blob: eef1b0fdd676e142a221d30396ab57042fcac324 [file] [log] [blame]
#include <torch/csrc/jit/runtime/autodiff.h>
#include <ATen/core/functional.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/update_differentiable_graph_requires_grad.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/jit/runtime/symbolic_script.h>
#include <algorithm>
#include <memory>
namespace torch {
namespace jit {
using value_map = std::unordered_map<Value*, Value*>;
using value_set = std::unordered_set<Value*>;
void wrapDim(int64_t& dim, const std::vector<int64_t>& sizes) {
if (dim < 0) {
dim += sizes.size();
}
}
// need_trim_grad_ops contains functions that return multiple outputs in
// forward, but only the first one requires grad.
// Example:
// kthvalue returns (kthvalue, index of kthvalue), currently autodiff only
// supports at most one output that requires grad. Thus we need to remove
// the grad for index that doesn't require grad.
bool needTrimGrad(Node* n) {
static OperatorSet need_trim_grad_ops = {
"aten::kthvalue(Tensor self, int k, int dim, bool keepdim) -> (Tensor, Tensor)",
"aten::topk(Tensor self, int k, int dim, bool largest, bool sorted) -> (Tensor, Tensor)",
"aten::max_pool2d(Tensor self, int[] kernel_size, int[] stride, int[] padding, int[] dilation, bool ceil_mode) -> Tensor",
"aten::max_pool2d_with_indices(Tensor self, int[] kernel_size, int[] stride, int[] padding, int[] dilation, bool ceil_mode) -> (Tensor, Tensor)"};
if (n->isMemberOf(need_trim_grad_ops)) {
return true;
}
return false;
}
bool isDifferentiable(const Node* n) {
// TODO: scalar-tensor ops should be canonicalized
static OperatorSet differentiable_ops = {
"aten::_slow_conv2d_forward(Tensor self, Tensor weight, int[] kernel_size, Tensor? bias, int[] stride, int[] padding) -> Tensor",
"aten::native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)",
};
// TODO: add support for the following fusible operators.
// They're a little tricky to implement; max/min require mutability for best
// perf "aten::atan2(Tensor self) -> Tensor", "aten::max(Tensor self) ->
// Tensor", "aten::min(Tensor self) -> Tensor"
if (n->kind() == prim::Constant || n->kind() == prim::AutogradZero ||
n->kind() == prim::AutogradAdd || n->kind() == prim::ConstantChunk ||
n->kind() == prim::profile || n->kind() == prim::profile_ivalue)
return true;
if (n->isMemberOf(differentiable_ops))
return true;
if (n->matches(
"aten::dropout(Tensor input, float p, bool train) -> Tensor",
attr::train)) {
return n->get<bool>(attr::train).value();
}
if (n->matches(
"aten::expand(Tensor self, int[] size, *, bool implicit) -> Tensor")) {
return n->get<c10::List<int64_t>>(attr::size) &&
n->is_constant(attr::implicit);
}
auto schema = n->maybeSchema();
if (schema && hasGradientInfoForSchema(*schema)) {
return true;
}
// linear blocks may appear as inputs to graph executors, but they are removed
// before differentiation occurs
if (n->kind() == prim::GradOf) {
auto body = n->blocks().at(0);
return std::all_of(
body->nodes().begin(),
body->nodes().end(),
static_cast<bool (*)(const Node*)>(isDifferentiable));
}
// formulas are only defined with floating point scalars,
// so we fallback to autograd for other cases.
for (const Value* input : n->inputs()) {
if (input->type() == NumberType::get()) {
return false;
}
}
return false;
}
bool isDifferentiable(Graph& g) {
return std::all_of(
g.nodes().begin(),
g.nodes().end(),
static_cast<bool (*)(const Node*)>(isDifferentiable));
}
// NB: Write gradient using torchscript
// For example, node aten::mul() should be defined as follows
// def forward(x, y):
// return x*y, (x, y)
// def backward(ctx, grad_output):
// x, y = ctx
// return (y * grad_output).sum_to_size(x), (x * grad_output).sum_to_size(y)
//
// Here ctx is a tuple that carries all input/intermediate results needed in
// backward from forward pass.
