| from abc import ABC, abstractmethod |
| import queue |
| import threading |
| import collections |
| |
| from dataclasses import dataclass |
| import os |
| import dataclasses |
| import io |
| import pickle |
| from typing import List, Union, Dict, cast |
| |
| import torch |
| from torch import Tensor |
| from torch.futures import Future |
| from pathlib import Path |
| |
| from .metadata import ( |
| Metadata, |
| MetadataIndex, |
| ) |
| from .storage import ( |
| StorageReader, |
| StorageWriter, |
| WriteResult, |
| ) |
| |
| from .planner import ( |
| LoadItemType, |
| LoadPlanner, |
| LoadPlan, |
| SavePlan, |
| SavePlanner, |
| ReadItem, |
| WriteItem, |
| WriteItemType, |
| ) |
| |
| from torch.distributed._shard._utils import narrow_tensor_by_index |
| |
| __all__ = [ |
| "FileSystemWriter", |
| "SlicedBufferedReader", |
| "FileSystemReader", |
| ] |
| |
| |
| @dataclass |
| class _StorageInfo: |
| """ |
| This is the per entry storage info |
| """ |
| |
| relative_path: str |
| offset: int |
| length: int |
| |
| |
| @dataclass |
| class _StoragePrefix: |
| prefix: str |
| |
| |
| DEFAULT_SUFFIX = ".distcp" |
| |
| |
| def _trim(tensor: torch.Tensor) -> torch.Tensor: |
| tensor = tensor.detach().cpu() |
| if tensor._typed_storage()._size() != tensor.numel(): |
| tensor = tensor.clone() |
| return tensor |
| |
| |
| def _result_from_write_item( |
| item: WriteItem, size_in_bytes, storage_data |
| ) -> WriteResult: |
| return WriteResult( |
| index=item.index, size_in_bytes=size_in_bytes, storage_data=storage_data |
| ) |
| |
| |
| class _TensorLoader(ABC): |
| @abstractmethod |
| def add(self, size, obj): |
| pass |
| |
| def start_loading(self): |
| pass |
| |
| @abstractmethod |
| def values(self): |
| pass |
| |
| |
| class _SerialCpuLoader(_TensorLoader): |
| def __init__(self, resolve_fun): |
| self.resolve_fun = resolve_fun |
| self.items = [] |
| |
| def add(self, size, obj): |
| self.items.append((size, obj)) |
| |
| def start_loading(self): |
| pass |
| |
| def values(self): |
| for _, obj in self.items: |
| tensor = self.resolve_fun(obj).detach() |
| tensor = tensor.cpu() |
| if tensor.storage().size() != tensor.numel(): |
| tensor = tensor.clone() |
| yield ( |
| tensor, |
| obj, |
| ) |
| |
| |
| class _OverlappingCpuLoader(_TensorLoader): |
| def __init__(self, resolve_fun, stream=None, inflight_threshhold=1_000_000): |
| self.resolve_fun = resolve_fun |
| self.items = [] |
| self.inflight_threshhold = inflight_threshhold |
| self.in_flight_data = 0 |
| self.current_items: collections.deque = collections.deque() |
| self.idx = 0 |
| self.started = False |
| self.stream = stream or torch.cuda.current_stream() |
| if self.stream != torch.cuda.current_stream(): |
| self.stream.wait_stream(torch.cuda.current_stream()) |
| |
| @property |
| def _done(self): |
| return self.idx >= len(self.items) |
| |
| def _drain(self): |
| drained = [] |
| if self.in_flight_data >= self.inflight_threshhold: |
| self.stream.synchronize() |
| while self.in_flight_data >= self.inflight_threshhold: |
| val = self.current_items.popleft() |
| self.in_flight_data -= val[0].numel() * val[0].element_size() |
| drained.append(val) |
| return drained |
| |
| def _refill(self): |
| with torch.cuda.stream(self.stream): |
| while ( |
| not self._done |
| and self.in_flight_data < self.inflight_threshhold |
| ): |
| _, obj = self.items[self.idx] |
| self.idx += 1 |
| tensor = self.resolve_fun(obj).detach() |
| if tensor.is_cuda: |
| tensor = tensor.to(device="cpu", non_blocking=True) |
| elif tensor.device == torch.device("cpu"): |
