| import contextlib |
| import warnings |
| from enum import auto, Enum |
| from itertools import accumulate, chain |
| from typing import ( |
| Any, |
| Dict, |
| Generator, |
| Iterator, |
| List, |
| NamedTuple, |
| no_type_check, |
| Optional, |
| Sequence, |
| Set, |
| Tuple, |
| Union, |
| ) |
| |
| import torch |
| import torch.distributed as dist |
| import torch.nn as nn |
| import torch.nn.functional as F |
| from torch import Tensor |
| from torch.distributed._tensor import DTensor |
| from torch.distributed.fsdp._common_utils import ( |
| _set_fsdp_flattened, |
| HandleTrainingState, |
| ) |
| |
| from ._fsdp_extensions import _ext_post_unflatten_transform, _ext_pre_flatten_transform |
| from ._utils import ( |
| _alloc_storage, |
| _free_storage, |
| _no_dispatch_record_stream, |
| _same_storage, |
| p_assert, |
| ) |
| |
| __all__ = [ |
| "FlatParameter", |
| "FlatParamHandle", |
| "FlatParamShardMetadata", |
| "ParamInfo", |
| "SharedParamInfo", |
| "HandleShardingStrategy", |
| ] |
| |
| |
| """ |
| [Note: Fully Sharded Module] |
| We define the "fully sharded module" to be the original ``nn.Module`` that owns |
| a ``FlatParamHandle``. It is the *single* module logically responsible for the |
| *single* unshard/reshard pair for the handle's ``FlatParameter`` for a given |
| forward or backward pass. The fully sharded module should be passed to the |
| ``FlatParamHandle`` constructor. |
| |
| For the wrapper code path: |
| - The ``FullyShardedDataParallel`` module wrapping the fully sharded module |
| runs the unshard/reshard on behalf of the fully sharded module by overriding |
| ``nn.Module.forward``. |
| - The fully sharded module is exactly the module passed to the |
| ``FullyShardedDataParallel`` constructor's ``module`` argument. |
| |
| For the non-wrapper code path: |
| - Hooks registered on the fully sharded module run the unshard/reshard. |
| - The fully sharded module may either be the direct argument to ``fully_shard`` |
| or a submodule chosen by the provided wrapping policy. |
| """ |
| |
| |
| class ParamInfo(NamedTuple): |
| """Information for an original module parameter.""" |
| |
| param_name: str # unprefixed |
| module: nn.Module |
| module_name: str |
| |
| |
| class SharedParamInfo(NamedTuple): |
| """ |
| Additional information for a shared parameter. |
| |
| For each shared parameter, we designate one module and its parameter |
| variable to be the primary owner, determined as the first one encountered |
| in the parameter walk. These are prefixed with "prim". The primary module |
| and parameter do not have their own :class:`SharedParamInfo` instance. |
| """ |
| |
| param_name: str # unprefixed |
| module: nn.Module |
| module_name: str |
| prim_param_name: str # unprefixed |
| prim_module: nn.Module |
| prim_module_name: str |
| |
| |
| class FlatParamShardMetadata(NamedTuple): |
| """ |
| This holds metadata specific to this rank's shard of the flattened |
| parameter. |
| |
| Attributes: |
| param_names (Tuple[str, ...]): Prefixed parameter names of this rank's |
| shard of the parameters; see :class:`FlatParameter`. |
| param_shapes (Tuple[torch.Size, ...]): Parameter shapes of this rank's |
| shard of the parameters; see :class:`FlatParameter`. |
| param_numels (Tuple[int, ...]): Parameter numels of this rank's shard |
| of the parameters; see :class:`FlatParameter`. |
| param_offsets (Tuple[Tuple[int, int], ...]): [start, end] offsets (in |
| units of numels) giving this rank's part of each flattened |
| original module parameter. |
| """ |
| |
| param_names: Tuple[str, ...] |
| param_shapes: Tuple[torch.Size, ...] |
| param_numels: Tuple[int, ...] |
| param_offsets: Tuple[Tuple[int, int], ...] |
| |
| |
| # TODO (awgu): Prefix these with "Handle" for now to avoid circular imports and |
| # inadvertent misuses; coalesce with those in fully_sharded_data_parallel.py |
| # later |
| class HandleShardingStrategy(Enum): |
| FULL_SHARD = auto() |
| SHARD_GRAD_OP = auto() |
| NO_SHARD = auto() |
| HYBRID_SHARD = auto() |
| _HYBRID_SHARD_ZERO2 = auto() |
| |
| |
| class FlatParameter(nn.Parameter): |
| """ |
| This is the flattened parameter used by :class:`FullyShardedDataParallel`. |
| It is comprised of one or more original parameters, which are flattened |
| and concatenated to construct the flattened parameter. |
| |
| Under the current design, this parameter logically represents both the |
| unsharded and sharded flattened parameter, and its data changes storages |
| dynamically. |
| - In the :class:`FullyShardedDataParallel` constructor, the parameter |
| is initialized as unsharded and then sharded in-place. |
| - At runtime, the parameter is lazily (re)-initialized. The sharded |
| parameter data is saved in ``self._local_shard``, and a new ``Tensor`` |
| ``self._full_param_padded`` is created, which is the all-gather |
| destination and owns the unsharded parameter storage thereafter. (See |
| :meth:`FlatParamHandle.init_flat_param_attributes`.) |
| - Throughout runtime, the parameter data changes storages as needed, |
| e.g. to the sharded flattened parameter, reduced-precision sharded |
| flattened parameter, or the unsharded flattened parameter. |
| |
| Attributes: |
| _unpadded_unsharded_size (torch.Size): Unsharded flattened parameter's |
| size without padding. |
| _padded_unsharded_size (torch.Size): Unsharded flattened parameter's |
| size with padding. This is only set for sharded strategies since |
| they require padding for the all-gather. |
| _sharded_size (torch.Size): Sharded flattened parameter's size with |
| padding. This is also set for ``NO_SHARD``, in which case it is the |
| same as the unsharded sizes. (We omit "padded" because there is no |
| analogous unpadded one.) |
| |
| _param_infos (Tuple[ParamInfo, ...]): Each parameter's parameter info |
| entry; see :class:`ParamInfo`. |
| _numels (Tuple[int, ...]): Each parameter's numel. |
| _shapes (Tuple[torch.Size, ...]): Each parameter's shape. |