//
// This python code is compiled into a GradientPair which includes a forward
// graph and a backward graph. Forward graph will be used to replace the node in
// grad_desc.f, and backward graph will be used to construct GradOf(node) in
// reverse_block. Grad_values(a.k.a gradOutputs) propagated through
// node->owningGraph() in **reversed** order, thus GradientPair.forward should
// be inserted **after** the node being replaced, so that we don't traverse the
// graph infinite times.
//
// The output of compiled forward graph is [real_outputs, ctx]
// The input of compiled backward graph is [ctx, grad_values]
// We run LowerSimpleTuples afterwards to eliminate all tuples generated in
// this process. The original node and TupleConstruct nodes in forward graph
// will be cleaned up later using EliminateDeadCode(block). TupleUnPack node in
// backward graph will be removed in eliminateDeadcode(ReverseDetails) defined
// in this file.
static c10::optional<std::vector<Value*>> build_script_grad(
Node* node,
const ArrayRef<Value*>& grads) {
auto graph = node->owningGraph();
auto maybe_schema = node->maybeSchema();
if (!maybe_schema) {
return c10::nullopt;
}
auto compiled_graphs = gradientInfoForSchema(*maybe_schema);
if (!compiled_graphs) {
return c10::nullopt;
}
// Use forward graph to replace node in grad_desc.f
value_list new_outputs;
{
WithInsertPoint guard(node->next());
auto fw_graph = compiled_graphs->forward;
new_outputs = insertGraph(*graph, *fw_graph, node->inputs());
new_outputs = unpackOutputs(new_outputs);
auto outputs = node->outputs();
AT_ASSERT(new_outputs.size() == outputs.size() + 1);
for (const auto i : c10::irange(outputs.size())) {
new_outputs.at(i)->setType(outputs[i]->type());
outputs[i]->replaceAllUsesWith(new_outputs.at(i));
}
}
// Use backward graph to construct reverse_block
auto bw_graph = compiled_graphs->backward;
auto grad_vec = grads.vec();
if (needTrimGrad(node)) {
grad_vec.erase(grad_vec.begin() + 1, grad_vec.end());
}
auto it = grad_vec.begin();
grad_vec.insert(it, new_outputs.back());
ArrayRef<Value*> grad(grad_vec);
auto grad_inputs = insertGraph(*graph, *bw_graph, grad);
grad_inputs = unpackOutputs(grad_inputs);
return grad_inputs;
};
namespace {
class GradientHelper {
public:
GradientHelper(Node* n) : node(n) {}
std::vector<Value*> gradient(ArrayRef<Value*> grad_values) {
if (!isDifferentiable(node)) {
throw std::runtime_error(
std::string("differentiation of ") + node->kind().toDisplayString() +
" is not supported, or it is missing necessary type information");
}
// If AD is defined using torchscript, use it instead of symbolic
auto script_grads = build_script_grad(node, grad_values);
if (script_grads)
return *script_grads;
// Definition not found in torchscript, look up in the buildSymbolicGradient
// TODO: migrate all to using torchscript
return buildSymbolicGradient(grad_values);
}
private:
Node* node;
std::vector<Value*> buildSymbolicGradient(
const ArrayRef<Value*>& grad_values) {
auto inputs = node->inputs();
auto outputs = node->outputs();
if (node->kind() == prim::AutogradAdd) {
// NB: AutogradAdds don't broadcast
return {grad_values.at(0), grad_values.at(0)};
} else if (node->kind() == prim::profile) {
return {grad_values.at(0)};
} else if (node->kind() == prim::ConstantChunk) {
auto* g = node->owningGraph();
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Value* input_list;
if (grad_values.size() == 1 &&
grad_values[0]->type()->isSubtypeOf(*ListType::ofTensors())) {
input_list = grad_values[0];
} else {
input_list =
g->insertNode(g->createList(TensorType::get(), grad_values))
->output();
}
auto* cDim = g->insertConstant(node->i(attr::dim));
auto* cat_node = g->insertNode(g->create(aten::cat, 1));
cat_node->addInput(input_list);
cat_node->addInput(cDim);
return {cat_node->output()};
} else if (
node->kind() == prim::Constant || node->kind() == prim::AutogradZero) {
return {};
} else if (
node->matches(
"aten::_slow_conv2d_forward(Tensor self, Tensor weight, int[] kernel_size, Tensor? bias, int[] stride, int[] padding) -> Tensor")) {
auto graph = node->owningGraph();
auto backward_value = graph->insert(
aten::_slow_conv2d_backward,
{grad_values.at(0),
inputs.at(0),
inputs.at(1),
node->namedInput(attr::kernel_size),
node->namedInput(attr::stride),
node->namedInput(attr::padding),
graph->insertConstant(c10::List<bool>({true, true, true}))});
// graph->insert returns a tuple automatically if multiple outputs are
// returned. So unpack them again.
