| #include <ATen/ATen.h> |
| #include <ATen/cuda/CUDAConfig.h> |
| #include <c10/util/UniqueVoidPtr.h> |
| #include <unordered_set> |
| #if AT_CUDNN_ENABLED() |
| |
| #include <ATen/native/cudnn/Macros.h> |
| |
| #endif |
| #include <ATen/cuda/CUDAContext.h> |
| #include <ATen/cuda/CUDAGeneratorImpl.h> |
| #include <ATen/cuda/CachingHostAllocator.h> |
| #include <ATen/cuda/Sleep.h> |
| #include <ATen/cuda/detail/CUDAHooks.h> |
| #include <ATen/cuda/jiterator.h> |
| #include <c10/core/StorageImpl.h> |
| #include <c10/cuda/CUDACachingAllocator.h> |
| #include <c10/cuda/CUDAFunctions.h> |
| #include <ATen/cuda/CUDAGraphsUtils.cuh> |
| |
| #ifdef USE_NCCL |
| #include <torch/csrc/cuda/python_nccl.h> |
| #endif |
| #include <c10/util/CallOnce.h> |
| #include <c10/util/irange.h> |
| |
| #include <torch/csrc/CudaIPCTypes.h> |
| #include <torch/csrc/Generator.h> |
| #include <torch/csrc/cuda/CUDAPluggableAllocator.h> |
| #include <torch/csrc/cuda/THCP.h> |
| #include <torch/csrc/cuda/python_comm.h> |
| #include <torch/csrc/profiler/python/combined_traceback.h> |
| #include <torch/csrc/python_headers.h> |
| #include <torch/csrc/utils/cuda_lazy_init.h> |
| #include <torch/csrc/utils/pybind.h> |
| #include <torch/csrc/utils/pycfunction_helpers.h> |
| #include <torch/csrc/utils/python_numbers.h> |
| #include <torch/csrc/utils/python_strings.h> |
| #include <array> |
| #include <chrono> |
| #include <iostream> |
| #include <sstream> |
| #include <thread> |
| #include <unordered_map> |
| #ifndef WIN32 |
| #include <pthread.h> |
| #endif |
| |
| using namespace torch; |
| |
| static bool in_bad_fork = false; // True for children forked after cuda init |
| |
| #ifndef WIN32 |
| // Called in the forked child if cuda has already been initialized |
| static void forked_child() { |
| in_bad_fork = true; |
| torch::utils::set_requires_cuda_init(true); |
| } |
| #endif |
| |
| // Should be called before the first cuda call. |
| // Note: This is distinct from initExtension because a stub cuda implementation |
| // has some working functions (e.g. device_count) but cannot fully initialize. |
| static void poison_fork() { |
| #ifndef WIN32 |
| static c10::once_flag flag; |
| c10::call_once(flag, [] { pthread_atfork(nullptr, nullptr, forked_child); }); |
| #endif |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // CUDA management methods |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void THCPModule_setDevice(int device) { |
| c10::cuda::set_device(static_cast<c10::DeviceIndex>(device)); |
| } |
| |
| PyObject* THCPModule_setDevice_wrap(PyObject* self, PyObject* arg) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to setDevice"); |
| int64_t device = THPUtils_unpackLong(arg); |
| |
| torch::utils::cuda_lazy_init(); |
| THCPModule_setDevice(device); |
| |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_exchangeDevice(PyObject* self, PyObject* arg) { |
| HANDLE_TH_ERRORS |
| TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to exchangeDevice"); |
| int64_t device = THPUtils_unpackLong(arg); |
| if (device < 0) { |
| return THPUtils_packInt32(-1); |
| } |
| |
| torch::utils::cuda_lazy_init(); |
| auto current_device = c10::cuda::current_device(); |
| if (current_device != device) { |
| THCPModule_setDevice(device); |
| } |
| |
| return THPUtils_packInt32(static_cast<int>(current_device)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_getDevice_wrap(PyObject* self, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| torch::utils::cuda_lazy_init(); |
| // NOLINTNEXTLINE(bugprone-signed-char-misuse) |
| auto device = static_cast<int>(c10::cuda::current_device()); |
| return THPUtils_packInt32(device); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_canDeviceAccessPeer_wrap(PyObject* self, PyObject* args) { |
| HANDLE_TH_ERRORS |
| PyObject* arg1 = nullptr; |
| PyObject* arg2 = nullptr; |
| if (!PyArg_ParseTuple(args, "OO", &arg1, &arg2)) { |
| THPUtils_invalidArguments( |
| args, |
| nullptr, |
| "can_device_peer_access", |
| 1, |
| "(int device, int peer_device);"); |
| return nullptr; |
| } |
| THPUtils_assert( |
| THPUtils_checkLong(arg1), "invalid argument to canDeviceAccessPeer"); |
| THPUtils_assert( |
| THPUtils_checkLong(arg2), "invalid argument to canDeviceAccessPeer"); |
| int64_t device = THPUtils_unpackLong(arg1); |
| int64_t peer_device = THPUtils_unpackLong(arg2); |
| |
| torch::utils::cuda_lazy_init(); |
| auto can_access = at::cuda::canDeviceAccessPeer(device, peer_device); |
| return PyBool_FromLong(can_access); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_getDeviceCount_wrap(PyObject* self, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| poison_fork(); |
| return THPUtils_packUInt64(at::cuda::device_count()); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_getArchFlags(PyObject* self, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| poison_fork(); |
| #ifdef CUDA_ARCH_FLAGS |
| static const char* flags = C10_STRINGIZE(CUDA_ARCH_FLAGS); |
| return THPUtils_packString(flags); |
| #else |
| Py_RETURN_NONE; |
| #endif |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject* THCPModule_isInBadFork(PyObject* self, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| return PyBool_FromLong(in_bad_fork); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_getCurrentStream_wrap( |
| PyObject* /* unused */, |
| PyObject* device_index) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert( |
| THPUtils_checkLong(device_index), "invalid argument to getCurrentStream"); |
| int64_t device = THPUtils_unpackLong(device_index); |
| auto stream = at::cuda::getCurrentCUDAStream(device); |
| PyObject* output_tuple = PyTuple_New(3); |
| PyTuple_SetItem( |
| output_tuple, 0, THPUtils_packInt64(static_cast<int64_t>(stream.id()))); |
| PyTuple_SetItem( |
| output_tuple, |
| 1, |
| THPUtils_packInt64(static_cast<int64_t>(stream.device_index()))); |
| PyTuple_SetItem( |
| output_tuple, |
| 2, |
| THPUtils_packInt64(static_cast<int64_t>(stream.device_type()))); |
