blob: 325d9c4591ef74c0c41d5896fae651bfd971ab95 [file] [log] [blame]
// Implements the math functions for CPU.
// The implementation in this file allows us to route the underlying numerical
// computation library to different compiler options (-mno-avx2 or -mavx2).
#include <immintrin.h>
#include <cmath>
#include <cstdint>
#include <c10/util/irange.h>
using std::uint64_t;
using std::uint8_t;
namespace caffe2 {
namespace math {
static constexpr double QEPSILON = 1e-8;
void quantize_and_compress__avx2(
const float* input_data,
uint8_t* output_data,
uint64_t input_size,
uint64_t bitwidth,
bool random,
const float* random_buffer) {
__m256i shuffle_mask_v = _mm256_set_epi8(
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
0x0c,
0x08,
0x04,
0x00,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
0xff,
0x0c,
0x08,
0x04,
0x00);
__m256i permute_mask_v =
_mm256_set_epi32(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00);
uint64_t data_per_byte = 8 / bitwidth;
uint64_t tail = input_size % data_per_byte;
tail = tail ? data_per_byte - tail : 0;
uint64_t segment_size = (input_size + data_per_byte - 1) / data_per_byte;
// basic info
float minimum_element = INFINITY, maximum_element = -INFINITY;
for (const auto i : c10::irange(input_size)) {
minimum_element =
(input_data[i] < minimum_element) ? input_data[i] : minimum_element;
maximum_element =
(input_data[i] > maximum_element) ? input_data[i] : maximum_element;
}
output_data[0] = bitwidth;
output_data[1] = tail;
reinterpret_cast<float*>(output_data + 2)[0] = minimum_element;
reinterpret_cast<float*>(output_data + 2)[1] = maximum_element;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
float gap = (maximum_element - minimum_element) / ((1 << bitwidth) - 1.0f);
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
float gap_inverse = 1. / (gap + QEPSILON);
uint8_t max_q = (1 << bitwidth) - 1;
uint64_t bit_start = 0;
if (random) {
for (uint64_t start = 0; start < input_size; start += segment_size) {
uint64_t stride = start + segment_size <= input_size ? segment_size
: input_size - start;
uint64_t i = 0;
constexpr int VLEN = 8;
for (; i < stride / VLEN * VLEN; i += VLEN) {
__m256 r_v = _mm256_loadu_ps(&random_buffer[start + i]);
__m256 fval_v = _mm256_loadu_ps(input_data + start + i);
__m256 thetimes_v = _mm256_mul_ps(
_mm256_sub_ps(fval_v, _mm256_set1_ps(minimum_element)),
_mm256_set1_ps(gap_inverse));
__m256 rounded_v = _mm256_floor_ps(_mm256_add_ps(thetimes_v, r_v));
rounded_v = _mm256_max_ps(
_mm256_setzero_ps(),
_mm256_min_ps(_mm256_set1_ps(max_q), rounded_v));
__m256i qval_v = _mm256_cvtps_epi32(rounded_v);
__m256i orval_v = _mm256_cvtepu8_epi32(_mm_lddqu_si128(
reinterpret_cast<const __m128i*>(output_data + 10 + i)));
orval_v =
_mm256_or_si256(orval_v, _mm256_slli_epi32(qval_v, bit_start));
orval_v = _mm256_shuffle_epi8(orval_v, shuffle_mask_v);
orval_v = _mm256_permutevar8x32_epi32(orval_v, permute_mask_v);
*reinterpret_cast<int64_t*>(output_data + 10 + i) =
_mm256_extract_epi64(orval_v, 0);
}
for (; i < stride; ++i) {
float fval = input_data[start + i];
float thetimes = (fval - minimum_element) * gap_inverse;
float rounded = floor(thetimes + random_buffer[start + i]);
rounded = rounded < static_cast<float>(max_q)
? rounded
: static_cast<float>(max_q);
rounded = rounded > 0.0f ? rounded : 0.0f;
uint8_t qval = rounded;