Node* tuple_unpack_node =
graph->insertNode(graph->createTupleUnpack(backward_value));
auto tuple_outputs = tuple_unpack_node->outputs();
AT_ASSERT(tuple_outputs.size() == size_t(3));
return {
tuple_outputs[0],
tuple_outputs[1],
nullptr,
tuple_outputs[2],
nullptr,
nullptr};
} else if (
node->matches(
"aten::native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)")) {
auto graph = node->owningGraph();
auto backward_value = graph->insert(
aten::native_batch_norm_backward,
{grad_values.at(0),
inputs.at(0),
inputs.at(1),
inputs.at(3),
inputs.at(4),
outputs.at(1),
outputs.at(2),
inputs.at(5),
inputs.at(7),
graph->insertConstant(c10::List<bool>({true, true, true}))});
// graph->insert returns a tuple automatically if multiple outputs are
// returned. So unpack them again.
Node* tuple_unpack_node =
graph->insertNode(graph->createTupleUnpack(backward_value));
auto tuple_outputs = tuple_unpack_node->outputs();
AT_ASSERT(tuple_outputs.size() == size_t(3));
return {
tuple_outputs[0],
tuple_outputs[1],
tuple_outputs[2],
nullptr,
nullptr,
nullptr,
nullptr,
nullptr};
}
throw std::runtime_error(
std::string("failed to differentiate `") +
node->kind().toDisplayString() + "`");
}
};
} // namespace
// If we have a function y = f(x) with jacobian J, the backwards of f is dx =
// J^t dy. Note that because the backwards always implements this matrix
// multiply, we know that it maps an input vector of zeros to an output vector
// of zero regardless of what operations it chooses to do inside to actually
// implement the matrix multiply (most use some optimized form and never
// generate J^t). More generally, we know that all of the backward computations
// are linear and can use this property to do more aggressive optimizations
// later. It is ok to replace any backward function with known-zero inputs with
// something that produces known-zero outputs. This function encloses each
// know-linear backward function in a 'GradOf' sub-block so that we can perform
// optimizations using this information. In particular, specializeAutogradZero
// will observe if all the inputs to the linear block are AutogradZeroTensor,
// which the autograd uses to represent zeros, and then propagate the zeros to
// the outputs of the block.