| if tensor.storage().size() != tensor.numel(): |
| # this forces the tensor to be both contiguous and with minimal storage |
| tensor = tensor.clone() |
| |
| self.current_items.append( |
| ( |
| tensor, |
| obj, |
| ) |
| ) |
| self.in_flight_data += tensor.numel() * tensor.element_size() |
| |
| def _finish(self): |
| assert self._done |
| if len(self.current_items) > 0: |
| self.stream.synchronize() |
| return self.current_items |
| |
| def add(self, size, obj): |
| if self.started: |
| raise RuntimeError("cannot add items after loading started") |
| self.items.append((size, obj)) |
| |
| def start_loading(self): |
| if self.started: |
| return |
| self.started = True |
| self.items.sort(key=lambda x: x[0]) |
| self._refill() |
| |
| def values(self): |
| self.start_loading() |
| while not self._done: |
| drained = self._drain() |
| self._refill() |
| for obj in drained: |
| yield obj |
| |
| for val in self._finish(): |
| yield val |
| |
| |
| def _item_size(item: WriteItem) -> int: |
| size = 1 |
| assert item.tensor_data is not None |
| # can't use math.prod as PT needs to support older python |
| for s in item.tensor_data.size: |
| size *= s |
| |
| dtype = item.tensor_data.properties.dtype |
| return size * torch._utils._element_size(dtype) |
| |
| |
| def _split_by_size_and_type( |
| bins, items: List[WriteItem] |
| ) -> List[List[WriteItem]]: |
| if bins == 1: |
| return [items] |
| |
| bytes_w = [wi for wi in items if wi.type == WriteItemType.BYTE_IO] |
| tensor_w = [wi for wi in items if wi.type != WriteItemType.BYTE_IO] |
| |
| buckets: List[List[WriteItem]] = [[] for _ in range(bins)] |
| bucket_sizes = [0 for _ in range(bins)] |
| |
| tensor_w.sort(key=_item_size, reverse=True) |
| |
| for i, wi in enumerate(bytes_w): |
| buckets[i % bins].append(wi) |
| |
| for wi in tensor_w: |
| # TODO replace with headq |
| idx = min(enumerate(bucket_sizes), key=lambda x: x[1])[0] |
| buckets[idx].append(wi) |
| bucket_sizes[idx] += _item_size(wi) |
| |
| return buckets |
| |
| |
| def _write_item(stream, data, write_item, storage_key): |
| offset = stream.tell() |
| |
| if write_item.type == WriteItemType.BYTE_IO: |
| assert isinstance(data, io.BytesIO) |
| stream.write(data.getbuffer()) |
| else: |
| assert isinstance(data, torch.Tensor) |
| assert data.device == torch.device("cpu") |
| torch.save(data, stream) |
| length = stream.tell() - offset |
| |
| return _result_from_write_item( |
| write_item, length, _StorageInfo(storage_key, offset, length) |
| ) |
| |
| |
| def _write_files_from_queue( |
| file_queue: queue.Queue, |
| result_queue: queue.Queue, |
| planner: SavePlanner, |
| inflight_threshhold: int, |
| use_fsync: bool, |
| ): |
| try: |
| while True: |
| file_name, storage_key, write_items = file_queue.get_nowait() |
| loader: _TensorLoader |
| |
| if torch.cuda.is_available() and inflight_threshhold > 0: |
| loader = _OverlappingCpuLoader( |
| lambda x: planner.resolve_data(x), |
| inflight_threshhold=inflight_threshhold, |
| ) |
| else: |
| loader = _SerialCpuLoader( |
| lambda x: planner.resolve_data(x), |
| ) |
| |
| tensor_w = [ |
| wi for wi in write_items if wi.type != WriteItemType.BYTE_IO |
| ] |
| for write_item in tensor_w: |
| loader.add(_item_size(write_item), write_item) |
| loader.start_loading() |
| |
| bytes_w = [ |
| wi for wi in write_items if wi.type == WriteItemType.BYTE_IO |
| ] |
| write_results = [] |
| |
| with open(file_name, "wb") as stream: |
| for write_item in bytes_w: |
| data = planner.resolve_data(write_item) |
| write_results.append( |