| _fqns (Tuple[str, ...]): The original parameters' FQNs prefixed from |
| the owning handle's ``_fully_sharded_module``. The names are |
| guaranteed to be unique within the subtree rooted at that module. |
| _num_params (int): Number of original parameters flattened into this |
| flattened parameter; this is the length of ``_param_infos``, |
| ``_numels``, ``_shapes``, and ``_fqns``. |
| _shared_param_infos (Tuple[SharedParamInfo, ...]): Shared parameter |
| info entries; see :class:`SharedParamInfo`. |
| _param_extensions (Tuple[Optional[Any], ...]): Parameter extensions |
| (i.e. some per-parameter state) used to customize pre-flatten and |
| post-unflatten behavior. This is experimental, and users should not |
| depend on its existence in the future. |
| _modules (Set[nn.Module]): Modules that contain some original parameter |
| that is flattened into the ``FlatParameter``. |
| |
| _shard_param_offsets (List[Tuple[int, int])): [start, end] offsets (in |
| units of numel) giving this rank's part of each flattened original |
| module parameter; for any parameter ``p`` that is not sharded |
| across ranks, this will be [0, ``p.numel()``-1]. |
| _shard_indices (Tuple[int, int]): [start, end] indices (in units of |
| parameters) for this rank's shard of the original model parameters, |
| where the parameters follow the order in which they were originally |
| flattened; this indexes appropriately into any data structure that |
| follows the flattening order (e.g. ``_param_infos``, ``_numels``, |
| etc.). |
| _shard_numel_padded (int): Numel padded for this rank's sharded |
| flattened parameter. |
| |
| _local_shard (Tensor): Sharded flattened parameter with padding if |
| using a sharded strategy. If using ``NO_SHARD``, then this is the |
| unpadded unsharded flattened parameter, and there is no notion of a |
| sharded flattened parameter or padded unsharded flattened |
| parameter. |
| _full_param_padded (Tensor): Unsharded flattened parameter with |
| padding. This is not defined for ``NO_SHARD``. When using mixed |
| precision for parameters, this has the low precision. |
| _full_prec_full_param_padded (Tensor): Full precision unsharded |
| flattened parameter with padding. This is used for unsharding |
| outside of computation when using mixed precision for parameters. |
| This is never defined for ``NO_SHARD``. |
| _post_backward_hook_state (Tuple[AccumulateGrad, RemovableHandle]): |
| Flattened parameter's :class:`AccumulateGrad` object and |
| post-backward hook handle. |
| _mp_shard (Tensor): Low precision sharded flattened parameter with |
| padding. This is only defined when parameter mixed precision is |
| enabled. For ``NO_SHARD``, this is used for computation. |
| _cpu_grad (Tensor): Sharded gradient with padding stored on CPU. |
| This is only defined when offloading parameters is enabled. |
| _saved_grad_shard (Tensor): Sharded gradient with padding from previous |
| iterations for gradient accumulation without :meth:`no_sync`. |
| |
| _params (Optional[List[nn.Parameter]]): The original parameter |
| variables if ``use_orig_params=True`` and ``None`` otherwise. |
| _shared_params (Optional[List[nn.Parameter]]): The original shared |
| parameter variables if ``use_orig_params=True`` and ``None`` |
| otherwise. |
| _tensors (Optional[List[Optional[Tensor]]]): This saves the ``Tensor`` |
| views created in the forward and tracked by autograd when |
| ``use_orig_params=True`` and is ``None`` otherwise. This is to |
| preserve those ``Tensor`` variables for the backward to ensure that |
| the ``FlatParameter`` 's ``AccumulateGrad`` object does not change |
| in which case the post-backward hook does not run. This is relevant |
| for cases like reentrant activation checkpointing. |
| _is_grad_none (Optional[List[bool]]): A mask over the original |
| parameters' gradients indicating if it is logically ``None`` or not |
| if ``use_orig_params=True`` and ``None`` otherwise. This is needed |
| because only some of the parameters may have ``None`` gradient, in |
| which case the ``FlatParameter`` gradient must be non-``None`` and |
| must use zeros to approximate those original ``None`` gradients. |
| This mask informs FSDP to set the original parameter gradients to |
| ``None`` (instead of zeros) as needed. |
| """ |
| |
| def _init_metadata( |
| self, |
| param_infos: List[ParamInfo], |
| numels: List[int], |
| shapes: List[torch.Size], |
| fqns: List[str], |
| shared_param_infos: List[SharedParamInfo], |
| param_extensions: List[Any], |
| params: Optional[List[nn.Parameter]], |
| shared_params: Optional[List[nn.Parameter]], |
| ) -> None: |
| """ |
| Initializes attributes holding metadata about the original parameters |
| comprising the flattened parameter. |
| |
| We expose this method separate from the constructor to keep the |
| constructor only responsible for the flattened parameter's tensor data. |
| This method should only be called once per model, while the constructor |
| may be called multiple times, e.g. when reloading from a checkpoint, in |
| which case only the tensor data needs to be passed to the constructor. |
| Since :meth:`load_state_dict` is implemented via :meth:`copy_`, the |
| metadata is correctly assumed to be unchanged. |
| |
| Args: |
| See the Attributes in the class docstring. |
| """ |
| assert len(param_infos) == len(numels) |
| assert len(param_infos) == len(shapes) |
| assert len(param_infos) == len(fqns) |
| assert len(param_infos) == len(param_extensions) |
| self._num_params = len(param_infos) |
| self._param_infos = tuple(param_infos) |
| self._numels = tuple(numels) |
| self._shapes = tuple(shapes) |
| self._fqns = tuple(fqns) |
| self._shared_param_infos = tuple(shared_param_infos) |
| self._param_extensions = tuple(param_extensions) |
| self._modules = set(pi.module for pi in self._param_infos).union( |
| set(spi.module for spi in self._shared_param_infos) |
| ) |
| assert (params is None) == (shared_params is None) |
| if params is not None: |