| return output_tuple; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_getCurrentStream_raw( |
| PyObject* /* unused */, |
| PyObject* device_index) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert( |
| THPUtils_checkLong(device_index), "invalid argument to getCurrentStream"); |
| int64_t device = THPUtils_unpackLong(device_index); |
| return PyLong_FromVoidPtr(at::cuda::getCurrentCUDAStream(device).stream()); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_getDefaultStream_wrap( |
| PyObject* /* unused */, |
| PyObject* device_index) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert( |
| THPUtils_checkLong(device_index), "invalid argument to getDefaultStream"); |
| int64_t device = THPUtils_unpackLong(device_index); |
| auto stream = at::cuda::getDefaultCUDAStream(device); |
| PyObject* output_tuple = PyTuple_New(3); |
| PyTuple_SetItem( |
| output_tuple, 0, THPUtils_packInt64(static_cast<int64_t>(stream.id()))); |
| PyTuple_SetItem( |
| output_tuple, |
| 1, |
| THPUtils_packInt64(static_cast<int64_t>(stream.device_index()))); |
| PyTuple_SetItem( |
| output_tuple, |
| 2, |
| THPUtils_packInt64(static_cast<int64_t>(stream.device_type()))); |
| return output_tuple; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_setStream_wrap( |
| PyObject* self, |
| PyObject* args, |
| PyObject* kwargs) { |
| HANDLE_TH_ERRORS |
| int64_t stream_id = 0; |
| int64_t device_index = 0; |
| int64_t device_type = 0; |
| |
| // NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays) |
| constexpr const char* kwlist[] = { |
| "stream_id", "device_index", "device_type", nullptr}; |
| if (!PyArg_ParseTupleAndKeywords( |
| args, |
| kwargs, |
| "|LLL", |
| const_cast<char**>(kwlist), |
| &stream_id, |
| &device_index, |
| &device_type)) { |
| } |
| |
| auto stream = at::cuda::CUDAStream::unpack3( |
| stream_id, device_index, static_cast<c10::DeviceType>(device_type)); |
| |
| // NOLINTNEXTLINE(bugprone-signed-char-misuse) |
| auto device = static_cast<int>(c10::cuda::current_device()); |
| if (device != stream.device_index()) { |
| THCPModule_setDevice(stream.device_index()); |
| } |
| at::cuda::setCurrentCUDAStream(stream); |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_getCompiledVersion(PyObject* self, PyObject* noargs) { |
| #if defined(USE_ROCM) |
| return THPUtils_packInt64((int64_t)ROCM_VERSION); |
| #else |
| return THPUtils_packInt64((int64_t)CUDA_VERSION); |
| #endif |
| } |
| |
| PyObject* THCPModule_cudaHostAllocator(PyObject* _unused, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| c10::Allocator* allocator = at::cuda::getCachingHostAllocator(); |
| return PyLong_FromVoidPtr(allocator); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_cudaCachingAllocator_raw_alloc( |
| PyObject* _unused, |
| PyObject* args) { |
| HANDLE_TH_ERRORS |
| PyObject* size_o = nullptr; |
| PyObject* stream_o = nullptr; |
| if (!PyArg_ParseTuple(args, "OO", &size_o, &stream_o)) { |
| THPUtils_invalidArguments( |
| args, |
| nullptr, |
| "caching_allocator_alloc", |
| 1, |
| "(ssize_t size, intptr_t stream);"); |
| return nullptr; |
| } |
| auto size = PyLong_AsSsize_t(size_o); |
| // NOLINTNEXTLINE(cppcoreguidelines-init-variables) |
| cudaStream_t stream = static_cast<cudaStream_t>(PyLong_AsVoidPtr(stream_o)); |
| // NOLINTNEXTLINE(cppcoreguidelines-init-variables) |
| void* mem = |
| c10::cuda::CUDACachingAllocator::raw_alloc_with_stream(size, stream); |
| return PyLong_FromVoidPtr(mem); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // Unpack a PyObject to at::Scalar, throw an exception if it fails |
| at::Scalar as_scalar(PyObject* arg) { |
| // Zero-dim tensors are converted to Scalars as-is. Note this doesn't |
| // currently handle most NumPy scalar types except np.float64. |
| if (THPVariable_Check(arg)) { |
| return THPVariable_Unpack(arg).item(); |
| } |
| |
| if (THPUtils_checkLong(arg)) { |
| return at::Scalar(static_cast<int64_t>(THPUtils_unpackLong(arg))); |
| } |
| |
| if (PyBool_Check(arg)) { |
| return at::Scalar(THPUtils_unpackBool(arg)); |
| } |
| |
| if (PyComplex_Check(arg)) { |
| return at::Scalar(THPUtils_unpackComplexDouble(arg)); |
| } |
| return at::Scalar(THPUtils_unpackDouble(arg)); |
| } |
| |
| // Entrypoint for the callable created by torch.cuda.jiterator |
| // See jiterator.py for more details |
| PyObject* THCPModule_cudaJiteratorCompileAndLaunchKernel( |
| PyObject* _unused, |
| PyObject* args) { |
| HANDLE_TH_ERRORS |
| |
| PyObject* code_string_o = nullptr; |
| PyObject* kernel_name_o = nullptr; |
| PyObject* return_by_ref_o = nullptr; |
| PyObject* num_outputs_o = nullptr; |
| PyObject* tensors_o = nullptr; |
| PyObject* kwargs_o = nullptr; |
| if (!PyArg_ParseTuple( |
| args, |
| "OOOOO|O", |
| &code_string_o, |
| &kernel_name_o, |
| &return_by_ref_o, |
| &num_outputs_o, |
| &tensors_o, |
| &kwargs_o)) { |
| return nullptr; |
| } |
| |
| const std::string code_string = THPUtils_unpackString(code_string_o); |
| const std::string kernel_name = THPUtils_unpackString(kernel_name_o); |
| const bool return_by_ref = THPUtils_unpackBool(return_by_ref_o); |
| const int num_outputs = static_cast<int>(THPUtils_unpackLong(num_outputs_o)); |
| |
| THPUtils_assert( |
| PyTuple_Check(tensors_o), |
| "tensors argument is expected to " |
| "be a tuple, but got %s", |
| THPUtils_typename(tensors_o)); |
| Py_ssize_t num_tensors = PyTuple_GET_SIZE(tensors_o); |
| |
| c10::SmallVector<at::Tensor> tensors; |
| for (const auto i : c10::irange(num_tensors)) { |
| PyObject* _tensor = PyTuple_GET_ITEM(tensors_o, i); |
| THPUtils_assert( |
| THPVariable_Check(_tensor), |
| "%d of input tensors tuple is not a Tensor", |
| i); |
| |
| tensors.emplace_back(THPVariable_Unpack(_tensor)); |
| } |
| |
| c10::SmallVector<at::Scalar> extra_args; |
| PyObject* key = nullptr; |
| PyObject* value = nullptr; |
| Py_ssize_t pos = 0; |
| while (PyDict_Next(kwargs_o, &pos, &key, &value)) { |
| extra_args.emplace_back(as_scalar(value)); |
| } |
| |
| c10::SmallVector<at::Tensor> outputs = at::cuda::CompileAndLaunchKernel( |
| code_string, |
| kernel_name, |
| num_outputs, |
