| import torch |
| import torch.nn as nn |
| import torch.nn.functional as F |
| import torch.optim as optim |
| import os |
| from torchvision import datasets, transforms |
| from torch.optim.lr_scheduler import StepLR |
| import torch._lazy |
| import torch._lazy.ts_backend |
| import torch._lazy.metrics |
| torch._lazy.ts_backend.init() |
| |
| |
| class Net(nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.conv1 = nn.Conv2d(1, 32, 3, 1) |
| self.conv2 = nn.Conv2d(32, 64, 3, 1) |
| self.dropout1 = nn.Dropout(0.25) |
| self.dropout2 = nn.Dropout(0.5) |
| self.fc1 = nn.Linear(9216, 128) |
| self.fc2 = nn.Linear(128, 10) |
| |
| def forward(self, x): |
| x = self.conv1(x) |
| x = F.relu(x) |
| x = self.conv2(x) |
| x = F.relu(x) |
| x = F.max_pool2d(x, 2) |
| x = self.dropout1(x) |
| x = torch.flatten(x, 1) |
| x = self.fc1(x) |
| x = F.relu(x) |
| x = self.dropout2(x) |
| x = self.fc2(x) |
| output = F.log_softmax(x, dim=1) |
| return output |
| |
| |
| def train(log_interval, model, device, train_loader, optimizer, epoch): |
| model.train() |
| for batch_idx, (data, target) in enumerate(train_loader): |
| data, target = data.to(device), target.to(device) |
| optimizer.zero_grad(set_to_none=True) |
| output = model(data) |
| loss = F.nll_loss(output, target) |
| loss.backward() |
| optimizer.step() |
| torch._lazy.mark_step() |
| |
| if batch_idx % log_interval == 0: |
| print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( |
| epoch, batch_idx * len(data), len(train_loader.dataset), |
| 100. * batch_idx / len(train_loader), loss.item())) |
| |
| |
| if __name__ == '__main__': |
| bsz = 64 |
| device = 'lazy' |
| epochs = 14 |
| log_interval = 10 |
| lr = 1 |
| gamma = 0.7 |
| train_kwargs = {'batch_size': bsz} |
| # if we want to use CUDA |
| if "LTC_TS_CUDA" in os.environ: |
| cuda_kwargs = {'num_workers': 1, |
| 'pin_memory': True, |
| 'shuffle': True, |
| 'batch_size': bsz} |
| train_kwargs.update(cuda_kwargs) |
| |
| transform = transforms.Compose([ |
| transforms.ToTensor(), |
| transforms.Normalize((0.1307,), (0.3081,)) |
| ]) |
| dataset1 = datasets.MNIST('./data', train=True, download=True, |
| transform=transform) |
| train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs) |
| model = Net().to(device) |
| optimizer = optim.Adadelta(model.parameters(), lr=lr) |
| scheduler = StepLR(optimizer, step_size=1, gamma=gamma) |
| for epoch in range(1, epochs + 1): |
| train(log_interval, model, device, train_loader, optimizer, epoch) |
| scheduler.step() |