| assert shared_params is not None and len(shared_params) == len( |
| shared_param_infos |
| ) |
| self._params: Optional[List[nn.Parameter]] = params |
| self._shared_params: Optional[List[nn.Parameter]] = shared_params |
| # Mark the original parameters to avoid flattening them into |
| # another `FlatParameter` during recursive construction |
| for param in chain(self._params, self._shared_params): |
| _set_fsdp_flattened(param) |
| self._is_grad_none: Optional[List[bool]] = [ |
| False for _ in range(len(params)) |
| ] |
| self._tensors: Optional[List[Optional[Tensor]]] = [ |
| None for _ in range(len(self._params)) |
| ] |
| else: |
| self._params = None |
| self._shared_params = None |
| self._is_grad_none = None |
| self._tensors = None |
| self._unpadded_unsharded_size = self.size() |
| _set_fsdp_flattened(self) |
| # Tracks whether the `FlatParameter`'s post-backward hook has been |
| # called to modify the behavior of the post-backward callback |
| self._post_backward_called = False |
| |
| |
| class FlatParamHandle: |
| """ |
| This handle manages a flattened parameter (:class:`FlatParameter`). This |
| includes sharding and view management. |
| |
| Args: |
| params (Sequence[nn.Parameter]): The parameters to use for the |
| flattened parameter. |
| fully_sharded_module (nn.Module): See [Note: Fully Sharded Module]. |
| device (torch.device): The compute and communication device, which |
| should be a non-CPU device. We refer to it as the compute device. |
| sharding_strategy (ShardingStrategy): Sharding strategy to apply to |
| this handle's ``FlatParameter``. |
| offload_params (bool): Whether to offload the handle's |
| ``FlatParameter`` to CPU. |
| mp_param_dtype (Optional[torch.dtype]): Parameter mixed precision |
| setting passed to the FSDP constructor. |
| mp_reduce_dtype (Optional[torch.dtype]): Gradient reduction mixed |
| precision setting passed to the FSDP constructor. |
| keep_low_precision_grads (bool): Whether to keep gradients in low |
| precision. |
| use_orig_params (bool): If ``True``, then FSDP preserves the original |
| parameter variables and returns them from ``named_parameters()`` |
| (e.g. to support different optimizer hyperparameters within one |
| :class:`FlatParameter`). If ``False``, then FSDP reconstructs the |
| parameter every iteration and returns the :class:`FlatParameter` s |
| from ``named_parameters()``. |
| """ |
| |
| ################## |
| # INITIALIZATION # |
| ################## |
| def __init__( |
| self, |
| params: Sequence[nn.Parameter], |
| fully_sharded_module: nn.Module, |
| device: torch.device, |
| sharding_strategy: HandleShardingStrategy, |
| offload_params: bool, |
| mp_param_dtype: Optional[torch.dtype], |
| mp_reduce_dtype: Optional[torch.dtype], |
| keep_low_precision_grads: bool, |
| process_group: dist.ProcessGroup, |
| use_orig_params: bool, |
| ): |
| super().__init__() |
| self.device = device |
| self.process_group = process_group |
| self.rank = process_group.rank() |
| self.world_size = process_group.size() |
| self._sharding_strategy = sharding_strategy |
| self._offload_params = offload_params |
| self._use_orig_params = use_orig_params |
| self._keep_low_precision_grads = keep_low_precision_grads |
| self._training_state = HandleTrainingState.IDLE |
| self._debug_level = dist.get_debug_level() |
| self._fully_sharded_module = fully_sharded_module |
| self._init_flat_param(params, fully_sharded_module, use_orig_params) |
| self._orig_param_dtype = self.flat_param.dtype |
| self._use_unsharded_views(as_params=False) |
| self._init_param_reduce_dtypes(mp_param_dtype, mp_reduce_dtype) |
| |
| def _init_flat_param( |
| self, |
| params: Sequence[Optional[nn.Parameter]], |
| module: nn.Module, |
| use_orig_params: bool, |
| ) -> None: |
| """ |
| Initializes the flattened parameter ``self.flat_param`` by flattening |
| the parameters in ``params`` into a single :class:`FlatParameter` and |
| saves relevant metadata. Shared parameters are only included in the |
| flattened parameter once. |
| |
| This checks that all comprising parameters have the same dtype and |
| ``requires_grad`` and does not support nested construction of |
| :class:`FlatParameter` s. |
| |
| Args: |
| See the Args in the class docstring. |
| """ |
| params_set = set(params) |
| params_set.discard(None) |
| if len(params_set) == 0: |
| raise ValueError( |
| "Cannot initialize a `FlatParameter` from an empty parameter list" |
| ) |
| param_infos: List[ParamInfo] = [] |
| numels: List[int] = [] |
| shapes: List[torch.Size] = [] |
| fqns: List[str] = [] |
| shared_param_infos: List[SharedParamInfo] = [] |
| shared_param_memo: Dict[nn.Parameter, Tuple[nn.Module, str, str]] = {} |
| params_to_flatten: List[Union[torch.Tensor, nn.Parameter]] = [] |
| shared_params: List[Union[torch.Tensor, nn.Parameter]] = [] |
| param_extensions: List[Any] = [] |
| dtype: Optional[torch.dtype] = None |
| requires_grad: Optional[bool] = None |
| for submodule_name, submodule in module.named_modules(): |
| for param_name, param in submodule.named_parameters(recurse=False): |
| if param not in params_set: |
| continue |
| if param in shared_param_memo: # shared reference |
| prim_module, prim_module_name, prim_param_name = shared_param_memo[ |
| param |
| ] |
| shared_params.append(param) |
| shared_param_infos.append( |
| SharedParamInfo( |
| param_name, |
| submodule, |
| submodule_name, |
| prim_param_name, |
| prim_module, |
| prim_module_name, |
| ) |
| ) |
| else: |
| if type(param) is FlatParameter: |
| raise ValueError("`FlatParameter` does not support nesting") |
| if dtype is not None and param.dtype != dtype: |
| raise ValueError( |
| "`FlatParameter` requires uniform dtype but got " |
| f"{dtype} and {param.dtype}" |
| ) |
| if dtype is None and not param.is_floating_point(): |
| raise ValueError("Integer parameters are unsupported") |
| if ( |
| requires_grad is not None |
| and param.requires_grad != requires_grad |
| ): |
| raise ValueError( |