| tensors, |
| extra_args, |
| return_by_ref); |
| |
| if (num_outputs == 1) { |
| return THPVariable_Wrap(outputs[0]); |
| } else { |
| PyObject* output_tuple = PyTuple_New(num_outputs); |
| for (int i = 0; i < num_outputs; ++i) { |
| PyTuple_SetItem(output_tuple, i, THPVariable_Wrap(outputs[i])); |
| } |
| return output_tuple; |
| } |
| |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_cudaCachingAllocator_raw_delete( |
| PyObject* _unused, |
| PyObject* obj) { |
| HANDLE_TH_ERRORS |
| void* mem_ptr = PyLong_AsVoidPtr(obj); |
| c10::cuda::CUDACachingAllocator::raw_delete(mem_ptr); |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_cudaCachingAllocator_set_allocator_settings( |
| PyObject* _unused, |
| PyObject* env) { |
| HANDLE_TH_ERRORS |
| c10::cuda::CUDACachingAllocator::setAllocatorSettings( |
| THPUtils_unpackString(env)); |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_getAllocatorBackend(PyObject* _unused, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| return THPUtils_packString(c10::cuda::CUDACachingAllocator::name()); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_cudaSynchronize(PyObject* _unused, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| c10::cuda::device_synchronize(); |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_cudaIPCCollect(PyObject* _unused, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| torch::CudaIPCCollect(); |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_cudaSleep(PyObject* _unused, PyObject* cycles) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert( |
| THPUtils_checkLong(cycles), "torch.cuda._sleep(): expected 'int'"); |
| at::cuda::sleep(THPUtils_unpackLong(cycles)); |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // We need to ensure that as long as a thread will NEVER loose the GIL as long |
| // as it holds the CUDA mutex. Otherwise another thread might be scheduled and |
| // try to e.g. allocate a new tensor which will cause a deadlock. It's enough to |
| // have a single global, because it can be only set once (cudaMutex is not |
| // recursive) by the thread that owns the mutex (obviously there can be only one |
| // such thread). |
| static PyGILState_STATE cudaMutexGILState; |
| |
| PyObject* THCPModule_cudaLockMutex(PyObject* module, PyObject* noargs) { |
| auto mutex = c10::cuda::getFreeMutex(); |
| // This has to be a busy loop because we **absolutely need to** hold the GIL |
| // or it's a recipe for a deadlock otherwise (if we let other Python threads |
| // run while we have the cudaMutex, but not the GIL, they might try to e.g. |
| // free a CUDA tensor and acquire the cudaMutex without giving up the GIL, |
| // because it happens deep within THC). |
| while (true) { |
| if (mutex->try_lock()) |
| break; |
| { |
| pybind11::gil_scoped_release no_gil; |
| std::this_thread::sleep_for(std::chrono::microseconds(10)); |
| } |
| } |
| |
| cudaMutexGILState = PyGILState_Ensure(); |
| Py_RETURN_NONE; |
| } |
| |
| PyObject* THCPModule_cudaUnlockMutex(PyObject* module, PyObject* noargs) { |
| auto mutex = c10::cuda::getFreeMutex(); |
| PyGILState_Release(cudaMutexGILState); |
| mutex->unlock(); |
| Py_RETURN_NONE; |
| } |
| |
| PyObject* THCPModule_hasPrimaryContext(PyObject* _unused, PyObject* arg) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert( |
| THPUtils_checkLong(arg), "invalid argument to has_primary_context"); |
| int64_t device_index = static_cast<int64_t>(THPUtils_unpackLong(arg)); |
| if (c10::cuda::hasPrimaryContext(device_index)) { |
| Py_RETURN_TRUE; |
| } else { |
| Py_RETURN_FALSE; |
| } |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_setMemoryFraction(PyObject* _unused, PyObject* args) { |
| HANDLE_TH_ERRORS |
| PyObject* fraction_o = nullptr; |
| PyObject* device_o = nullptr; |
| if (!PyArg_ParseTuple(args, "OO", &fraction_o, &device_o)) { |
| THPUtils_invalidArguments( |
| args, |
| nullptr, |
| "set_memory_fraction", |
| 1, |
| "(double fraction, int device);"); |
| return nullptr; |
| } |
| double fraction = PyFloat_AsDouble(fraction_o); |
| int64_t device = PyLong_AsLongLong(device_o); |
| |
| c10::cuda::CUDACachingAllocator::setMemoryFraction(fraction, device); |
| END_HANDLE_TH_ERRORS |
| Py_RETURN_NONE; |
| } |
| |
| PyObject* THCPModule_emptyCache(PyObject* _unused, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| c10::cuda::CUDACachingAllocator::emptyCache(); |
| END_HANDLE_TH_ERRORS |
| Py_RETURN_NONE; |
| } |
| |
| PyObject* THCPModule_memoryStats(PyObject* _unused, PyObject* arg) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert( |
| THPUtils_checkLong(arg), "invalid argument to memory_allocated"); |
| const int device = (int)THPUtils_unpackLong(arg); |
| |
| using c10::cuda::CUDACachingAllocator::DeviceStats; |
| using c10::cuda::CUDACachingAllocator::Stat; |
| using c10::cuda::CUDACachingAllocator::StatArray; |
| using c10::cuda::CUDACachingAllocator::StatType; |
| |
| const auto statToDict = [](const Stat& stat) { |
| py::dict dict; |
| |
| dict["current"] = stat.current; |
| dict["peak"] = stat.peak; |
| dict["allocated"] = stat.allocated; |
| dict["freed"] = stat.freed; |
| return dict; |
| }; |
| |
| const auto statArrayToDict = [=](const StatArray& statArray) { |
| const std::array<const char*, static_cast<size_t>(StatType::NUM_TYPES)> |
| statTypeNames = {"all", "small_pool", "large_pool"}; |
| py::dict dict; |
| for (const auto i : c10::irange(statTypeNames.size())) { |
| dict[statTypeNames[i]] = statToDict(statArray[i]); |
| } |
| return dict; |
| }; |
| |
| const DeviceStats stats = |
| c10::cuda::CUDACachingAllocator::getDeviceStats(device); |
| |
| py::dict result; |
| result["num_alloc_retries"] = stats.num_alloc_retries; |
| result["num_ooms"] = stats.num_ooms; |
| result["max_split_size"] = stats.max_split_size; |
| result["allocation"] = statArrayToDict(stats.allocation); |
| result["segment"] = statArrayToDict(stats.segment); |
| result["active"] = statArrayToDict(stats.active); |
| result["inactive_split"] = statArrayToDict(stats.inactive_split); |