| _write_item(stream, data, write_item, storage_key) |
| ) |
| |
| for tensor, write_item in loader.values(): |
| assert not tensor.is_cuda |
| write_results.append( |
| _write_item(stream, tensor, write_item, storage_key) |
| ) |
| |
| if use_fsync: |
| os.fsync(stream.fileno()) |
| result_queue.put(write_results) |
| except queue.Empty: |
| pass |
| |
| |
| class FileSystemWriter(StorageWriter): |
| """ |
| Basic implementation of StorageWriter using file IO. |
| |
| This implementation makes the following assumptions and simplifications: |
| |
| * The checkpoint path is an empty or non-existing directory. |
| * File creation is atomic |
| |
| The checkpoint consist of one file per write request plus |
| a `.metadata` file with the serialized metadata. |
| |
| """ |
| |
| def __init__( |
| self, |
| path: Union[str, os.PathLike], |
| single_file_per_rank: bool = False, |
| sync_files: bool = True, |
| thread_count: int = 1, |
| per_thread_copy_ahead: int = 10_000_000, |
| ) -> None: |
| """ |
| Initialize the writer pointing to `path` |
| |
| Args: |
| path: diretory where the checkpoint will be writen to. |
| single_file_per_rank: Produce one file per rank instead of one file per tensor/blob. Default to True. |
| sync_files : force files to be synced to permanent storage. Default to True. |
| thread_count: Number of IO threads to use to write. Default to 1. |
| per_thread_copy_ahead: How many bytes to copy from the GPU ahead of saving then. Default 10Mb. |
| |
| N. B. If sync_files is disabled, there's no guarantee that the checkpoint will be consistent in the case of a failure. |
| """ |
| super().__init__() |
| self.path = Path(path) |
| self.single_file_per_rank = single_file_per_rank |
| self.sync_files = sync_files |
| self.thread_count = thread_count |
| self.per_thread_copy_ahead = per_thread_copy_ahead |
| |
| def set_up_storage_writer(self, is_coordinator: bool) -> None: |
| pass |
| |
| def prepare_local_plan(self, plan: SavePlan) -> SavePlan: |
| self.path.mkdir(parents=True, exist_ok=True) |
| return plan |
| |
| def prepare_global_plan( |
| self, global_plan: List[SavePlan] |
| ) -> List[SavePlan]: |
| new_plans = [ |
| dataclasses.replace(plan, storage_data=_StoragePrefix(f"__{i}_")) |
| for i, plan in enumerate(global_plan) |
| ] |
| return new_plans |
| |
| def write_data( |
| self, |
| plan: SavePlan, |
| planner: SavePlanner, |
| ) -> Future[List[WriteResult]]: |
| storage_plan: _StoragePrefix = plan.storage_data |
| file_count = 0 |
| |
| def gen_file(): |
| nonlocal file_count |
| file_name = f"{storage_plan.prefix}{file_count}{DEFAULT_SUFFIX}" |
| file_count += 1 |
| return file_name |
| |
| file_queue: queue.Queue = queue.Queue() |
| if self.single_file_per_rank: |
| for bucket in _split_by_size_and_type( |
| self.thread_count, plan.items |
| ): |
| file_name = gen_file() |
| file_queue.put((self.path / file_name, file_name, bucket)) |
| else: |
| for item in plan.items: |
| file_name = gen_file() |
| file_queue.put((self.path / file_name, file_name, [item])) |
| |
| result_queue: queue.Queue = queue.Queue() |
| |
| threads = [] |
| for _ in range(1, self.thread_count): |
| t = threading.Thread( |
| target=_write_files_from_queue, |
| args=( |
| file_queue, |
| result_queue, |
| planner, |
| self.per_thread_copy_ahead, |
| self.sync_files, |
| ), |
| ) |
| t.start() |
| threads.append(t) |
| |
| _write_files_from_queue( |
| file_queue=file_queue, |
| result_queue=result_queue, |
| planner=planner, |
| inflight_threshhold=self.per_thread_copy_ahead, |
| use_fsync=self.sync_files, |
| ) |
| |
| for t in threads: |