| "`FlatParameter` requires uniform `requires_grad`" |
| ) |
| param, extension = _ext_pre_flatten_transform(param) |
| param_extensions.append(extension) |
| dtype = param.dtype |
| requires_grad = param.requires_grad |
| shared_param_memo[param] = (submodule, submodule_name, param_name) |
| params_to_flatten.append(param) |
| param_infos.append(ParamInfo(param_name, submodule, submodule_name)) |
| numels.append(param.numel()) |
| shapes.append(param.shape) |
| fqn = ( |
| submodule_name + "." + param_name |
| if submodule_name |
| else param_name |
| ) |
| fqns.append(fqn) |
| assert requires_grad is not None, ( |
| "Passed-in `params` were not found in the module tree\n" |
| f"params: {params}\nmodule: {module}" |
| ) |
| self.flat_param = FlatParamHandle.flatten_params( |
| params_to_flatten, requires_grad |
| ) |
| # For `use_orig_params=True`, ensure that the logical parameters are |
| # `nn.Parameter`s (and not plain `torch.Tensor`) |
| |
| def convert_to_params( |
| tensors: List[Union[torch.Tensor, nn.Parameter]] |
| ) -> List[nn.Parameter]: |
| return [ |
| t if isinstance(t, nn.Parameter) else nn.Parameter(t) for t in tensors |
| ] |
| |
| self.flat_param._init_metadata( |
| param_infos, |
| numels, |
| shapes, |
| fqns, |
| shared_param_infos, |
| param_extensions, |
| convert_to_params(params_to_flatten) if use_orig_params else None, |
| convert_to_params(shared_params) if use_orig_params else None, |
| ) |
| |
| @staticmethod |
| def flatten_params( |
| params: Sequence[torch.Tensor], |
| requires_grad: bool, |
| ) -> FlatParameter: |
| """ |
| Flattens the parameters in ``params`` into a single |
| :class:`FlatParameter`. This should be the only way used to construct |
| :class:`FlatParameter` s. |
| |
| We expose this factory method for checkpointing (e.g. sharded state |
| dict). The flattened parameter's metadata should only be initialized |
| once (see :meth:`_init_metadata`), but its tensor data may be reloaded. |
| """ |
| with torch.no_grad(): |
| flat_params = [ |
| p.detach().reshape(-1) if isinstance(p, nn.Parameter) else p.reshape(-1) |
| for p in params |
| ] |
| flat_param_data = torch.cat(flat_params, dim=0) |
| flat_param = FlatParameter(flat_param_data, requires_grad=requires_grad) |
| return flat_param |
| |
| def _init_param_reduce_dtypes( |
| self, |
| mp_param_dtype: Optional[torch.dtype], |
| mp_reduce_dtype: Optional[torch.dtype], |
| ) -> None: |
| """ |
| Precondition: ``self.flat_param`` is set via :meth:`_init_flat_param`. |
| This ensures that this handle's parameters have a single dtype. |
| |
| Postcondition: This sets ``self._fwd_bwd_param_dtype`` and |
| ``self._reduce_dtype``. If ``mp_param_dtype`` or ``mp_reduce_dtype`` |
| is ``None``, then we assume the original parameter dtype. One special |
| case is if ``mp_param_dtype`` is not ``None`` and ``mp_reduce_dtype`` |
| is ``None``, in which case we assume the gradient reduction dtype |
| matches the forward/backward parameter dtype. |
| """ |
| # Save whether these dtypes were specified so that we permit the |
| # parameter dtype to change up until the lazy initialization |
| self._low_prec_param_dtype_specified = mp_param_dtype is not None |
| self._low_prec_reduce_dtype_specified = mp_reduce_dtype is not None |
| if ( |
| self._low_prec_param_dtype_specified |
| and not self._low_prec_reduce_dtype_specified |
| ): |
| # Special case: infer gradient reduction mixed precision |
| self._fwd_bwd_param_dtype = mp_param_dtype |
| self._reduce_dtype = self._fwd_bwd_param_dtype |
| else: |
| self._fwd_bwd_param_dtype = mp_param_dtype or self._orig_param_dtype |
| self._reduce_dtype = mp_reduce_dtype or self._orig_param_dtype |
| assert self._fwd_bwd_param_dtype is not None |
| assert self._reduce_dtype is not None |
| |
| ################################### |
| # SHARD INITIALIZATION & METADATA # |
| ################################### |
| @torch.no_grad() |
| def shard(self): |
| """ |
| Shards the handle's ``FlatParameter``. In terms of memory, this |
| allocates new memory for the sharded flattened parameter and frees the |
| unsharded flattened parameter's storage. |
| |
| Postcondition: ``self.flat_param`` is the sharded flattened parameter. |
| Shard metadata attributes are set for all sharding strategies. |
| ``process_group``, ``rank``, and ``world_size`` attributes are set if |
| using a sharded strategy. |
| """ |
| flat_param = self.flat_param |
| if not self.uses_sharded_strategy: |
| self._init_shard_metadata(0, 0, flat_param.numel() - 1) |
| else: |
| p_assert( |
| flat_param.storage_offset() == 0, |
| "The `FlatParameter` is not the sole occupant of its storage", |
| ) |
| orig_storage = flat_param._typed_storage() |
| sharded_flat_param, numel_padded = FlatParamHandle._get_shard( |
| flat_param, self.rank, self.world_size |
| ) |
| flat_param.set_(sharded_flat_param) # type: ignore[call-overload] |
| start = sharded_flat_param.numel() * self.rank |
| end = sharded_flat_param.numel() * (self.rank + 1) - 1 # inclusive |
| self._init_shard_metadata(numel_padded, start, end) |
| if orig_storage._size() > 0: |
| orig_storage._resize_(0) |
| if self._use_orig_params: |
| self._use_sharded_views() |
| |
| def _init_shard_metadata( |
| self, |
| numel_padded: int, |
| start: int, |
| end: int, |
| ) -> None: |
| """ |
| Initializes shard-related metadata for this rank's shard of the |
| flattened parameter: ``_sharded_size``, ``_shard_param_offsets``, |
| ``_shard_indices``, and ``_shard_numel_padded``. |
| |
| Args: |
| numel_padded (int): Numel padded for this rank's sharded flattened |
| parameter. |
| start (int): Start index in the sharded flattened parameter |
| assigned to this rank. |
| end (int): End index (inclusive) in the sharded flattened parameter |
| assigned to this rank. If this exceeds the sharded flattened |
| parameter's numel, then it is truncated. |
| |
| Precondition: ``self.flat_param`` 's data is the sharded flattened |
| parameter. |
| """ |