static std::vector<Value*> linearGradientForNode(
Node* node,
ArrayRef<Value*> grad_values) {
auto& graph = *node->owningGraph();
// FIXME: In case forward has multi outputs, we only support one requires grad
if (needTrimGrad(node)) {
grad_values = grad_values.at(0);
}
auto linear = graph.insertNode(graph.create(prim::GradOf, {grad_values}, 0));
// to make reading gradient graphs easier, remember the name of the forward op
linear->s_(attr::name, node->kind().toDisplayString());
auto block = linear->addBlock();
WithInsertPoint guard(block);
auto results = GradientHelper(node).gradient(grad_values);
return fmap(results, [block, linear](Value* grad) -> Value* {
if (!grad || grad->mustBeNone())
return nullptr;
block->registerOutput(grad);
return linear->addOutput()->copyMetadata(grad);
});
}
struct ReverseDetails {
ReverseDetails(value_map&& grad_map, Block* reverse_block)
: grad_map(std::move(grad_map)), reverse_block(reverse_block) {}
value_map grad_map;
Block* reverse_block;
};
// AutogradAdd is a special addition function that handles Undef
// AutogradAdd(a, b) == a + b if defined(a) and defined(b)
// AutogradAdd(Undef, b) == b
// AutogradAdd(a, Undef) == a
// AutogradAdd(Undef, Undef) == Undef
static Value* createAutogradAdd(Value* a, Value* b) {
auto graph = a->owningGraph();
return graph->insertNode(graph->create(prim::AutogradAdd, {a, b}))->output();
}
namespace {
bool outputRequiresGrad(Value* output) {
if (output->type()->castRaw<TensorType>() == nullptr) {
return output->requires_grad();
}
c10::optional<bool> requiresGrad =
output->type()->expectRef<TensorType>().requiresGrad();
if (requiresGrad.has_value()) {
return *requiresGrad;
}
Node* n = output->node();
if (n->kind() != prim::profile) {
return true;
}
if (!n->hasAttribute(attr::profiled_type)) {
return true;
}
return n->ty(attr::profiled_type)->requires_grad();
}
} // namespace
// Before:
// - grad_desc has field f initialized to the original 0-stage graph
// After:
// - the last node of f (f->nodes().reverse()[0]) is a gradient node
// whose block has vjp inputs for all outputs that require_grad
// and vjp outputs for all primal inputs that require_grad
// - grad_desc has df_input_vjps and df_output_vjps set
// (but df_input_vjps will be modified later as well)
static ReverseDetails addReverseInline(Gradient& grad_desc) {
auto& graph = *grad_desc.f;
// note: reverse_node is intentionally not inserted to avoid
// accidentally acting on it (e.g. in eliminate dead code),
// std::cout << *reverse_node << to view its state.
auto reverse_node = graph.create(prim::Reverse, 0);
auto reverse_block = reverse_node->addBlock();
WithInsertPoint guard(reverse_block);
value_map grad_map; // x -> dx mapping
const auto get_grad = [&](Value* v) -> Value* {
auto it = grad_map.find(v);
if (it == grad_map.end()) {
auto autograd_zero = graph.insertNode(graph.createAutogradZero());
std::tie(it, std::ignore) = grad_map.emplace(v, autograd_zero->output());
}
return it->second;
};
const auto set_grad = [&](Value* x, Value* dx) {
if (Value* prev_grad = grad_map[x]) {
GRAPH_DEBUG("grad_map[", x->debugName(), "] = ", *grad_map[x]->node());
grad_map[x] = createAutogradAdd(prev_grad, dx);
} else {
GRAPH_DEBUG("grad_map[", x->debugName(), "] = ", dx->debugName());
grad_map[x] = dx;
}
};
auto outputs = graph.outputs();
for (size_t i = 0, num_outputs = outputs.size(); i < num_outputs; ++i) {
Value* output = outputs[i];
if (!outputRequiresGrad(output))
continue;
Value* output_grad = reverse_block->addInput()->setType(output->type());
GRAPH_DEBUG(
"Adding output_grad ",
output_grad->debugName(),
" for ",
output->debugName());
set_grad(output, output_grad);
grad_desc.df_input_vjps.push_back(i);
}
for (auto it = graph.nodes().rbegin(), end = graph.nodes().rend(); it != end;
++it) {
Node* node = *it;
auto inputs = node->inputs();
auto outputs = node->outputs();
if (std::all_of(outputs.begin(), outputs.end(), [](Value* v) {
return !v->requires_grad();
})) {
continue;
}
value_list grad_inputs =
linearGradientForNode(node, fmap(node->outputs(), get_grad));
LowerSimpleTuples(reverse_block);
AT_ASSERT(grad_inputs.size() == node->inputs().size());
for (size_t i = 0, num_inputs = grad_inputs.size(); i < num_inputs; ++i) {
if (!inputs[i]->requires_grad())
continue;
// NB: Not returning a gradient w.r.t. a value that requires grad is
// normal if the input is non-differentiable. This happens e.g. in the
// aten::type_as case.
