blob: 50a031bac30b6bd18364bb7b4baa558040801e6f [file] [log] [blame]
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "caffe2/experiments/operators/funhash_op.h"
namespace caffe2 {
namespace {
REGISTER_CPU_OPERATOR(FunHash, FunHashOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(FunHashGradient, FunHashGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(FunHash)
.NumInputs(4, 5)
.NumOutputs(1)
.SetDoc(R"DOC(
This layer compresses a fully-connected layer for sparse inputs
via hashing.
It takes four required inputs and an optional fifth input.
The first three inputs `scalars`, `indices`, and `segment_ids` are
the sparse segmented representation of sparse data, which are the
same as the last three inputs of the `SparseSortedSegmentWeightedSum`
operator. If the argument `num_segments` is specified, it would be used
as the first dimension for the output; otherwise it would be derived
from the maximum segment ID.
The fourth input is a 1D weight vector. Each entry of the fully-connected
layer would be randomly mapped from one of the entries in this vector.
When the optional fifth input vector is present, each weight of the
fully-connected layer would be the linear combination of K entries
randomly mapped from the weight vector, provided the input
(length-K vector) serves as the coefficients.
)DOC")
.Input(0, "scalars", "Values of the non-zero entries of the sparse data.")
.Input(1, "indices", "Indices to the non-zero valued features.")
.Input(
2,
"segment_ids",
"Segment IDs corresponding to the non-zero entries.")
.Input(3, "weight", "Weight vector")
.Input(
4,
"alpha",
"Optional coefficients for linear combination of hashed weights.")
.Output(
0,
"output",
"Output tensor with the first dimension equal to the number "
"of segments.")
.Arg("num_outputs", "Number of outputs")
.Arg("num_segments", "Number of segments");
OPERATOR_SCHEMA(FunHashGradient).NumInputs(5, 6).NumOutputs(1, 2);
class GetFunHashGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
if (def_.input_size() == 4) {
return SingleGradientDef(
"FunHashGradient",
"",
vector<string>{GO(0), I(0), I(1), I(2), I(3)},
vector<string>{GI(3)});
}
// def_.input_size() == 5
return SingleGradientDef(
"FunHashGradient",
"",
vector<string>{GO(0), I(0), I(1), I(2), I(3), I(4)},
vector<string>{GI(3), GI(4)});
}
};
REGISTER_GRADIENT(FunHash, GetFunHashGradient);
} // namespace
} // namespace caffe2