| #pragma once |
| |
| #include <torch/csrc/Export.h> |
| #include <torch/csrc/jit/ir/ir.h> |
| |
| #include <ATen/ATen.h> |
| |
| #include <memory> |
| #include <vector> |
| |
| namespace torch { |
| namespace jit { |
| |
| using value_list = std::vector<Value*>; |
| // clang-format off |
| // Example showcasing how Gradient is constructed: |
| // |
| // Let's assume we have a function f, `m` and `n` do not require grad |
| // (`n` can depend only on `m`): |
| // y, n = f(x, m) |
| // |
| // Now, let's assume that the reverse of f (called f') needs to use values of `x`, `t` and `y`. |
| // `t` is an intermediate value produced in the body of f, and let's assume that it requires |
| // grad too. |
| // |
| // In this case differentiate(f) will return this: |
| // y, n, t = f(x, m) // `t` is appended to the output list |
| // dx = f'(dy, dt, x, t, y) // No `dm` or `dn` because they do not require gradient |
| // // All needed values from f are prepended to the input list |
| // |
| // f_real_outputs = 2 // Only first two outputs were present in f originally |
| // df_input_vjps = {0, 2} // i.e. connect grad_fn of y and t variables produced by f, |
| // y t // with y's output_nr = 0 and t's output_nr = 1 |
| // df_input_captures = {I0, O2, O0} // Order matches the prefix of inputs to df |
| // x t y |
| // df_output_vjps = {0} // i.e. connect next_edge[0] of grad_fn to x's (grad_fn, output_nr). |
| // |
| // Terminology: vjp = vector-jacobian product |
| // clang-format on |
| |
| struct Gradient { |
| explicit operator bool() const { |
| return df != nullptr; |
| } |
| std::shared_ptr<Graph> f; |
| std::shared_ptr<Graph> df; |
| |
| // Describes how to construct outputs of f from what its graph will return. |
| // This is necessary because some trailing outputs are intermediates produced |
| // only to be saved for df (and should be ignored). |
| size_t f_real_outputs = 0; // initialized for safety. |
| |
| // df inputs are split into two sections: vjps (aka grad_outputs) and |
| // captures. VJPs are "seeds" for the gradient computation given for each |
| // input capture of an Output kind. Captures are values the need to be saved |
| // when f is run. We handle inputs specially, because this allows us to avoid |
| // adding extra vjps as df inputs. |
| |
| std::vector<size_t> df_input_vjps; // Offsets into f's outputs. |
| // capture can come from inputs or outputs |
| std::vector<size_t> df_input_captured_inputs; // Offsets into f's inputs |
| std::vector<size_t> df_input_captured_outputs; // Offsets into f's outputs |
| |
| // df will produce vjps for a subset of inputs of f that required grad. |
| // df_output_vjps[idx] == inp_idx means that idx-th output of df produces a |
| // vjp for inp_idx-th input of f. |
| std::vector<size_t> df_output_vjps; // Offsets into f's inputs. |
| |
| // How to use gradient to implement a differentiable autograd function: |
| // When running f: |
| // - Unwrap input Variables |
| // - Run f's graph |
| // - Create grad_fn |
| // - Wrap outputs in Variables (assume we have a tensor_outputs array): |
| // outputs = map(Variable, tensor_output) |
| // for i, offset in enumerate(df_input_vjps): |
| // outputs[offset].set_grad_fn(grad_fn, output_nr=i) |
| // - Use df_output_vjps to connect next_edges of grad_fn: |
| // for idx in df_output_vjps: |
| // grad_fn.add_next_edge(inputs[idx].gradient_edge()) |
| // - Save captures for df (care needs to be taken to use SavedVariables for |
| // inputs and outputs that we will actually return) |
| // - Return outputs[:f_real_outputs] |
| // |
| // When running df: |
| // - Concatenate received vjps and captured Variables |
| // - Interpret df |
| // - Wrap outputs of df into Variables (that don't require grad) |
| }; |
| TORCH_API Gradient differentiate(std::shared_ptr<Graph>& graph); |
| |
| // can we take a derivative of this node symbolically? |
| TORCH_API bool isDifferentiable(const Node* n); |
| TORCH_API bool isDifferentiable(Graph& g); |
| TORCH_API bool isZero(Value* v); |
| |
| } // namespace jit |
| } // namespace torch |