if (!grad_inputs[i])
continue;
set_grad(inputs[i], grad_inputs[i]);
}
}
auto inputs = graph.inputs();
for (size_t i = 0, num_inputs = inputs.size(); i < num_inputs; ++i) {
Value* input = inputs[i];
if (!input->requires_grad())
continue;
// NB: Not having a gradient defined w.r.t. an input to the graph which
// requires grad can happen and is not an error. It might have been used
// only in non-differentiable contexts (e.g. as second input to
// aten::type_as). In that case we simply ignore it as an output, because it
// won't ever produce any meaningful values.
if (grad_map.count(input) == 0)
continue;
reverse_block->registerOutput(get_grad(input));
grad_desc.df_output_vjps.push_back(i);
}
Inline(graph);
return ReverseDetails(std::move(grad_map), reverse_block);
}
// Returns a topologically-sorted list of values produced in f, and used in its
// reverse program.
static value_list getReverseCaptures(Gradient& grad_desc) {
auto& graph = *grad_desc.f;
auto primal_block = graph.block();
value_set reverse_captures_set;
value_list reverse_captures; // Invariant: topo sorted
auto check_uses = [&](Value* v) {
for (auto use : v->uses()) {
if (use.user->owningBlock() == primal_block)
continue;
if (/* bool unseen = */ reverse_captures_set.emplace(v).second) {
reverse_captures.push_back(v);
}
}
};
for (Value* input : graph.inputs()) {
check_uses(input);
}
for (Node* node : graph.nodes()) {
for (Value* output : node->outputs())
check_uses(output);
}
return reverse_captures;
}
// Any temporary value from the primal graphs needs to be captured for later use
// in the reverse graph, to avoid costly recomputations. However, a lot of the
// nodes we have in our graphs are simply constants, which are cheap to execute
// and replicate, and so it's better to just copy them into the reverse graph,
// without polluting the output lists unnecessarily.
static void liftConstants(Block* block, Block* move_to_this_block);
// is node defined inside container?
static bool inBlock(Node* node, Block* container) {
Block* b = node->owningBlock();
while (b) {
if (b == container) {
return true;
}
b = b->owningNode() ? b->owningNode()->owningBlock() : nullptr;
}
return false;
}
static void liftConstants(Node* node, Block* move_to_this_block) {
static const auto err = [](Value*) -> Value* {
throw std::runtime_error("unexpected input");
};
auto& graph = *node->owningGraph();
for (Value* input : node->inputs()) {
if (input->node()->kind() != prim::Constant)
continue;
// if this constant is _already_ defined in the backward pass
// block, we do not need to duplicate and move it because
// it already won't be part of the capture set
if (inBlock(input->node(), move_to_this_block))
continue;
Node* lifted_constant = graph.createClone(input->node(), err);
move_to_this_block->prependNode(lifted_constant);
GRAPH_DEBUG(
"Lifting constant ",
input->debugName(),
" from GradOf's block and adding ",
lifted_constant->output()->debugName(),
" to the backprop block");
node->replaceInputWith(input, lifted_constant->output());
}
for (Block* sub : node->blocks()) {
liftConstants(sub, move_to_this_block);
}
}
static void liftConstants(Block* block, Block* move_to_this_block) {
for (Node* node : block->nodes()) {
liftConstants(node, move_to_this_block);
}
liftConstants(block->return_node(), move_to_this_block);
}
// we need to fold aten::_size_if_not_equal at the differentiation time
// while we know the shapes of aten::_size_if_not_equal's arguments
// Otherwise, they will become inputs to a reverse Graph, and we will
// lose this information and we don't profile Scalars, or Lists yet.
static void foldSizeIfNotEqual(Block* node);
static void foldSizeIfNotEqual(Node* node) {
for (Value* input : node->inputs()) {
if (input->node()->kind() != aten::_size_if_not_equal) {
continue;
}
auto ptt_input =
input->node()->input(0)->node()->input()->type()->expect<TensorType>();
auto ptt_output =
input->node()->input(1)->node()->input()->type()->expect<TensorType>();
auto input_size = ptt_input->sizes().concrete_sizes();
auto output_size = ptt_output->sizes().concrete_sizes();
if (!input_size || !output_size) {
continue;
}
// insert in front of _grad_sum_to_size
WithInsertPoint guard(node);
IValue ival{};
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Value* size;
if (input_size != output_size) {
size = node->owningGraph()->insertConstant(*input_size);
} else {
size = node->owningGraph()->insertConstant(IValue());
}
node->replaceInputWith(input, size);
}
for (auto ib : node->blocks()) {
foldSizeIfNotEqual(ib);
}
}
// we need to fold aten::_size_if_not_equal at the differentiation time
// while we know the shapes of aten::_size_if_not_equal's arguments
// Otherwise, they will become inputs to a reverse Graph, and we will
// lose this information and we don't profile Scalars, or Lists yet.