| self.flat_param._sharded_size = self.flat_param.size() # type: ignore[attr-defined] |
| sharded_flat_param_numel = self.flat_param.numel() # includes `numel_padded` |
| p_assert(start >= 0 and start <= end, f"start: {start} end: {end}") |
| p_assert( |
| numel_padded <= sharded_flat_param_numel, |
| f"numel_padded: {numel_padded} " |
| f"sharded_flat_param_numel: {sharded_flat_param_numel}", |
| ) |
| ( |
| self.flat_param._shard_param_offsets, # type: ignore[attr-defined] |
| self.flat_param._shard_indices, # type: ignore[attr-defined] |
| ) = self._get_shard_metadata(start, end) |
| self.flat_param._shard_numel_padded = numel_padded # type: ignore[attr-defined] |
| |
| def _get_shard_metadata( |
| self, |
| start: int, |
| end: int, |
| ) -> Tuple[Tuple[Tuple[int, int], ...], Tuple[int, int]]: |
| """ |
| Computes the shard metadata based on ``start`` and ``end``, which give |
| the closed interval of the unsharded flattened parameter specifying the |
| shard. |
| |
| Args: |
| start (int): Start index (in units of numel) of this rank's shard |
| of the flattened parameter. |
| end (int): End index (in units of numel and inclusive) of this |
| rank's shard of the flattened parameter. |
| |
| Return: |
| Tuple[Tuple[Tuple[int, int], ...], Tuple[int, int]]: See |
| ``_shard_param_offsets`` and ``_shard_indices`` in |
| :class:`FlatParameter` 's docstring. |
| """ |
| flat_param_offsets = self._get_flat_param_offsets() |
| # Indices of the original parameters in this rank's sharded flattened |
| # parameter |
| shard_param_indices_range = [] # elements will be consecutive |
| # [start, end] offsets giving this rank's part of the flattened |
| # original module parameter (which will be [0, `p.numel()`-1] for any |
| # parameter that is not sharded across ranks) |
| shard_param_offsets = [] |
| for i, (param_start, param_end) in enumerate(flat_param_offsets): |
| if start > param_end or end < param_start: |
| continue |
| if start <= param_start: |
| intra_param_start = 0 |
| else: |
| intra_param_start = start - param_start |
| intra_param_end = min(param_end, end) - param_start |
| shard_param_indices_range.append(i) |
| shard_param_offsets.append( |
| (intra_param_start, intra_param_end) |
| ) # both inclusive |
| if len(shard_param_indices_range) == 0: |
| shard_param_indices = (0, 0) |
| assert len(shard_param_offsets) == 0 |
| else: |
| shard_param_indices = ( |
| shard_param_indices_range[0], |
| shard_param_indices_range[-1], |
| ) |
| assert ( |
| len(shard_param_offsets) |
| == shard_param_indices[-1] - shard_param_indices[0] + 1 |
| ) |
| return tuple(shard_param_offsets), shard_param_indices |
| |
| @staticmethod |
| def _get_unpadded_shard( |
| tensor: Tensor, |
| rank: int, |
| world_size: int, |
| ) -> Tuple[Tensor, int]: |
| """ |
| Returns the shard of ``tensor`` without any padding for the given |
| ``rank`` and ``world_size`` and the numel to pad for that shard. |
| |
| If ``tensor`` is already flattened or may be viewed in the flattened |
| shape (which is true in the expected usage), then this method does not |
| allocate any new tensor memory. |
| """ |
| chunks = torch.flatten(tensor).chunk(world_size) |
| if len(chunks) < (rank + 1): |
| # This rank gets an empty chunk fully padded with zeros since there |
| # are not enough chunks across ranks |
| chunk = chunks[0].new_empty(0) |
| else: |
| chunk = chunks[rank] |
| numel_to_pad = chunks[0].numel() - chunk.numel() |
| assert ( |
| numel_to_pad >= 0 |
| ), "Chunk's size should be at most the first chunk's size" |
| return chunk, numel_to_pad |
| |
| @staticmethod |
| def _get_shard( |
| tensor: Tensor, |
| rank: int, |
| world_size: int, |
| ) -> Tuple[Tensor, int]: |
| """ |
| Returns the shard of ``tensor`` with padding for the given ``rank`` and |
| ``world_size`` and the numel padded for that shard. |
| |
| This method allocates new memory (via :meth:`clone`) since the |
| unsharded ``tensor`` may be deallocated after this method returns. |
| """ |
| chunk, numel_to_pad = FlatParamHandle._get_unpadded_shard( |
| tensor, rank, world_size |
| ) |
| shard = chunk.clone() |
| if numel_to_pad > 0: |
| shard = F.pad(shard, [0, numel_to_pad]) |
| return shard, numel_to_pad |
| |
| @staticmethod |
| def _get_sharded_size(tensor: Tensor, rank: int, world_size: int) -> torch.Size: |
| """ |
| Returns the shape of ``tensor`` after sharding including padding. This |
| requires ``tensor`` to have 1D shape and ensures that the returned |
| shape is 1D. |
| """ |
| assert len(tensor.shape) == 1, f"{tensor.shape}" |
| unpadded_sharded_tensor, numel_to_pad = FlatParamHandle._get_unpadded_shard( |
| tensor, rank, world_size |
| ) |
| unpadded_sharded_size = unpadded_sharded_tensor.size() |
| assert len(unpadded_sharded_size) == 1, f"{unpadded_sharded_size}" |
| return torch.Size([unpadded_sharded_size[0] + numel_to_pad]) |
| |
| def _get_flat_param_offsets(self) -> List[Tuple[int, int]]: |
| """Returns [start, end] offsets of each original parameter's flattened |
| data in the unsharded flattened parameter (without padding).""" |
| cumulative_sum = list(accumulate(self.flat_param._numels)) |
| starts = [0] + cumulative_sum[:-1] |
| ends = [end - 1 for end in cumulative_sum] # inclusive |
| param_offsets = list(zip(starts, ends)) |
| return param_offsets |
| |
| def shard_metadata( |
| self, |
| ) -> FlatParamShardMetadata: |
| """Returns shard-related metadata specific to this rank's shard of the |
| flattened parameter.""" |
| assert hasattr(self.flat_param, "_shard_indices") and hasattr( |
| self.flat_param, "_shard_param_offsets" |
| ), "Shard metadata has not been initialized" |
| shard_param_start_index = self.flat_param._shard_indices[0] # type: ignore[attr-defined] |
| shard_param_end_index = self.flat_param._shard_indices[1] # type: ignore[attr-defined] |
| sl = ( |
| slice(shard_param_start_index, shard_param_end_index + 1) |
| if shard_param_start_index <= shard_param_end_index |
| else slice(0, 0) |
| ) |
| return FlatParamShardMetadata( |