| result["allocated_bytes"] = statArrayToDict(stats.allocated_bytes); |
| result["reserved_bytes"] = statArrayToDict(stats.reserved_bytes); |
| result["active_bytes"] = statArrayToDict(stats.active_bytes); |
| result["inactive_split_bytes"] = statArrayToDict(stats.inactive_split_bytes); |
| result["requested_bytes"] = statArrayToDict(stats.requested_bytes); |
| result["oversize_allocations"] = statToDict(stats.oversize_allocations); |
| result["oversize_segments"] = statToDict(stats.oversize_segments); |
| |
| return result.release().ptr(); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_resetAccumulatedMemoryStats( |
| PyObject* _unused, |
| PyObject* arg) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert( |
| THPUtils_checkLong(arg), |
| "invalid argument to reset_accumulated_memory_stats"); |
| const int device = (int)THPUtils_unpackLong(arg); |
| c10::cuda::CUDACachingAllocator::resetAccumulatedStats(device); |
| END_HANDLE_TH_ERRORS |
| Py_RETURN_NONE; |
| } |
| |
| PyObject* THCPModule_resetPeakMemoryStats(PyObject* _unused, PyObject* arg) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert( |
| THPUtils_checkLong(arg), "invalid argument to reset_peak_memory_stats"); |
| const int device = (int)THPUtils_unpackLong(arg); |
| c10::cuda::CUDACachingAllocator::resetPeakStats(device); |
| END_HANDLE_TH_ERRORS |
| Py_RETURN_NONE; |
| } |
| |
| CapturedTraceback* getFromContext( |
| const std::shared_ptr<c10::GatheredContext>& x) { |
| if (CapturedTraceback* sc = dynamic_cast<CapturedTraceback*>(x.get())) { |
| return sc; |
| } |
| TORCH_CHECK( |
| false, |
| "attempting to gather stack context from the wrong StackContext type."); |
| } |
| |
| PyObject* THCPModule_memorySnapshot(PyObject* _unused, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| |
| using c10::cuda::CUDACachingAllocator::BlockInfo; |
| using c10::cuda::CUDACachingAllocator::History; |
| using c10::cuda::CUDACachingAllocator::SegmentInfo; |
| |
| py::str device_s = "device"; |
| py::str address_s = "address"; |
| py::str total_size_s = "total_size"; |
| py::str allocated_size_s = "allocated_size"; |
| py::str active_size_s = "active_size"; |
| py::str requested_size_s = "requested_size"; |
| py::str stream_s = "stream"; |
| py::str segment_type_s = "segment_type"; |
| py::str segment_pool_id = "segment_pool_id"; |
| py::str large_s = "large"; |
| py::str small_s = "small"; |
| py::str size_s = "size"; |
| py::str state_s = "state"; |
| py::str active_allocated_s = "active_allocated"; |
| py::str active_pending_free_s = "active_pending_free"; |
| py::str inactive_s = "inactive"; |
| py::str addr_s = "addr"; |
| py::str real_size_s = "real_size"; |
| py::str cpp_frames_s = "cpp_frames"; |
| py::str history_s = "history"; |
| py::str blocks_s = "blocks"; |
| |
| std::vector<CapturedTraceback*> to_gather_frames; |
| std::vector<py::dict> to_gather_dest; |
| |
| const auto segmentInfoToDict = [&](const SegmentInfo& segmentInfo) { |
| py::dict segmentDict; |
| segmentDict[device_s] = segmentInfo.device; |
| segmentDict[address_s] = segmentInfo.address; |
| segmentDict[total_size_s] = segmentInfo.total_size; |
| segmentDict[allocated_size_s] = segmentInfo.allocated_size; |
| segmentDict[active_size_s] = segmentInfo.active_size; |
| segmentDict[requested_size_s] = segmentInfo.requested_size; |
| // we want the python objects to pickle easily so use an int to |
| // represent the stream rather than a torch.cuda.stream object |
| segmentDict[stream_s] = int64_t(segmentInfo.stream); |
| segmentDict[segment_type_s] = (segmentInfo.is_large ? large_s : small_s); |
| segmentDict[segment_pool_id] = segmentInfo.owner_private_pool_id; |
| |
| py::list blocks; |
| for (const auto& blockInfo : segmentInfo.blocks) { |
| py::dict blockDict; |
| blockDict[size_s] = blockInfo.size; |
| blockDict[requested_size_s] = blockInfo.requested_size; |
| blockDict[state_s] = |
| (blockInfo.allocated |
| ? active_allocated_s |
| : (blockInfo.active ? active_pending_free_s : inactive_s)); |
| if (blockInfo.history.size()) { |
| py::list history; |
| for (const History& h : blockInfo.history) { |
| py::dict history_entry; |
| history_entry[addr_s] = (int64_t)h.addr; |
| history_entry[real_size_s] = h.real_size; |
| if (h.context) { |
| auto sc = getFromContext(h.context); |
| to_gather_frames.emplace_back(sc); |
| to_gather_dest.emplace_back(history_entry); |
| } |
| history.append(std::move(history_entry)); |
| } |
| blockDict[history_s] = std::move(history); |
| } |
| blocks.append(blockDict); |
| } |
| segmentDict[blocks_s] = blocks; |
| |
| return segmentDict; |
| }; |
| |
| auto snapshot = c10::cuda::CUDACachingAllocator::snapshot(); |
| |
| py::list segments; |
| |
| for (const auto& segmentInfo : snapshot.segments) { |
| segments.append(segmentInfoToDict(segmentInfo)); |
| } |
| |
| py::list traces; |
| py::str action_s = "action"; |
| py::str alloc_s = "alloc"; |
| py::str free_requested_s = "free_requested"; |
| py::str free_completed_s = "free_completed"; |
| py::str segment_alloc_s = "segment_alloc"; |
| py::str segment_free_s = "segment_free"; |
| py::str snapshot_s = "snapshot"; |
| py::str oom_s = "oom"; |
| py::str device_free_s = "device_free"; |
| |
| using namespace c10::cuda::CUDACachingAllocator; |
| |
| auto action_to_str = [&](TraceEntry::Action action) { |
| switch (action) { |
| case TraceEntry::ALLOC: |
| return alloc_s; |
| case TraceEntry::FREE_REQUESTED: |
| return free_requested_s; |
| case TraceEntry::FREE_COMPLETED: |
| return free_completed_s; |
| case TraceEntry::SEGMENT_ALLOC: |
| return segment_alloc_s; |
| case TraceEntry::SEGMENT_FREE: |
| return segment_free_s; |
| case TraceEntry::OOM: |
| return oom_s; |
| case TraceEntry::SNAPSHOT: |
| return snapshot_s; |
| } |
| throw std::runtime_error("unreachable"); |
| }; |
| |
| for (const auto& traceInfo : snapshot.device_traces) { |
| py::list trace; |
| for (const auto& te : traceInfo) { |
| py::dict trace_entry; |
| if (te.context_) { |
| // without further compression frames can get really large on dump |
