutograd = AutogradPrivateUse1,
PrivateUse2_PreAutograd = AutogradPrivateUse2,
PrivateUse3_PreAutograd = AutogradPrivateUse3,
Autocast = AutocastCUDA,
};
// Note [Private use DispatchKey]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Private use tensor IDs are preallocated tensor type IDs for use in user
// applications. Similar to private use fields in HTTP, they can be used
// by end users for experimental or private applications, without needing
// to "standardize" the tensor ID (which would be done by submitting a PR
// to PyTorch to add your type ID).
//
// Private use tensor IDs are appropriate to use if you want to experiment
// with adding a new tensor type (without having to patch PyTorch first) or
// have a private, non-distributed application that needs to make use of a
// new tensor type. Private use tensor IDs are NOT appropriate to use for
// libraries intended to be distributed to further users: please contact
// the PyTorch developers to get a type ID registered in this case.
//
// We provide two classes of private user tensor id: regular DispatchKeys
// and Autograd DispatchKeys. DispatchKeys serve the role of ordinary "backend"
// DispatchKeys; if you were adding support for a new type of accelerator, you
// would use a backend DispatchKey, and ideally automatically reuse
// AutogradOther definitions already defined in PyTorch. AutogradPrivateUse
// DispatchKeys serve as "wrapper" DispatchKeys: they are only necessary for
// tensors that compose multiple internal tensors, and for cases when the
// built-in autograd formulas for operators are not appropriate.
static_assert(
(static_cast<uint8_t>(BackendComponent::EndOfBackendKeys) +
static_cast<uint8_t>(DispatchKey::EndOfFunctionalityKeys)) <= 64,
"The BackendComponent and DispatchKey enums (below EndOfFunctionalityKeys)"
" both map to backend and functionality bits"
" into a 64-bit bitmask; you must have less than 64 total entries between them");
// Check if a DispatchKey is an alias mapping to other runtime keys.
constexpr bool isAliasDispatchKey(DispatchKey k) {
return k >= DispatchKey::StartOfAliasKeys && k <= DispatchKey::EndOfAliasKeys;
}
// [Note: Per-Backend Functionality Dispatch Keys]
// Check if a DispatchKey is a per-backend functionality key
// Any functionalities that can be customized per-backend should be added here.
// These keys correspond to functionalities that can be customized individually
// per backend. While they only take up one bit in the `DispatchKeySet` bitset,
// they map to (# backends) slots in the operator table.
// Each of these keys also has a separate set of "runtime keys" in the dispatch
// key enum, per backend, which *do* map to the individual operator table slots.
// For example, the "Sparse" key maps to an individual bit in the
// DispatchKeySet, while `SparseCPU`, `SparseCUDA`, etc all map to individual
// slots in the runtime operator table.
constexpr bool isPerBackendFunctionalityKey(DispatchKey k) {
if (k == DispatchKey::Dense || k == DispatchKey::Quantized ||
k == DispatchKey::Sparse || k == DispatchKey::AutogradFunctionality ||
k == DispatchKey::NestedTensor) {
return true;
} else {
return false;
}
}
// Note that this includes Undefined in the total count.
// BUT EndOfFunctionalityKeys is its own (placeholder) key.
// e.g. Undefined=0, Dense=1, Sparse=2, EndOfFunctionalityKeys=3.
// In the above example, there are 3 total functionality keys.
constexpr uint8_t num_functionality_keys =
static_cast<uint8_t>(DispatchKey::EndOfFunctionalityKeys);
constexpr uint8_t num_backends =
static_cast<uint8_t>(BackendComponent::EndOfBackendKeys);
// Note [No More Than 16 Backends]
// Search for this note to find places in the code where the "no more than 16
// backends" invariant is baked in.
static_assert(
static_cast<uint8_t>(BackendComponent::EndOfBackendKeys) <= 16,
"BackendComponent currently only supports <= 16 backends. If we really need to extend this, \
there are a few places where this invariant is baked in");
constexpr uint8_t numPerBackendFunctionalityKeys() {
uint8_t count = 0;
for (uint8_t k = 0; k <= num_functionality_keys; ++k) {
if (isPerBackendFunctionalityKey(static_cast<DispatchKey>(k)))
++count;
}
return count;
}
#if defined(C10_MOBILE_TRIM_DISPATCH_KEYS)
// See [Note: Trimmed Mobile Dispatch Keys]
constexpr uint16_t num_runtime_entries = 8;
#else
constexpr uint16_t num_runtime_entries = num_functionality_keys +
(numPerBackendFunctionalityKeys() * (num_backends - 1));
#endif
// See Note [No More Than 16 Backends]
constexpr uint16_t full_backend_mask =
(static_cast<uint16_t>(1) << num_backends) - 1;
C10_API const char* toString(DispatchKey);
C10_API const char* toString(BackendComponent);
C10_API std::ostream& operator<<(std::ostream&, DispatchKey);
C10_API std::ostream& operator<<(std::ostream&, BackendComponent);
C10_API DispatchKey getAutogradKeyFromBackend(BackendComponent k);
// Parses a string into a dispatch key.
// If the string cannot be correctly parsed, throws an exception.