| self.flat_param._fqns[sl], |
| self.flat_param._shapes[sl], |
| self.flat_param._numels[sl], |
| self.flat_param._shard_param_offsets[:], # type: ignore[attr-defined] |
| ) |
| |
| @no_type_check |
| @torch.no_grad() |
| def init_flat_param_attributes(self) -> None: |
| """ |
| This initializes some attributes on the handle's ``FlatParameter``. |
| This should be called during lazy initialization since it requires the |
| parameter to be on the compute device if not offloading to CPU and we |
| want to give users the chance to move the parameter appropriately after |
| the FSDP constructor. |
| |
| For each tensor attribute on the ``FlatParameter``, see the unshard and |
| reshard methods in this class for the allocation and free pattern. |
| """ |
| flat_param = self.flat_param |
| if flat_param.dtype != self._orig_param_dtype: |
| # Entering this branch means that the user changed the parameter |
| # dtype after FSDP initialization, in which case we may need to |
| # refresh some saved dtype attributes (dtypes specified as a part |
| # of mixed precision take precedence). |
| if not self._low_prec_param_dtype_specified: |
| self._fwd_bwd_param_dtype = flat_param.dtype |
| # For `reduce_dtype`, require `param_dtype` was not specified since |
| # then we infer the `reduce_dtype` from the specified `param_dtype` |
| if ( |
| not self._low_prec_reduce_dtype_specified |
| and not self._low_prec_param_dtype_specified |
| ): |
| self._reduce_dtype = flat_param.dtype |
| self._orig_param_dtype = flat_param.dtype |
| cpu_device = torch.device("cpu") |
| if self._offload_params: |
| p_assert( |
| flat_param.device == cpu_device, |
| f"Expects the `FlatParameter` to be on CPU when parameter CPU " |
| f"offloading is enabled, not {flat_param.device}", |
| ) |
| else: |
| self._check_on_compute_device(self.flat_param) |
| flat_param._local_shard = flat_param.data |
| if self._offload_params: |
| # Pin the memory for faster H2D transfer |
| flat_param._local_shard = flat_param._local_shard.pin_memory() |
| # Pre-allocate the sharded gradient on CPU to enable non-blocking |
| # D2H transfer during the backward pass |
| flat_param._cpu_grad = torch.zeros_like( |
| flat_param._local_shard, device=cpu_device |
| ).pin_memory() |
| if self._uses_param_mixed_precision: |
| # For parameter mixed precision, we maintain a low precision |
| # sharded tensor on the compute device to be all-gathered (for |
| # sharded strategies) or directly used (for `NO_SHARD`) for |
| # computation. |
| flat_param._mp_shard = torch.zeros_like( |
| flat_param._local_shard, |
| device=self.device, |
| dtype=self._fwd_bwd_param_dtype, |
| ) |
| _free_storage(flat_param._mp_shard) |
| if self.uses_sharded_strategy: |
| # We maintain a padded unsharded tensor that serves as the |
| # all-gather destination and owns the original parameter storages. |
| unsharded_param_dtype = ( |
| self._fwd_bwd_param_dtype |
| if self._uses_param_mixed_precision |
| else flat_param.dtype |
| ) # use low precision if parameter mixed precision is enabled |
| padded_unsharded_numel = flat_param.numel() * self.world_size |
| flat_param._full_param_padded = torch.zeros( |
| padded_unsharded_numel, |
| device=self.device, |
| dtype=unsharded_param_dtype, |
| ) |
| flat_param._padded_unsharded_size = flat_param._full_param_padded.size() |
| _free_storage(flat_param._full_param_padded) |
| |
| if self._uses_param_mixed_precision: |
| # For parameter mixed precision, we maintain a full precision |
| # padded unsharded tensor for when we force full precision. |
| flat_param._full_prec_full_param_padded = torch.zeros( |
| padded_unsharded_numel, |
| device=self.device, |
| dtype=flat_param.dtype, # full precision |
| ) |
| _free_storage(flat_param._full_prec_full_param_padded) |
| |
| ################### |
| # UNSHARD/RESHARD # |
| ################### |
| def pre_unshard(self) -> bool: |
| """ |
| Returns: ``False`` if this is a no-op and ``True`` otherwise. |
| |
| Postcondition: ``self.flat_param`` 's data is on the device for |
| communication and is what should be all-gathered. This means that it |
| matches the dtype of the expected unsharded parameter. |
| """ |
| ret = False |
| if self._use_orig_params: |
| ret = self._writeback_orig_params() |
| if ( |
| self.uses_sharded_strategy |
| and not self._offload_params |
| and not self.needs_unshard() |
| ): |
| pass # no-op |
| elif self._uses_param_mixed_precision and not self._force_full_precision: |
| self._use_low_precision_shard() |
| ret = True |
| elif self._offload_params and self.flat_param.device != self.device: |
| # NOTE: This creates a new tensor distinct from any attributes. |
| self.flat_param_to(self.device, non_blocking=True) |
| ret = True |
| self._check_on_compute_device(self.flat_param) |
| return ret |
| |
| def _use_low_precision_shard(self): |
| """ |
| Allocates the low precision shard directly on the compute device and |
| switches to using the low precision sharded flattened parameter. |
| """ |
| self._check_low_precision_shard() |
| flat_param = self.flat_param |
| _alloc_storage( |
| flat_param._mp_shard, flat_param._local_shard.size() # type: ignore[attr-defined] |
| ) |
| # `copy_()` implicitly casts to the low precision |
| flat_param._mp_shard.copy_( # type: ignore[attr-defined] |
| flat_param._local_shard.to( # type: ignore[attr-defined] |
| self.device, non_blocking=True |
| ) |
| ) |
| # Invariant: `_mp_shard` is always on the compute device. |
| flat_param.data = flat_param._mp_shard # type: ignore[attr-defined] |
| |
| def unshard(self): |
| """ |
| Runs the unshard logic. This includes all-gathering the flattened |
| parameter and switching to using the unsharded flattened parameter. If |
| the handle does not need unsharding, then this only switches to using |
| the unsharded flattened parameter. For ``NO_SHARD``, this is a no-op. |
| |
| If FSDP is in :meth:`summon_full_params` and the handle uses parameter |
| mixed precision, then the parameter is forced to full precision. |
