blob: 8d3e339ca61963f5713432a598a832f3167b0522 [file] [log] [blame]
#pragma once
/// Defines the Float8_e4m3fn type (8-bit floating-point) including conversions
/// to standard C types and basic arithmetic operations. Note that arithmetic
/// operations are implemented by converting to floating point and
/// performing the operation in float32.
/// Binary configuration:
/// s eeee mmm
/// 1 sign bit
/// 4 exponent bits
/// 3 mantissa bits
/// bias = 7
///
/// Implementation based on the paper https://arxiv.org/pdf/2209.05433.pdf
/// and inspired by Half implementation from pytorch/c10/util/Half.h
#include <c10/macros/Macros.h>
#include <c10/util/C++17.h>
#include <c10/util/TypeSafeSignMath.h>
#include <c10/util/floating_point_utils.h>
#include <type_traits>
#if defined(__cplusplus) && (__cplusplus >= 201103L)
#include <cmath>
#include <cstdint>
#elif !defined(__OPENCL_VERSION__)
#include <math.h>
#include <stdint.h>
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <climits>
#include <cstdint>
#include <cstring>
#include <iosfwd>
#include <limits>
#include <sstream>
#include <stdexcept>
#include <string>
#include <utility>
#include <typeinfo> // operator typeid
namespace c10 {
namespace detail {
/*
* Convert a 8-bit floating-point number in fp8 E4M3FN format, in bit
* representation, to a 32-bit floating-point number in IEEE single-precision
* format, in bit representation.
*
* @note The implementation doesn't use any floating-point operations.
*/
inline C10_HOST_DEVICE float fp8e4m3fn_to_fp32_value(uint8_t input) {
/*
* Extend the fp8 E4M3FN number to 32 bits and shift to the
* upper part of the 32-bit word:
* +---+----+---+-----------------------------+
* | S |EEEE|MMM|0000 0000 0000 0000 0000 0000|
* +---+----+---+-----------------------------+
* Bits 31 27-30 24-26 0-23
*
* S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0
* - zero bits.
*/
const uint32_t w = (uint32_t)input << 24;
/*
* Extract the sign of the input number into the high bit of the 32-bit word:
*
* +---+----------------------------------+
* | S |0000000 00000000 00000000 00000000|
* +---+----------------------------------+
* Bits 31 0-31
*/
const uint32_t sign = w & UINT32_C(0x80000000);
/*
* Extract mantissa and biased exponent of the input number into the bits 0-30
* of the 32-bit word:
*
* +---+----+---+-----------------------------+
* | S |EEEE|MMM|0000 0000 0000 0000 0000 0000|
* +---+----+---+-----------------------------+
* Bits 31 27-30 24-26 0-23
*/
const uint32_t nonsign = w & UINT32_C(0x7FFFFFFF);
/*
* Renorm shift is the number of bits to shift mantissa left to make the
* half-precision number normalized. If the initial number is normalized, some
* of its high 5 bits (sign == 0 and 4-bit exponent) equals one. In this case
* renorm_shift == 0. If the number is denormalize, renorm_shift > 0. Note
* that if we shift denormalized nonsign by renorm_shift, the unit bit of
* mantissa will shift into exponent, turning the biased exponent into 1, and
* making mantissa normalized (i.e. without leading 1).
*/
#if defined(__CUDA_ARCH__)
uint32_t renorm_shift = __clz(nonsign);
#elif defined(__SYCL_DEVICE_ONLY__)
// Note: zero is not a supported input into `__builtin_clz`
uint32_t renorm_shift =
nonsign != 0 ? __builtin_clz(nonsign) : sizeof(uint32_t) * CHAR_BIT;
#elif defined(_MSC_VER)
unsigned long nonsign_bsr;
_BitScanReverse(&nonsign_bsr, (unsigned long)nonsign);
uint32_t renorm_shift = (uint32_t)nonsign_bsr ^ 31;
#else
// Note: zero is not a supported input into `__builtin_clz`
uint32_t renorm_shift =
nonsign != 0 ? __builtin_clz(nonsign) : sizeof(uint32_t) * CHAR_BIT;
#endif
renorm_shift = renorm_shift > 4 ? renorm_shift - 4 : 0;
/*
* Iff fp8e4m3fn number has all exponent and mantissa bits set to 1,
* the addition overflows it into bit 31, and the subsequent shift turns the
* high 9 bits into 1. Thus inf_nan_mask == 0x7F800000 if the fp8e4m3fn number
* is Nan, 0x00000000 otherwise
*/
const int32_t inf_nan_mask =
((int32_t)(nonsign + 0x01000000) >> 8) & INT32_C(0x7F800000);
/*
* Iff nonsign is 0, it overflows into 0xFFFFFFFF, turning bit 31
* into 1. Otherwise, bit 31 remains 0. The signed shift right by 31
* broadcasts bit 31 into all bits of the zero_mask. Thus zero_mask ==
* 0xFFFFFFFF if the half-precision number was zero (+0.0h or -0.0h)
* 0x00000000 otherwise
*/
const int32_t zero_mask = (int32_t)(nonsign - 1) >> 31;
/*
* 1. Shift nonsign left by renorm_shift to normalize it (if the input
* was denormal)
* 2. Shift nonsign right by 4 so the exponent (4 bits originally)
* becomes an 8-bit field and 3-bit mantissa shifts into the 3 high
* bits of the 23-bit mantissa of IEEE single-precision number.