| t.join() |
| |
| res = [] |
| try: |
| while True: |
| res += result_queue.get_nowait() |
| except queue.Empty: |
| pass |
| |
| fut: Future[List[WriteResult]] = Future() |
| fut.set_result(res) |
| return fut |
| |
| def finish( |
| self, metadata: Metadata, results: List[List[WriteResult]] |
| ) -> None: |
| storage_md = dict() |
| for wr_list in results: |
| storage_md.update({wr.index: wr.storage_data for wr in wr_list}) |
| metadata.storage_data = storage_md |
| with (self.path / ".metadata.tmp").open("wb") as metadata_file: |
| pickle.dump(metadata, metadata_file) |
| os.fsync(metadata_file.fileno()) |
| |
| (self.path / ".metadata.tmp").rename(self.path / ".metadata") |
| |
| |
| class SlicedBufferedReader(io.BufferedReader): |
| # TODO override read to handle (-1) correctly |
| def __init__(self, base_stream: io.RawIOBase, offset: int, len: int): |
| super().__init__(base_stream) |
| self.offset = offset |
| self.len = len |
| self.seek(0) |
| |
| def seek(self, __offset: int, __whence: int = os.SEEK_SET) -> int: |
| if __whence == os.SEEK_SET: |
| __offset = self.offset + __offset |
| elif __whence == os.SEEK_END: |
| __whence = os.SEEK_SET |
| __offset = (self.offset + self.len) - __offset |
| return super().seek(__offset, __whence) |
| |
| def tell(self) -> int: |
| return super().tell() - self.offset |
| |
| |
| class FileSystemReader(StorageReader): |
| def __init__(self, path: Union[str, os.PathLike]) -> None: |
| super().__init__() |
| self.path = Path(path) |
| self.storage_data: Dict[MetadataIndex, _StorageInfo] = dict() |
| |
| def _slice_file(self, file, sinfo: _StorageInfo): |
| return SlicedBufferedReader( |
| io.FileIO(file.fileno(), closefd=False), sinfo.offset, sinfo.length |
| ) |
| |
| def read_data(self, plan: LoadPlan, planner: LoadPlanner) -> Future[None]: |
| # group requests by file |
| per_file: Dict[str, List[ReadItem]] = dict() |
| for read_item in plan.items: |
| item_md = self.storage_data[read_item.storage_index] |
| path = item_md.relative_path |
| per_file.setdefault(path, []).append(read_item) |
| |
| for relative_path, reqs in per_file.items(): |
| with (self.path / relative_path).open("rb") as file: |
| # TODO sort by offset and cache the reading |
| for req in reqs: |
| item_md = self.storage_data[req.storage_index] |
| file_slice = self._slice_file(file, item_md) |
| if req.type == LoadItemType.BYTE_IO: |
| bytes = io.BytesIO(file_slice.read(item_md.length)) |
| bytes.seek(0) |
| planner.load_bytes(req, bytes) |
| else: |
| tensor = cast( |
| Tensor, torch.load(file_slice, map_location="cpu") |
| ) |
| tensor = narrow_tensor_by_index( |
| tensor, req.storage_offsets, req.lengths |
| ) |
| target_tensor = planner.resolve_tensor(req).detach() |
| |
| assert ( |
| target_tensor.size() == tensor.size() |
| ), f"req {req.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}" |
| target_tensor.copy_(tensor) |
| planner.commit_tensor(req, target_tensor) |
| |
| fut: Future = Future() |
| fut.set_result(None) |
| return fut |
| |
| # Implementating the abstract function in StorageReader |
| def read_metadata(self) -> Metadata: |
| with (self.path / ".metadata").open("rb") as metadata_file: |
| return pickle.load(metadata_file) |
| |
| def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None: |
| self.storage_data = metadata.storage_data |
| assert self.storage_data is not None |
| |
| def prepare_local_plan(self, plan: LoadPlan) -> LoadPlan: |
| return plan |
| |
| def prepare_global_plan( |
| self, global_plan: List[LoadPlan] |
| ) -> List[LoadPlan]: |
| return global_plan |