static void foldSizeIfNotEqual(Block* reverse_block) {
for (auto n : reverse_block->nodes()) {
foldSizeIfNotEqual(n);
}
foldSizeIfNotEqual(reverse_block->return_node());
}
static void deduplicateSizeCaptures(
Gradient& grad_desc,
ReverseDetails& rev_info) {
Block* primal_block = grad_desc.f->block();
const auto usedOnlyInReverse = [primal_block](Value* v) {
const auto& uses = v->uses();
return std::all_of(uses.begin(), uses.end(), [primal_block](const Use& u) {
return u.user->owningBlock() != primal_block;
});
};
auto captures = getReverseCaptures(grad_desc);
value_set capture_set(captures.begin(), captures.end());
for (Value* capture : captures) {
Node* node = capture->node();
if (!node->matches("aten::size(Tensor self) -> int[]")) {
continue;
}
if (usedOnlyInReverse(capture) && capture_set.count(node->input())) {
WithInsertPoint insert_guard{*rev_info.reverse_block->nodes().begin()};
auto* size =
node->input()->owningGraph()->insert(aten::size, {node->input()});
GRAPH_DEBUG(
"deduplicateSizeCaptures: Replacing ",
capture->debugName(),
" with ",
size->debugName());
capture->replaceAllUsesWith(size);
node->destroy();
}
}
}
static void eliminateDeadCode(ReverseDetails& rev_info) {
// addReverseInline has to call gradientForNode if *any* of the inputs
// require grad, but it will emit vjps for *all* inputs. Use DCE to remove
// unnecessary nodes. Additionally, requires_grad() on intermediates is an
// overapproximation of the real state, so we might have emitted some
// gradients, only to realize that they were unnecessary once we reach a
// point that doesn't require grad.
// Of course, we need to filter out corresponding entries of grad_map, because
// we don't want to accidentally access freed pointers later.
std::function<void(const std::unordered_set<const Value*>&)> cb =
[&](const std::unordered_set<const Value*>& live_values) {
std::vector<Value*> to_erase;
for (auto& entry : rev_info.grad_map) {
if (!live_values.count(entry.second)) {
to_erase.push_back(entry.first);
}
}
for (Value* v : to_erase) {
GRAPH_DEBUG(
"Erasing unused value ", v->debugName(), " from grad_map");
rev_info.grad_map.erase(v);
}
};
EliminateDeadCode(rev_info.reverse_block, std::move(cb));
}
static void Optimize(Gradient& grad_desc, ReverseDetails& rev_info) {
// TODO: we are sometimes emitting expressions like
// _grad_sum_to_size(_grad_sum_so_size(x, s1), s2), which are equivalent to
// _grad_sum_to_size(x, s2), and could save us some
// captures, but I'm not 100% sure how to optimize this at this stage, since
// we don't know which GradOf blocks will be stitched together to form the
// derivative. I guess a smart analysis could implement this, but I didn't
// have time before the 1.0 release, so I put this only as a peephole
// optimization.
liftConstants(rev_info.reverse_block, rev_info.reverse_block);
// TODO: see if this pass can be replaced with peephole pass
foldSizeIfNotEqual(rev_info.reverse_block);
// We generally add a lot of aten::size calls (for derivatives of broadcasting
// operators), and they often end up duplicated, and would get captured
// multiple times. Make sure we deduplicate them before lifting.
EliminateCommonSubexpression(grad_desc.f);
deduplicateSizeCaptures(grad_desc, rev_info);
eliminateDeadCode(rev_info);
}
// Takes a grad_desc.f returned from `addReverseInline` and splits off the
// reverse_block into its own graph, storing it in df.