* 3. Add 0x78 to the exponent (starting at bit 23) to compensate the
* different in exponent bias (0x7F for single-precision number less 0x07
* for fp8e4m3fn number).
* 4. Subtract renorm_shift from the exponent (starting at bit 23) to
* account for renormalization. As renorm_shift is less than 0x78, this
* can be combined with step 3.
* 5. Binary OR with inf_nan_mask to turn the exponent into 0xFF if the
* input was NaN or infinity.
* 6. Binary ANDNOT with zero_mask to turn the mantissa and exponent
* into zero if the input was zero.
* 7. Combine with the sign of the input number.
*/
uint32_t result = sign |
((((nonsign << renorm_shift >> 4) + ((0x78 - renorm_shift) << 23)) |
inf_nan_mask) &
~zero_mask);
return fp32_from_bits(result);
}
/*
* Convert a 32-bit floating-point number in IEEE single-precision format to a
* 8-bit floating-point number in fp8 E4M3FN format, in bit representation.
*/
inline C10_HOST_DEVICE uint8_t fp8e4m3fn_from_fp32_value(float f) {
/*
* Binary representation of 480.0f, which is the first value
* not representable in fp8e4m3fn range:
* 0 1111 111 - fp8e4m3fn
* 0 10000111 11100000000000000000000 - fp32
*/
constexpr uint32_t fp8_max = UINT32_C(1087) << 20;
/*
* A mask for converting fp32 numbers lower than fp8e4m3fn normal range
* into denorm representation
* magic number: ((127 - 7) + (23 - 3) + 1)
*/
constexpr uint32_t denorm_mask = UINT32_C(141) << 23;
uint32_t f_bits = fp32_to_bits(f);
uint8_t result = 0u;
/*
* Extract the sign of the input number into the high bit of the 32-bit word:
*
* +---+----------------------------------+
* | S |0000000 00000000 00000000 00000000|
* +---+----------------------------------+
* Bits 31 0-31
*/
const uint32_t sign = f_bits & UINT32_C(0x80000000);
/*
* Set sign bit to 0
*/
f_bits ^= sign;
if (f_bits >= fp8_max) {
// NaN - all exponent and mantissa bits set to 1
result = 0x7f;
} else {
if (f_bits < (UINT32_C(121) << 23)) {
// Input number is smaller than 2^(-6), which is the smallest
// fp8e4m3fn normal number
f_bits =
fp32_to_bits(fp32_from_bits(f_bits) + fp32_from_bits(denorm_mask));
result = static_cast<uint8_t>(f_bits - denorm_mask);
} else {
// resulting mantissa is odd
uint8_t mant_odd = (f_bits >> 20) & 1;
// update exponent, rounding bias part 1
f_bits += ((uint32_t)(7 - 127) << 23) + 0x7FFFF;
// rounding bias part 2
f_bits += mant_odd;
// take the bits!
result = static_cast<uint8_t>(f_bits >> 20);
}
}
result |= static_cast<uint8_t>(sign >> 24);
return result;
}
} // namespace detail
struct alignas(1) Float8_e4m3fn {
uint8_t x;
struct from_bits_t {};
C10_HOST_DEVICE static constexpr from_bits_t from_bits() {
return from_bits_t();
}
Float8_e4m3fn() = default;
constexpr C10_HOST_DEVICE Float8_e4m3fn(uint8_t bits, from_bits_t)
: x(bits){};
inline C10_HOST_DEVICE Float8_e4m3fn(float value);
inline C10_HOST_DEVICE operator float() const;
inline C10_HOST_DEVICE bool isnan() const;
};
C10_API std::ostream& operator<<(std::ostream& out, const Float8_e4m3fn& value);
} // namespace c10
#include <c10/util/Float8_e4m3fn-inl.h> // IWYU pragma: keep