| """ |
| if not self.needs_unshard(): |
| # Even when not needing an unshard, we should switch to using |
| # the unsharded flattened parameter |
| unsharded_flat_param = ( |
| self._get_padded_unsharded_flat_param() |
| if self.uses_sharded_strategy |
| else self.flat_param |
| ) |
| self._use_unsharded_flat_param(unsharded_flat_param) |
| return |
| unsharded_flat_param = self._alloc_padded_unsharded_flat_param() |
| padded_unsharded_flat_param = self._all_gather_flat_param(unsharded_flat_param) |
| self._use_unsharded_flat_param(padded_unsharded_flat_param) |
| |
| def needs_unshard(self) -> bool: |
| """Returns if the handle's flattened parameter needs to be unsharded.""" |
| if not self.uses_sharded_strategy: |
| return False |
| unsharded_flat_param = self._get_padded_unsharded_flat_param() |
| already_unsharded = ( |
| unsharded_flat_param._typed_storage()._size() |
| == unsharded_flat_param.numel() |
| ) |
| return not already_unsharded |
| |
| def _alloc_padded_unsharded_flat_param(self): |
| """ |
| Allocates the *padded* unsharded flattened parameter. The unpadded |
| unsharded flattened parameter is always a view into the padded one. |
| This padded parameter is saved to a different attribute on the |
| ``FlatParameter`` depending on if we force full precision. |
| """ |
| self._check_sharded_strategy() |
| flat_param = self.flat_param |
| unsharded_flat_param = self._get_padded_unsharded_flat_param() |
| self._check_storage_freed(unsharded_flat_param) |
| _alloc_storage(unsharded_flat_param, flat_param._padded_unsharded_size) # type: ignore[attr-defined] |
| return unsharded_flat_param |
| |
| def _get_padded_unsharded_flat_param(self) -> torch.Tensor: |
| """ |
| Returns a reference to the padded unsharded flattened parameter |
| depending on the calling context. This should only be called if using a |
| sharded strategy. |
| """ |
| self._check_sharded_strategy() |
| flat_param = self.flat_param |
| if self._force_full_precision: |
| # When parameter mixed precision is enabled, we use a different |
| # tensor as the all-gather destination to preserve the invariant |
| # that `_full_param_padded` is in the low precision |
| unsharded_flat_param = flat_param._full_prec_full_param_padded # type: ignore[attr-defined] |
| p_assert( |
| unsharded_flat_param.dtype != self._fwd_bwd_param_dtype, |
| f"Expects full precision but got {self._fwd_bwd_param_dtype}", |
| ) |
| else: |
| unsharded_flat_param = flat_param._full_param_padded # type: ignore[attr-defined] |
| return unsharded_flat_param |
| |
| def _all_gather_flat_param( |
| self, |
| padded_unsharded_flat_param: Tensor, |
| ) -> Tensor: |
| """ |
| All-gathers the handle's flattened parameter to the destination |
| ``padded_unsharded_flat_param``, and switches to using the all-gathered |
| tensor. |
| """ |
| p_assert( |
| hasattr(self, "process_group") and hasattr(self, "world_size"), |
| "Expects a process group and world size to have been set via `shard()`", |
| ) |
| sharded_flat_param = self.flat_param.data |
| expected_numel = sharded_flat_param.numel() * self.world_size |
| p_assert( |
| padded_unsharded_flat_param.numel() == expected_numel, |
| f"Expects {expected_numel} numel but got {padded_unsharded_flat_param.numel()}", |
| ) |
| dist.all_gather_into_tensor( |
| padded_unsharded_flat_param, |
| sharded_flat_param, |
| self.process_group, |
| ) |
| return padded_unsharded_flat_param |
| |
| def _use_unsharded_flat_param( |
| self, |
| padded_unsharded_flat_param: torch.Tensor, |
| ) -> None: |
| """ |
| Switches to using the *unpadded* unsharded flattened parameter, which |
| is a view into the *padded* unsharded flattened parameter. |
| """ |
| unsharded_size = self.flat_param._unpadded_unsharded_size |
| self.flat_param.data = padded_unsharded_flat_param[ |
| : unsharded_size.numel() |
| ].view( |
| unsharded_size |
| ) # this `.view()` is not autograd visible |
| in_forward = self._training_state == HandleTrainingState.FORWARD |
| in_pre_backward = self._training_state == HandleTrainingState.BACKWARD_PRE |
| if self._use_orig_params: |
| # We use `Tensor` views in the forward so that they are tracked by |
| # autograd. We use them in the pre-backward as well to support |
| # reentrant activation checkpointing, which needs the views to be |
| # tracked by autograd in the backward pass's recomputed forward. |
| self._use_unsharded_views( |
| as_params=(not in_forward and not in_pre_backward) |
| ) |
| elif in_forward: |
| self._use_unsharded_views(as_params=False) |
| |
| def post_unshard(self): |
| """ |
| Runs the post-unshard logic. This includes freeing the low precision |
| shard if needed. |
| """ |
| if self._uses_param_mixed_precision and self.uses_sharded_strategy: |
| self._free_low_precision_sharded_param() |
| self._check_on_compute_device(self.flat_param) |
| |
| def _free_low_precision_sharded_param(self): |
| """Frees the low precision sharded flattened parameter.""" |
| self._check_low_precision_shard() |
| # `_mp_shard` is allocated in the pre-unshard stream, consumed in the |
| # unshard stream for sharded strategies, and consumed in both the |
| # unshard and default streams for `NO_SHARD`. For sharded strategies, |
| # the current stream here is the unshard stream, and for `NO_SHARD`, |
| # it is the default stream. For `NO_SHARD`, only recording for the |
| # default stream suffices since the default stream waits for the |
| # unshard stream. |
| _no_dispatch_record_stream( |
| self.flat_param._mp_shard, torch.cuda.current_stream() # type: ignore[attr-defined] |
| ) |
| _free_storage(self.flat_param._mp_shard) # type: ignore[attr-defined] |
| |
| @torch.no_grad() |
| def unshard_grad(self): |
| """ |
| Unshards the handle's ``FlatParameter`` 's gradient. If all ranks have |
| ``None`` gradient, then all original parameters will as well. This |
| method performs an all-reduce and an all-gather. The additional |
| all-reduce is tolerable since this method is not meant to be used on |