| auto sc = getFromContext(te.context_); |
| to_gather_frames.emplace_back(sc); |
| to_gather_dest.emplace_back(trace_entry); |
| } |
| trace_entry[action_s] = action_to_str(te.action_); |
| trace_entry[TraceEntry::OOM == te.action_ ? device_free_s : addr_s] = |
| te.addr_; |
| trace_entry[size_s] = te.size_; |
| trace_entry[stream_s] = int64_t(te.stream_); |
| trace.append(trace_entry); |
| } |
| traces.append(trace); |
| } |
| |
| py::dict result; |
| result["segments"] = segments; |
| result["device_traces"] = traces; |
| |
| py::str frames_s = "frames"; |
| auto frames = py_symbolize(to_gather_frames); |
| for (auto i : c10::irange(frames.size())) { |
| to_gather_dest.at(i)[frames_s] = frames.at(i); |
| } |
| |
| return result.release().ptr(); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_attachOutOfMemoryObserver( |
| PyObject* _unused, |
| PyObject* observer) { |
| HANDLE_TH_ERRORS |
| Py_XINCREF(observer); |
| auto obs = [observer]( |
| int64_t device, |
| int64_t alloc, |
| int64_t device_allocated, |
| int64_t device_free) { |
| py::gil_scoped_acquire g; |
| PyObject* result = PyObject_CallFunction( |
| observer, "LLLL", device, alloc, device_allocated, device_free); |
| if (!result) { |
| throw py::error_already_set(); |
| } |
| Py_XDECREF(result); |
| }; |
| c10::cuda::CUDACachingAllocator::attachOutOfMemoryObserver(std::move(obs)); |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_cudaSetSyncDebugMode(PyObject* _unused, PyObject* arg) { |
| HANDLE_TH_ERRORS |
| TORCH_WARN_ONCE( |
| "Synchronization debug mode is a prototype feature and does not yet detect all " |
| "synchronizing operations"); |
| THPUtils_assert( |
| THPUtils_checkLong(arg), "invalid argument to set_sync_debug_mode"); |
| int64_t debug_mode = THPUtils_unpackLong(arg); |
| TORCH_CHECK( |
| debug_mode >= 0 && debug_mode <= 2, |
| "invalid value of debug_mode, expected one of 0,1,2"); |
| c10::cuda::SyncDebugMode l; |
| switch (debug_mode) { |
| case 0: |
| l = c10::cuda::SyncDebugMode::L_DISABLED; |
| break; |
| case 1: |
| l = c10::cuda::SyncDebugMode::L_WARN; |
| break; |
| case 2: |
| l = c10::cuda::SyncDebugMode::L_ERROR; |
| break; |
| default: |
| l = c10::cuda::SyncDebugMode::L_DISABLED; |
| break; // can't happen |
| } |
| c10::cuda::warning_state().set_sync_debug_mode(l); |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_cudaGetSyncDebugMode(PyObject* self, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| auto debug_mode = c10::cuda::warning_state().get_sync_debug_mode(); |
| switch (debug_mode) { |
| case c10::cuda::SyncDebugMode::L_DISABLED: |
| return THPUtils_packInt32(0); |
| case c10::cuda::SyncDebugMode::L_WARN: |
| return THPUtils_packInt32(1); |
| case c10::cuda::SyncDebugMode::L_ERROR: |
| return THPUtils_packInt32(2); |
| default: |
| return THPUtils_packInt32(-1); // can't happen |
| } |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static std::shared_ptr<c10::GatheredContext> gather() { |
| return CapturedTraceback::gather(true, true, false); |
| } |
| |
| static std::shared_ptr<c10::GatheredContext> gather_with_cpp() { |
| return CapturedTraceback::gather(true, true, true); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Cuda module initialization |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| static void registerCudaDeviceProperties(PyObject* module) { |
| // Add _cudaDevicePropertires class to torch._C |
| auto m = py::handle(module).cast<py::module>(); |
| py::class_<cudaDeviceProp>(m, "_CudaDeviceProperties") |
| .def_readonly("name", &cudaDeviceProp::name) |
| .def_readonly("major", &cudaDeviceProp::major) |
| .def_readonly("minor", &cudaDeviceProp::minor) |
| .def_readonly("is_multi_gpu_board", &cudaDeviceProp::isMultiGpuBoard) |
| .def_readonly("is_integrated", &cudaDeviceProp::integrated) |
| .def_readonly( |
| "multi_processor_count", &cudaDeviceProp::multiProcessorCount) |
| .def_readonly("total_memory", &cudaDeviceProp::totalGlobalMem) |
| .def("__repr__", [](const cudaDeviceProp& prop) { |
| std::ostringstream stream; |
| stream << "_CudaDeviceProperties(name='" << prop.name |
| << "', major=" << prop.major << ", minor=" << prop.minor |
| << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024) |
| << "MB, multi_processor_count=" << prop.multiProcessorCount |
| << ")"; |
| return stream.str(); |
| }); |
| |
| m.def( |
| "_cuda_recordMemoryHistory", |
| [](bool enabled, |
| bool record_context, |
| bool record_context_cpp, |
| Py_ssize_t alloc_trace_max_entries, |
| bool alloc_trace_record_context) { |
| if (enabled && record_context_cpp) { |
| unwind::unwind(); // warm up the library |
| } |
| c10::cuda::CUDACachingAllocator::recordHistory( |
| enabled, |
| record_context ? (record_context_cpp ? gather_with_cpp : gather) |
| : nullptr, |
| alloc_trace_max_entries, |
| alloc_trace_record_context); |
| }); |
| } |
| |
| // We choose to ignore certain blocks that are currently allocated |
| // when we set the pool to its checkpoint. For those blocks, we need |
| // to swap out the deleter function of their corresponding blocks |
| // so that a deallocation is not triggered when they die. |
| void removeStorageDeleterFns( |
| const std::vector<c10::StorageImpl*>& stale_live_storages, |
| std::unordered_set<void*> definitely_stale_pointers) { |
| for (c10::StorageImpl* stale_storage : stale_live_storages) { |
| auto ptr = stale_storage->data_ptr().get(); |
| auto allocated_pointer = definitely_stale_pointers.find(ptr); |
| TORCH_CHECK(allocated_pointer != definitely_stale_pointers.end()); |
| auto t = c10::cuda::CUDACachingAllocator::get(); |
| bool succeeded = stale_storage->mutable_data_ptr().compare_exchange_deleter( |
| t->raw_deleter(), &c10::detail::deleteNothing); |
| |
| TORCH_CHECK( |
| succeeded, |
| "Unexpected deleter function on storage, could not swap function"); |
| } |
| } |
| |
| void addStorageDeleterFns( |
| std::vector<c10::StorageImpl*>& storages_to_add_deleters_to, |
| c10::cuda::CUDACachingAllocator::CheckpointDelta& delta) { |
| std::unordered_map<void*, c10::StorageImpl*> storages; |