// All intermediates needed in the second stage are added to
// outputs of f, and taken as inputs in df. For a more
// detailed description see Note [Gradient graphs] in autodiff.h.
// This function also initializes the fields in grad_desc that were undefined
// after `addReverseInline` (and extends `df_input_vjps` with vjps for captured
// temporaries).
static void lambdaLiftReverse(Gradient& grad_desc, ReverseDetails& rev_info) {
auto& graph = *grad_desc.f;
auto reverse_block = rev_info.reverse_block;
// --------------------------------------------------------------------------
// 1. Find values of f that need to be captured.
// --------------------------------------------------------------------------
// First, we need to find all values that are produced in f,
// and used in df. They will need to be added as inputs of the df
// and some of them may also need to be appended as outputs of f if
// they are not already an input or an output of f
// Invariant: topo sorted
value_list reverse_captures = getReverseCaptures(grad_desc);
// --------------------------------------------------------------------------
// 2. Prepare input/outputs lists for f and df
// --------------------------------------------------------------------------
// It's simple to construct primal_inputs/reverse_outputs,
// but primal_outputs/reverse_inputs are much more subtle.
// Here's a summary of how they are supposed to look like:
//
// Primal outputs:
// [original outputs], [temporaries]
//
// Reverse inputs:
// [output vjps (aka grad_outputs)], [temporary vjps]
// [captured primal values, in topological order],
// -- Construct primal_outputs, df_input_captures, f_real_outputs ----
grad_desc.f_real_outputs = graph.outputs().size();
std::unordered_map<Value*, size_t> orig_primal_outputs_idx;
std::unordered_map<Value*, size_t> orig_primal_inputs_idx;
// NOTE: we use emplace to avoid replacing an existing index if an output is
// repeated
for (size_t i = 0, num_outputs = graph.outputs().size(); i < num_outputs; ++i)
orig_primal_outputs_idx.emplace(graph.outputs()[i], i);
for (size_t i = 0, num_inputs = graph.inputs().size(); i < num_inputs; ++i)
orig_primal_inputs_idx[graph.inputs()[i]] = i;
// NB: reverse_captures are already deduplicated, and in topo order
for (Value* capture_val : reverse_captures) {
// If it's already an output we don't have to add anything,
// but register the fact that it needs to be captured.
if (orig_primal_outputs_idx.count(capture_val) > 0) {
grad_desc.df_input_captured_outputs.push_back(
orig_primal_outputs_idx[capture_val]);
// If it's an input, we could add it as an output but in fact it's
// more efficient to use a special kind of capture.
} else if (orig_primal_inputs_idx.count(capture_val) > 0) {
grad_desc.df_input_captured_inputs.push_back(
orig_primal_inputs_idx.at(capture_val));
// Otherwise it's just a regular intermediate value that we need to add as
// an output
} else {
// we need to create a new temporary output for this capture because it
// wasn't available.
auto out_index = graph.registerOutput(capture_val);
GRAPH_DEBUG(
"Capturing a temporary ",
capture_val->debugName(),
" as ",
graph.outputs()[out_index]->debugName(),
" for forward graph");
grad_desc.df_input_captured_outputs.emplace_back(
graph.outputs().size() - 1);
}
}
// -- Add VJPs for temporaries, adjust df_input_vjps -------------------------
// NB [possible optimization]: use the newly added vjp input as soon as the
// first vjp for that value is generated, to reduce the lifespan of this input
// (currently we add it to the final vjp after all adds).
for (size_t i = grad_desc.f_real_outputs; i < graph.outputs().size(); ++i) {
Value* tmp = graph.outputs().at(i);
// Add VJP inputs only for intermediates that actually required grad.
// Note that we check the contents of the grad_map instead of
// tmp->requires_grad(), because it's actually a more faithful source.