uint8_t orval = output_data[10 + i];
output_data[10 + i] = orval | static_cast<uint8_t>(qval << bit_start);
}
bit_start += bitwidth;
}
} else {
// !random
for (uint64_t start = 0; start < input_size; start += segment_size) {
uint64_t stride = start + segment_size <= input_size ? segment_size
: input_size - start;
uint64_t i = 0;
constexpr int VLEN = 8;
for (; i < stride / VLEN * VLEN; i += VLEN) {
__m256 fval_v = _mm256_loadu_ps(input_data + start + i);
__m256 thetimes_v = _mm256_mul_ps(
_mm256_sub_ps(fval_v, _mm256_set1_ps(minimum_element)),
_mm256_set1_ps(gap_inverse));
thetimes_v = _mm256_max_ps(
_mm256_setzero_ps(),
_mm256_min_ps(_mm256_set1_ps(max_q), thetimes_v));
__m256i qval_v = _mm256_cvtps_epi32(_mm256_round_ps(
thetimes_v, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
__m256i orval_v = _mm256_cvtepu8_epi32(_mm_lddqu_si128(
reinterpret_cast<const __m128i*>(output_data + 10 + i)));
orval_v =
_mm256_or_si256(orval_v, _mm256_slli_epi32(qval_v, bit_start));
orval_v = _mm256_shuffle_epi8(orval_v, shuffle_mask_v);
orval_v = _mm256_permutevar8x32_epi32(orval_v, permute_mask_v);
*reinterpret_cast<int64_t*>(output_data + 10 + i) =
_mm256_extract_epi64(orval_v, 0);
}
for (; i < stride; ++i) {
float fval = input_data[start + i];
float thetimes = (fval - minimum_element) * gap_inverse;
thetimes = thetimes < static_cast<float>(max_q)
? thetimes
: static_cast<float>(max_q);
thetimes = thetimes > 0.0f ? thetimes : 0.0f;
uint8_t qval = nearbyint(thetimes);
uint8_t orval = output_data[10 + i];
output_data[10 + i] = orval | static_cast<uint8_t>(qval << bit_start);
}
bit_start += bitwidth;
}
} // !random
}
void decompress_and_dequantize__avx2(
const uint8_t* input_data,
float* output_data,
uint64_t input_size) {
// basic info
const float minimum_element =
reinterpret_cast<const float*>(input_data + 2)[0];
const float maximum_element =
reinterpret_cast<const float*>(input_data + 2)[1];
const uint64_t bitwidth = input_data[0];
const float gap =
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
(maximum_element - minimum_element) / ((1 << bitwidth) - 1.f) +
QEPSILON; // for exact recovering
const uint64_t tail = input_data[1];
const uint64_t output_size = (input_size - 10) * (8 / bitwidth) - tail;
// decoding
uint64_t bit_start = 0;
const uint64_t segment_size = input_size - 10;
for (uint64_t start = 0; start < output_size; start += segment_size) {
uint64_t stride = start + segment_size <= output_size ? segment_size
: output_size - start;
uint8_t mask = (1 << bitwidth) - 1;
uint64_t i = 0;
// Can process 8 elements at a time because we need to expand uint8_t
// to int32_t to use epi32 vector instructions.
constexpr int VLEN = 8;
for (; i < stride / VLEN * VLEN; i += VLEN) {
__m128i in_v = _mm_lddqu_si128(
reinterpret_cast<const __m128i*>(input_data + 10 + i));
__m256i out_epi32_v = _mm256_and_si256(
_mm256_srli_epi32(_mm256_cvtepu8_epi32(in_v), bit_start),
_mm256_set1_epi32(mask));
__m256 out_v = _mm256_fmadd_ps(
_mm256_cvtepi32_ps(out_epi32_v),
_mm256_set1_ps(gap),
_mm256_set1_ps(minimum_element));
_mm256_storeu_ps(output_data + start + i, out_v);
}
for (; i < stride; ++i) {
output_data[start + i] =
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
((input_data[10 + i] >> bit_start) & mask) * gap + minimum_element;
}
bit_start += bitwidth;
}
}
} // namespace math
} // namespace caffe2