| for (auto& storage : storages_to_add_deleters_to) { |
| storages[storage->data_ptr().get()] = storage; |
| } |
| |
| for (auto& data_ptr : delta.dataptrs_allocd) { |
| auto storage_pair = storages.find(data_ptr.get()); |
| if (storage_pair != storages.end()) { |
| auto ctx = storage_pair->second->data_ptr().get_context(); |
| TORCH_CHECK(ctx == nullptr, " Not expecting deleter function"); |
| |
| auto curr_deleter = storage_pair->second->data_ptr().get_deleter(); |
| storage_pair->second->set_data_ptr_noswap(std::move(data_ptr)); |
| } else { |
| data_ptr.release_context(); |
| } |
| } |
| } |
| |
| static void registerCudaPluggableAllocator(PyObject* module) { |
| auto m = py::handle(module).cast<py::module>(); |
| |
| py::class_< |
| c10::cuda::CUDACachingAllocator::CUDAAllocator, |
| std::shared_ptr<c10::cuda::CUDACachingAllocator::CUDAAllocator>>( |
| m, "_cuda_CUDAAllocator"); |
| m.def("_cuda_getAllocator", []() { |
| return py::cast(torch::cuda::CUDAPluggableAllocator::getCurrentAllocator()); |
| }); |
| |
| m.def( |
| "_cuda_changeCurrentAllocator", |
| [](std::shared_ptr<c10::cuda::CUDACachingAllocator::CUDAAllocator> |
| allocator) { |
| torch::cuda::CUDAPluggableAllocator::changeCurrentAllocator(allocator); |
| }); |
| py::class_< |
| torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator, |
| c10::cuda::CUDACachingAllocator::CUDAAllocator, |
| std::shared_ptr< |
| torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator>>( |
| m, "_CUDAPluggableAllocator") |
| .def( |
| "set_init_fn", |
| [](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self, |
| uint64_t func_ptr) { |
| using FuncType = void(int); |
| std::function<FuncType> func = |
| reinterpret_cast<FuncType*>(func_ptr); |
| self.set_init_fn(func); |
| }) |
| .def( |
| "set_reset_fn", |
| [](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self, |
| uint64_t func_ptr) { |
| using FuncType = void(); |
| std::function<FuncType> func = |
| reinterpret_cast<FuncType*>(func_ptr); |
| self.set_reset_fn(func); |
| }) |
| .def( |
| "set_memory_fraction_fn", |
| [](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self, |
| uint64_t func_ptr) { |
| using FuncType = void(double, int); |
| std::function<FuncType> func = |
| reinterpret_cast<FuncType*>(func_ptr); |
| self.set_memory_fraction_fn(func); |
| }) |
| .def( |
| "set_base_alloc_fn", |
| [](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self, |
| uint64_t func_ptr) { |
| using FuncType = void*(void*, size_t*); |
| std::function<FuncType> func = |
| reinterpret_cast<FuncType*>(func_ptr); |
| self.set_base_alloc_fn(func); |
| }) |
| .def( |
| "set_record_stream_fn", |
| [](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self, |
| uint64_t func_ptr) { |
| using FuncType = void(void*, cudaStream_t); |
| std::function<FuncType> func = |
| reinterpret_cast<FuncType*>(func_ptr); |
| self.set_record_stream_fn(func); |
| }) |
| .def( |
| "set_begin_allocate_stream_to_pool", |
| [](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self, |
| uint64_t func_ptr) { |
| using FuncType = void(int, cudaStream_t, c10::cuda::MempoolId_t); |
| std::function<FuncType> func = |
| reinterpret_cast<FuncType*>(func_ptr); |
| self.set_begin_allocate_stream_to_pool(func); |
| }) |
| .def( |
| "set_end_allocate_stream_to_pool_fn", |
| [](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self, |
| uint64_t func_ptr) { |
| using FuncType = void(int, cudaStream_t); |
| std::function<FuncType> func = |
| reinterpret_cast<FuncType*>(func_ptr); |
| self.set_end_allocate_stream_to_pool_fn(func); |
| }) |
| .def( |
| "set_release_pool", |
| [](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self, |
| uint64_t func_ptr) { |
| using FuncType = void(int, c10::cuda::MempoolId_t); |
| std::function<FuncType> func = |
| reinterpret_cast<FuncType*>(func_ptr); |
| self.set_release_pool(func); |
| }); |
| m.def("_cuda_customAllocator", [](uint64_t malloc_ptr, uint64_t free_ptr) { |
| using MallocFuncType = void*(size_t, int, cudaStream_t); |
| using FreeFuncType = void(void*, size_t, int, cudaStream_t); |
| std::function<MallocFuncType> malloc_fn = |
| reinterpret_cast<MallocFuncType*>(malloc_ptr); |
| std::function<FreeFuncType> free_fn = |
| reinterpret_cast<FreeFuncType*>(free_ptr); |
| return torch::cuda::CUDAPluggableAllocator::createCustomAllocator( |
| malloc_fn, free_fn); |
| }); |
| |
| py::class_< |
| c10::cuda::CUDACachingAllocator::AllocatorState, |
| std::shared_ptr<c10::cuda::CUDACachingAllocator::AllocatorState>>( |
| m, "_cuda_CUDAAllocator_AllocatorState"); |
| |
| m.def("_cuda_getCheckpointState", [](int device, c10::cuda::MempoolId_t id) { |
| return c10::cuda::CUDACachingAllocator::getCheckpointState(device, id); |
| }); |
| |
| m.def("_free_And_Remove_DeleterFn", [](size_t storage_impl_ptr) { |
| c10::StorageImpl* storage_impl = (c10::StorageImpl*)storage_impl_ptr; |
| auto alloc = c10::cuda::CUDACachingAllocator::get(); |
| auto data_ptr = storage_impl->data_ptr().get(); |
| bool succeeded = storage_impl->mutable_data_ptr().compare_exchange_deleter( |
| alloc->raw_deleter(), c10::detail::deleteNothing); |
| TORCH_CHECK("Expected standard deleter"); |
| c10::cuda::CUDACachingAllocator::raw_delete(data_ptr); |
| }); |
| |
| m.def("_has_Standard_Deleter", [](size_t storage_impl_ptr) { |
| c10::StorageImpl* storage_impl = (c10::StorageImpl*)storage_impl_ptr; |
| auto alloc = c10::cuda::CUDACachingAllocator::get(); |
| auto data_ptr = storage_impl->data_ptr().get(); |
| return (storage_impl->data_ptr().get_deleter() == alloc->raw_deleter()); |
| }); |
| |
| m.def( |
| "_cuda_beginAllocateCurrentStreamToPool", |
| [](int device, at::cuda::MempoolId_t mempool_id) { |
| auto stream = at::cuda::getCurrentCUDAStream(device); |
| TORCH_CHECK(stream, "Expected stream capture to be under way"); |
| c10::cuda::CUDACachingAllocator::beginAllocateStreamToPool( |
| device, stream, mempool_id); |
| }); |
| |
| m.def("_cuda_endAllocateCurrentStreamToPool", [](int device) { |