C10_API c10::DispatchKey parseDispatchKey(const std::string& k);
// These are some convenience identifiers for dispatch keys which are
// shorter to type than their long counterparts. Note that some of these
// dispatch keys directly correspond to DeviceType; and most APIs that
// accept DispatchKey also accept DeviceType; e.g.,
// torch::dispatch(torch::kCPU, ...) is also valid.
constexpr DispatchKey kAutograd = DispatchKey::Autograd;
// See Note [The Ordering of Per-Backend Dispatch Keys Matters!]
// This function relies on the invariant that the dispatch keys between
// StartOfDenseBackends and EndOfRuntimeBackendKeys are ordered by backend
// in the same order as `BackendComponent`.
constexpr BackendComponent toBackendComponent(DispatchKey k) {
if (k >= DispatchKey::StartOfDenseBackends &&
k <= DispatchKey::EndOfDenseBackends) {
return static_cast<BackendComponent>(
static_cast<uint8_t>(k) -
static_cast<uint8_t>(DispatchKey::StartOfDenseBackends));
} else if (
k >= DispatchKey::StartOfQuantizedBackends &&
k <= DispatchKey::EndOfQuantizedBackends) {
return static_cast<BackendComponent>(
static_cast<uint8_t>(k) -
static_cast<uint8_t>(DispatchKey::StartOfQuantizedBackends));
} else if (
k >= DispatchKey::StartOfSparseBackends &&
k <= DispatchKey::EndOfSparseBackends) {
return static_cast<BackendComponent>(
static_cast<uint8_t>(k) -
static_cast<uint8_t>(DispatchKey::StartOfSparseBackends));
} else if (
k >= DispatchKey::StartOfNestedTensorBackends &&
k <= DispatchKey::EndOfNestedTensorBackends) {
return static_cast<BackendComponent>(
static_cast<uint8_t>(k) -
static_cast<uint8_t>(DispatchKey::StartOfNestedTensorBackends));
} else if (
k >= DispatchKey::StartOfAutogradFunctionalityBackends &&
k <= DispatchKey::EndOfAutogradFunctionalityBackends) {
return static_cast<BackendComponent>(
static_cast<uint8_t>(k) -
static_cast<uint8_t>(
DispatchKey::StartOfAutogradFunctionalityBackends));
} else {
return BackendComponent::InvalidBit;
}
}
constexpr DispatchKey toFunctionalityKey(DispatchKey k) {
if (k <= DispatchKey::EndOfFunctionalityKeys) {
return k;
} else if (k <= DispatchKey::EndOfDenseBackends) {
return DispatchKey::Dense;
} else if (k <= DispatchKey::EndOfQuantizedBackends) {
return DispatchKey::Quantized;
} else if (k <= DispatchKey::EndOfSparseBackends) {
return DispatchKey::Sparse;
} else if (k <= DispatchKey::EndOfNestedTensorBackends) {
return DispatchKey::NestedTensor;
} else if (k <= DispatchKey::EndOfAutogradFunctionalityBackends) {
return DispatchKey::AutogradFunctionality;
} else {
return DispatchKey::Undefined;
}
}
BackendComponent toBackendComponent(DeviceType device_type);
// Given (DispatchKey::Dense, BackendComponent::CUDABit), returns
// DispatchKey::CUDA.
// See Note [The Ordering of Per-Backend Dispatch Keys Matters!]
// This function relies on the invariant that the dispatch keys between
// StartOfDenseBackends and EndOfRuntimeBackendKeys are ordered by backend
// in the same order as `BackendComponent`.
constexpr DispatchKey toRuntimePerBackendFunctionalityKey(
DispatchKey functionality_k,
BackendComponent backend_k) {
if (functionality_k == DispatchKey::Dense) {
return static_cast<DispatchKey>(
static_cast<uint8_t>(DispatchKey::StartOfDenseBackends) +
static_cast<uint8_t>(backend_k));
}
if (functionality_k == DispatchKey::Sparse) {
return static_cast<DispatchKey>(
static_cast<uint8_t>(DispatchKey::StartOfSparseBackends) +
static_cast<uint8_t>(backend_k));
}
if (functionality_k == DispatchKey::Quantized) {
return static_cast<DispatchKey>(
static_cast<uint8_t>(DispatchKey::StartOfQuantizedBackends) +
static_cast<uint8_t>(backend_k));
}
if (functionality_k == DispatchKey::NestedTensor) {
return static_cast<DispatchKey>(
static_cast<uint8_t>(DispatchKey::StartOfNestedTensorBackends) +
static_cast<uint8_t>(backend_k));
}
if (functionality_k == DispatchKey::AutogradFunctionality) {
return static_cast<DispatchKey>(
static_cast<uint8_t>(
DispatchKey::StartOfAutogradFunctionalityBackends) +
static_cast<uint8_t>(backend_k));
}
return DispatchKey::Undefined;
}
} // namespace c10
namespace torch {
// Expose the constant, but not the TYPE (DispatchKey is an implementation
// detail!)
using c10::kAutograd;
} // namespace torch
// NB: You really shouldn't use this instance; this enum is guaranteed
// to be pretty small so a regular array should be acceptable.
namespace std {
template <>
struct hash<c10::DispatchKey> {
typedef size_t result_type;
typedef c10::DispatchKey argument_type;
size_t operator()(c10::DispatchKey x) const {
return static_cast<size_t>(x);
}
};
} // namespace std