// tmp->requires_grad() is really an overapproximation (i.e. it can have
// false positives), while the gradients we will emit for this value can get
// DCE-d in the optimization pass (because it has no influence on the real
// f's outputs that we differentiate).
if (rev_info.grad_map.count(tmp) == 0)
continue;
Value* tmp_vjp_in = reverse_block->addInput()->setType(tmp->type());
Value* tmp_vjp_prev = rev_info.grad_map.at(tmp);
// This is quite weird because we can't first make a sum and then replace
// all uses of tmp_vjp_prev (that would replace its use in the sum too!), so
// we create an incorrect sum that doesn't use prev vjp, replace uses, and
// fix the sum.
Value* new_vjp = createAutogradAdd(tmp_vjp_in, tmp_vjp_in);
if (tmp_vjp_prev->node()->kind() == prim::Param) {
// can't move a node after a block param node
new_vjp->node()->moveBefore(
*tmp_vjp_prev->node()->owningBlock()->nodes().begin());
} else {
new_vjp->node()->moveAfter(tmp_vjp_prev->node());
}
tmp_vjp_prev->replaceAllUsesWith(new_vjp);
new_vjp->node()->replaceInput(1, tmp_vjp_prev);
GRAPH_DEBUG("grad_map[", tmp->debugName(), "] = ", *new_vjp->node());
grad_desc.df_input_vjps.emplace_back(i);
}
// add the captures as formal arguments to the reverse_block
// afterward inputs: [output vjps][temporary vjps][captures]
// construct a map from captured 'value' to the index in the input list
// used to extract this block into its own function
std::unordered_map<Value*, size_t> capture_to_formal_index;
const auto& add_capture = [&](Value* captured) {
capture_to_formal_index[captured] = reverse_block->inputs().size();
auto new_input = reverse_block->addInput()->copyMetadata(captured);
GRAPH_DEBUG(
"Capturing ",
captured->debugName(),
" as ",
new_input->debugName(),
" for an embedded backward block");
};
for (auto& offset : grad_desc.df_input_captured_inputs)
add_capture(graph.inputs()[offset]);
for (auto& offset : grad_desc.df_input_captured_outputs)
add_capture(graph.outputs()[offset]);
grad_desc.df = std::make_shared<Graph>();
grad_desc.df->block()->cloneFrom(reverse_block, [&](Value* v) {
return grad_desc.df->inputs()[capture_to_formal_index.at(v)];
});
GRAPH_DUMP(" forward graph: ", &graph);
GRAPH_DEBUG(" backward graph: ", *(reverse_block->owningNode()));
// reverse_node was just to hold onto reverse_block in a debuggable way
// we can remove it now.
reverse_block->owningNode()->destroy();
}
void packReturnValuesIntoTuple(const std::shared_ptr<Graph>& graph) {
auto returnNode = graph->block()->return_node();
WithInsertPoint wip(returnNode);
auto tuple = graph->insertNode(graph->createTuple(returnNode->inputs()));
returnNode->removeAllInputs();
returnNode->addInput(tuple->output());
}
Gradient differentiate(std::shared_ptr<Graph>& graph) {
Gradient grad_desc;
// Take ownership of the graph
TORCH_CHECK(
graph.use_count() == 1,
"differentiate will mutate and destroy the graph, so it requires "
"graph.use_count() == 1, but found %d",
graph.use_count());
std::swap(graph, grad_desc.f);
// XXX: Take care when handling outputs - they can be duplicated!
GRAPH_DUMP("grad_desc.f: ", grad_desc.f);
WithInsertPoint guard(grad_desc.f->block());
// Fills in df_input_vjps and df_output_vjps
auto rev_info = addReverseInline(grad_desc);
Optimize(grad_desc, rev_info);
// Clean up old nodes which has been replaced by forward graphs in torchscript
EliminateDeadCode(grad_desc.f->block());
// Fills in f, df, f_real_outputs, df_input_captures,
// modifies df_input_vjps (new vjps are added for temporaries)
lambdaLiftReverse(grad_desc, rev_info);
packReturnValuesIntoTuple(grad_desc.df);
// we have created a differentiable forward graph
// which will be run with tensors that have their gradients detached,
// so profiled types will have outdated requires_grad=True, update the
// requires_grad property
UpdateDifferentiableGraphRequiresGrad(grad_desc.f, false);
return grad_desc;
}
} // namespace jit
} // namespace torch