| auto stream = at::cuda::getCurrentCUDAStream(device); |
| TORCH_CHECK(stream, "Expected stream capture to be under way"); |
| c10::cuda::CUDACachingAllocator::endAllocateStreamToPool(device, stream); |
| }); |
| |
| m.def("_cuda_releasePool", [](int device, at::cuda::MempoolId_t mempool_id) { |
| c10::cuda::CUDACachingAllocator::releasePool(device, mempool_id); |
| }); |
| |
| m.def( |
| "_cuda_setCheckpointPoolState", |
| [](int device, |
| std::shared_ptr<c10::cuda::CUDACachingAllocator::AllocatorState> pps, |
| std::vector<size_t> stale_storages_ptr, |
| std::vector<size_t> storages_to_add_deleters_to_ptr = {}) { |
| std::unordered_set<c10::StorageImpl*> ptr_set; |
| // iterate on std::vector for determinism |
| std::vector<c10::StorageImpl*> ptrs; |
| for (size_t ptr_int : stale_storages_ptr) { |
| c10::StorageImpl* ptr = (c10::StorageImpl*)ptr_int; |
| if (!ptr_set.count(ptr)) { |
| ptrs.push_back(ptr); |
| ptr_set.insert(ptr); |
| } |
| } |
| auto delta = c10::cuda::CUDACachingAllocator::setCheckpointPoolState( |
| device, pps); |
| auto& freed_pointers = delta.ptrs_freed; |
| auto& allocd_pointers = delta.dataptrs_allocd; |
| |
| std::unordered_set<void*> allocd_set; |
| for (auto& data_ptr : delta.dataptrs_allocd) { |
| allocd_set.insert(data_ptr.get()); |
| } |
| std::unordered_set<void*> freed_pointer_set; |
| size_t definite_freed_count = 0; |
| for (void* ptr : freed_pointers) { |
| if (!allocd_set.count(ptr)) { |
| definite_freed_count += 1; |
| } |
| freed_pointer_set.insert((ptr)); |
| } |
| // that block has already been freed, |
| // so even those this will error, so too will the allcoator |
| // when the corresponding tensor dies because there is no |
| // live tensor correponding to it |
| TORCH_CHECK( |
| ptr_set.size() >= definite_freed_count, |
| "Any stale tensors which are being manually freed" |
| " must be passed to set checkpoint"); |
| |
| removeStorageDeleterFns(ptrs, freed_pointer_set); |
| std::vector<c10::StorageImpl*> storages_to_add_deleters_to; |
| for (size_t ptr_int : storages_to_add_deleters_to_ptr) { |
| storages_to_add_deleters_to.push_back((c10::StorageImpl*)ptr_int); |
| } |
| |
| addStorageDeleterFns(storages_to_add_deleters_to, delta); |
| }); |
| } |
| |
| static void bindGetDeviceProperties(PyObject* module) { |
| // Add method to torch.cuda |
| auto m = py::handle(module).cast<py::module>(); |
| m.def( |
| "_get_device_properties", |
| [](int device) -> cudaDeviceProp* { |
| return at::cuda::getDeviceProperties(device); |
| }, |
| py::return_value_policy::reference); |
| } |
| |
| // Callback for python part. Used for additional initialization of python |
| // classes |
| static PyObject* THCPModule_initExtension(PyObject* self, PyObject* noargs) { |
| #if C10_ASAN_ENABLED |
| TORCH_WARN( |
| "torch.cuda: your pytorch binary has address sanitizer (asan) built in, " |
| "asan is currently not compatible with torch.cuda module, " |
| "you might get unexpected behavior (eg. out of memory, crash, etc.), " |
| "please rebuild pytorch without asan if you need to use this module"); |
| #endif |
| HANDLE_TH_ERRORS |
| TORCH_INTERNAL_ASSERT(!in_bad_fork); // Handled at python level |
| poison_fork(); |
| at::globalContext().lazyInitCUDA(); |
| |
| auto m = THPObjectPtr(PyImport_ImportModule("torch.cuda")); |
| if (!m) |
| throw python_error(); |
| |
| bool has_half = true; |
| |
| auto set_module_attr = [&](const char* name, PyObject* v) { |
| // PyObject_SetAttrString doesn't steal reference. So no need to incref. |
| if (PyObject_SetAttrString(m, name, v) < 0) { |
| throw python_error(); |
| } |
| }; |
| |
| set_module_attr("has_magma", at::hasMAGMA() ? Py_True : Py_False); |
| set_module_attr("has_half", has_half ? Py_True : Py_False); |
| |
| auto num_gpus = c10::cuda::device_count(); |
| auto default_cuda_generators = PyTuple_New(static_cast<Py_ssize_t>(num_gpus)); |
| for (const auto i : c10::irange(num_gpus)) { |
| auto cast_gen = (THPGenerator*)THPGenerator_initDefaultGenerator( |
| at::cuda::detail::getDefaultCUDAGenerator(i)); |
| // This reference is meant to be given away, so no need to incref here. |
| PyTuple_SetItem(default_cuda_generators, i, (PyObject*)cast_gen); |
| } |
| set_module_attr("default_generators", default_cuda_generators); |
| bindGetDeviceProperties(m); |
| |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_getCurrentBlasHandle_wrap( |
| PyObject* self, |
| PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| // NOLINTNEXTLINE(cppcoreguidelines-init-variables) |
| cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle(); |
| return PyLong_FromVoidPtr(handle); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject* THCPModule_clearBlasWorkspaces_wrap( |
| PyObject* self, |
| PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| at::cuda::clearCublasWorkspaces(); |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_rocm_is_backward_pass( |
| PyObject* _unused, |
| PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| #if USE_ROCM |
| if (at::ROCmBackwardPassGuard::is_backward_pass()) { |
| Py_RETURN_TRUE; |
| } else { |
| Py_RETURN_FALSE; |
| } |
| #else |
| Py_RETURN_FALSE; |
| #endif |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject* THCPModule_isCurrentStreamCapturing_wrap( |
| PyObject* self, |
| PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| // If there's no cuda context, at::cuda::currentStreamCaptureStatus returns |
| // CaptureStatus::None without initializing a context. |
| if (at::cuda::currentStreamCaptureStatus() == at::cuda::CaptureStatus::None) { |
| Py_RETURN_FALSE; |
| } else { |
| Py_RETURN_TRUE; |
| } |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_setBenchmarkLimitCuDNN(PyObject* _unused, PyObject* arg) { |
| THPUtils_assert( |
| THPUtils_checkLong(arg), |
| "set_benchmark_limit_cudnn expects an int, " |
| "but got %s", |
| THPUtils_typename(arg)); |
| auto benchmark_limit = static_cast<int>(THPUtils_unpackLong(arg)); |
| #if defined(USE_ROCM) |
| TORCH_WARN_ONCE( |
| "cuDNN Benchmark limit is not supported in MIOpen and will have no effect."); |
| #endif |
| #if AT_CUDNN_ENABLED() |
| #if HAS_CUDNN_V8() |
| at::globalContext().setBenchmarkLimitCuDNN(benchmark_limit); |
| #else |
| TORCH_WARN_ONCE( |
| "cuDNN Benchmark limit is not supported with cuDNN v7 API and will have no effect."); |
| #endif |
| #endif |
| Py_RETURN_NONE; |
| } |
| |
| PyObject* THCPModule_benchmarkLimitCuDNN(PyObject* _unused, PyObject* noargs) { |
| return THPUtils_packInt32(at::globalContext().benchmarkLimitCuDNN()); |
| } |
| |
| // NOLINTNEXTLINE(modernize-avoid-c-arrays, |
| // cppcoreguidelines-avoid-non-const-global-variables, |
| // cppcoreguidelines-avoid-c-arrays) |
| static struct PyMethodDef _THCPModule_methods[] = { |
| {"_cuda_init", THCPModule_initExtension, METH_NOARGS, nullptr}, |
| {"_cuda_setDevice", THCPModule_setDevice_wrap, METH_O, nullptr}, |
| {"_cuda_exchangeDevice", THCPModule_exchangeDevice, METH_O, nullptr}, |
| {"_cuda_getDevice", THCPModule_getDevice_wrap, METH_NOARGS, nullptr}, |
| {"_cuda_getDeviceCount", |
| THCPModule_getDeviceCount_wrap, |
| METH_NOARGS, |
| nullptr}, |
| {"_cuda_canDeviceAccessPeer", |
| THCPModule_canDeviceAccessPeer_wrap, |
| METH_VARARGS, |
| nullptr}, |
| {"_cuda_getArchFlags", THCPModule_getArchFlags, METH_NOARGS, nullptr}, |
| {"_cuda_isInBadFork", THCPModule_isInBadFork, METH_NOARGS, nullptr}, |
| {"_cuda_getCurrentStream", |
| THCPModule_getCurrentStream_wrap, |
| METH_O, |
| nullptr}, |
| {"_cuda_getCurrentRawStream", |
| THCPModule_getCurrentStream_raw, |
| METH_O, |
| nullptr}, |
| {"_cuda_getDefaultStream", |
| THCPModule_getDefaultStream_wrap, |
| METH_O, |
| nullptr}, |
| {"_cuda_getCurrentBlasHandle", |
| THCPModule_getCurrentBlasHandle_wrap, |
| METH_NOARGS, |
| nullptr}, |
| {"_cuda_clearCublasWorkspaces", |
| THCPModule_clearBlasWorkspaces_wrap, |
| METH_NOARGS, |
| nullptr}, |
| {"_cuda_isCurrentStreamCapturing", |
| THCPModule_isCurrentStreamCapturing_wrap, |
| METH_NOARGS, |
| nullptr}, |
| {"_cuda_setStream", |
| castPyCFunctionWithKeywords(THCPModule_setStream_wrap), |
| METH_VARARGS | METH_KEYWORDS, |
| nullptr}, |
| {"_cuda_getCompiledVersion", |
| THCPModule_getCompiledVersion, |
| METH_NOARGS, |
| nullptr}, |
| {"_cuda_hasPrimaryContext", THCPModule_hasPrimaryContext, METH_O, nullptr}, |
| {"_cuda_setMemoryFraction", |
| THCPModule_setMemoryFraction, |
| METH_VARARGS, |
| nullptr}, |
| {"_cuda_emptyCache", THCPModule_emptyCache, METH_NOARGS, nullptr}, |
| {"_cuda_memoryStats", THCPModule_memoryStats, METH_O, nullptr}, |
| {"_cuda_resetAccumulatedMemoryStats", |
| THCPModule_resetAccumulatedMemoryStats, |
| METH_O, |
| nullptr}, |
| {"_cuda_resetPeakMemoryStats", |
| THCPModule_resetPeakMemoryStats, |
| METH_O, |
| nullptr}, |
| {"_cuda_memorySnapshot", THCPModule_memorySnapshot, METH_NOARGS, nullptr}, |
| {"_cuda_attach_out_of_memory_observer", |
| THCPModule_attachOutOfMemoryObserver, |
| METH_O, |
| nullptr}, |
| {"_cuda_cudaHostAllocator", |
| THCPModule_cudaHostAllocator, |
| METH_NOARGS, |
| nullptr}, |
| {"_cuda_cudaCachingAllocator_raw_alloc", |
| THCPModule_cudaCachingAllocator_raw_alloc, |
| METH_VARARGS, |
| nullptr}, |
| {"_cuda_cudaCachingAllocator_raw_delete", |
| THCPModule_cudaCachingAllocator_raw_delete, |
| METH_O, |
| nullptr}, |
| {"_cuda_cudaCachingAllocator_set_allocator_settings", |
| THCPModule_cudaCachingAllocator_set_allocator_settings, |
| METH_O, |
| nullptr}, |
| {"_cuda_getAllocatorBackend", |
| THCPModule_getAllocatorBackend, |
| METH_NOARGS, |
| nullptr}, |
| {"_cuda_synchronize", THCPModule_cudaSynchronize, METH_NOARGS, nullptr}, |
| {"_cuda_ipc_collect", THCPModule_cudaIPCCollect, METH_NOARGS, nullptr}, |
| {"_cuda_sleep", THCPModule_cudaSleep, METH_O, nullptr}, |
| {"_cuda_lock_mutex", THCPModule_cudaLockMutex, METH_NOARGS, nullptr}, |
| {"_cuda_unlock_mutex", THCPModule_cudaUnlockMutex, METH_NOARGS, nullptr}, |
| {"_cuda_set_sync_debug_mode", |
| THCPModule_cudaSetSyncDebugMode, |
| METH_O, |
| nullptr}, |
| {"_cuda_get_sync_debug_mode", |
| THCPModule_cudaGetSyncDebugMode, |
| METH_NOARGS, |
| nullptr}, |
| {"_cuda_jiterator_compile_and_launch_kernel", |
| THCPModule_cudaJiteratorCompileAndLaunchKernel, |
| METH_VARARGS, |
| nullptr}, |
| {"_cuda_get_cudnn_benchmark_limit", |
| THCPModule_benchmarkLimitCuDNN, |
| METH_NOARGS, |
| nullptr}, |
| {"_cuda_set_cudnn_benchmark_limit", |
| THCPModule_setBenchmarkLimitCuDNN, |
| METH_O, |
| nullptr}, |
| #ifdef USE_NCCL |
| {"_nccl_version", THCPModule_nccl_version, METH_NOARGS, nullptr}, |
| {"_nccl_unique_id", THCPModule_nccl_unique_id, METH_NOARGS, nullptr}, |
| {"_nccl_init_rank", THCPModule_nccl_init_rank, METH_VARARGS, nullptr}, |
| {"_nccl_reduce", THCPModule_nccl_reduce, METH_VARARGS, nullptr}, |
| {"_nccl_all_reduce", THCPModule_nccl_all_reduce, METH_VARARGS, nullptr}, |
| {"_nccl_broadcast", THCPModule_nccl_broadcast, METH_VARARGS, nullptr}, |
| {"_nccl_all_gather", THCPModule_nccl_all_gather, METH_VARARGS, nullptr}, |
| {"_nccl_reduce_scatter", |
| THCPModule_nccl_reduce_scatter, |
| METH_VARARGS, |
| nullptr}, |
| #endif |
| {"_rocm_is_backward_pass", |
| THCPModule_rocm_is_backward_pass, |
| METH_NOARGS, |
| nullptr}, |
| {nullptr}}; |
| |
| PyMethodDef* THCPModule_methods() { |
| return _THCPModule_methods; |
| } |
| |
| namespace torch { |
| namespace cuda { |
| |
| namespace shared { |
| |
| void initCudartBindings(PyObject* module); |
| void initNvtxBindings(PyObject* module); |
| #if defined(USE_CUDNN) || defined(USE_ROCM) |
| void initCudnnBindings(PyObject* module); |
| #endif |
| |
| } // namespace shared |
| |
| void initModule(PyObject* module) { |
| python::initCommMethods(module); |
| // As weird as it seems, this file is also compiled for ROCm, |
| // so this condition might not always be true... |
| shared::initCudartBindings(module); |
| shared::initNvtxBindings(module); |
| #if defined(USE_CUDNN) || defined(USE_ROCM) |
| shared::initCudnnBindings(module); |
| #endif |
| registerCudaDeviceProperties(module); |
| registerCudaPluggableAllocator(module); |
| } |
| |
| } // namespace cuda |
| } // namespace torch |