| the computation critical path. |
| |
| Postcondition: ``_saved_grad_shard`` is defined and contains the value |
| to set ``flat_param.grad`` after gradients are resharded. |
| """ |
| if not self.uses_sharded_strategy: |
| self._use_unsharded_grad_views() |
| return |
| flat_param = self.flat_param |
| self._check_unsharded(flat_param) |
| |
| # Check if all ranks have a `None` gradient |
| num_grad_none = torch.zeros(1, dtype=torch.int32, device=self.device) |
| num_grad_none[0] = flat_param.grad is None |
| dist.all_reduce(num_grad_none, group=self.process_group) |
| if num_grad_none[0] == self.world_size: |
| flat_param._saved_grad_shard = None # type: ignore[attr-defined] |
| self._use_unsharded_grad_views() |
| return |
| |
| padded_unsharded_grad = torch.empty( |
| flat_param._padded_unsharded_size, # type: ignore[attr-defined] |
| device=self.device, |
| ) |
| if flat_param.grad is None: |
| # In the case that only some ranks have `None` gradient, we use |
| # zeros to approximate as a best effort attempt |
| if self._debug_level == dist.DebugLevel.DETAIL: |
| warnings.warn( |
| f"[Rank {self.rank}] Only some but not all ranks have a " |
| "`None` `FlatParameter` gradient, so FSDP is using zeros to " |
| "approximate those ranks' sharded gradients being `None`" |
| ) |
| flat_param._saved_grad_shard = None # type: ignore[attr-defined] |
| sharded_grad = torch.zeros(flat_param._sharded_size, device=self.device) # type: ignore[attr-defined] |
| else: |
| self._check_sharded(flat_param.grad) |
| flat_param._saved_grad_shard = flat_param.grad # type: ignore[attr-defined] |
| sharded_grad = flat_param._saved_grad_shard # type: ignore[attr-defined] |
| dist.all_gather_into_tensor( |
| padded_unsharded_grad, sharded_grad, self.process_group |
| ) |
| unsharded_size = self.flat_param._unpadded_unsharded_size |
| flat_param.grad = padded_unsharded_grad[: unsharded_size.numel()].view( |
| unsharded_size |
| ) |
| self._use_unsharded_grad_views() |
| |
| def reshard_grad(self): |
| if self._use_orig_params: |
| self._use_sharded_grad_views() |
| if not self.uses_sharded_strategy: |
| return |
| self.flat_param.grad = self.flat_param._saved_grad_shard # type: ignore[attr-defined] |
| delattr(self.flat_param, "_saved_grad_shard") |
| |
| def prepare_gradient_for_backward(self): |
| """ |
| Prepares the gradient for the backward computation by saving and |
| clearing any existing sharded gradient in ``.grad`` to enable computing |
| a new unsharded gradient. |
| """ |
| p_assert( |
| self._training_state |
| in (HandleTrainingState.BACKWARD_PRE, HandleTrainingState.IDLE), |
| "Expects to be in `BACKWARD_PRE` or `IDLE` (if prefetching)", |
| ) |
| flat_param = self.flat_param |
| if flat_param.grad is not None and ( |
| flat_param.grad.size() != flat_param._unpadded_unsharded_size |
| or flat_param.grad.device != flat_param.device # grad on CPU |
| ): |
| self._check_on_compute_device(self.flat_param) |
| grad_offloaded = flat_param.grad.device != self.device |
| p_assert( |
| not grad_offloaded or self._offload_params, |
| f"Expects the sharded gradient to be on {self.device} " |
| f"but got {flat_param.grad.device}", |
| ) |
| prev_iter_synced_gradients = ( |
| flat_param.grad.size() |
| == flat_param._local_shard.size() # type: ignore[attr-defined] |
| ) |
| if prev_iter_synced_gradients: |
| # TODO (awgu): Gradient accumulation outside `no_sync()` |
| # does not work with CPU offloading. The issue should be |
| # that, in the post-backward hook, we cannot do an addition |
| # between a CPU tensor (the existing sharded gradient) and |
| # a GPU tensor (the new sharded gradient). |
| if not grad_offloaded: |
| flat_param._saved_grad_shard = flat_param.grad.data # type: ignore[attr-defined] |
| sharded_grad = flat_param._saved_grad_shard # type: ignore[attr-defined] |
| else: |
| p_assert( |
| hasattr(flat_param, "_cpu_grad"), |
| "`_cpu_grad` should be defined if the gradient is on CPU", |
| ) |
| sharded_grad = flat_param._cpu_grad # type: ignore[attr-defined] |
| # If user specified to keep the gradient in low precision, then |
| # the gradient may still be of the low precision dtype if the |
| # user did not set the gradient to `None` after the previous |
| # backward, in which case FSDP should cast back to the full |
| # precision dtype so that FSDP can accumulate in that dtype in |
| # the post-backward hook and assign to `.grad` in that dtype in |
| # the post-backward callback. |
| local_shard_dtype = flat_param._local_shard.dtype # type: ignore[attr-defined] |
| if ( |
| self._keep_low_precision_grads |
| and sharded_grad.dtype != local_shard_dtype |
| ): |
| sharded_grad.data = sharded_grad.to(local_shard_dtype) |
| else: |
| padded_unsharded_size = flat_param._padded_unsharded_size # type: ignore[attr-defined] |
| p_assert( |
| flat_param.grad.size() == padded_unsharded_size, |
| "Expects `.grad` to be the unsharded gradient in " |
| f"`no_sync()` with size {padded_unsharded_size} " |
| f"but got size {flat_param.grad.size()}", |
| ) |
| flat_param.grad = None |
| |
| def prepare_gradient_for_optim(self): |
| """ |
| Prepares the gradient for optimizer computation by moving the sharded |
| gradient to the ``.grad`` attribute. |
| """ |
| |
| def cast_grad_to_param_dtype_if_needed(flat_param): |
| if self._keep_low_precision_grads: |
| assert flat_param.grad is not None # mypy |
| if flat_param.grad.dtype != self._fwd_bwd_param_dtype: |
| flat_param.grad.data = flat_param.grad.to(self._fwd_bwd_param_dtype) |
| if self._use_orig_params: |
| self._use_sharded_grad_views() |
| |
| flat_param = self.flat_param |
| # TODO (awgu): We should replace these conditional checks to encode |
| # the logical intention more directly. |
| if hasattr(flat_param, "_cpu_grad"): |
| # NOTE: This branch includes `NO_SHARD`. |
| self._check_sharded(flat_param) |
| self._check_on_cpu(flat_param) |
| flat_param.grad = flat_param._cpu_grad # type: ignore[attr-defined] |
| cast_grad_to_param_dtype_if_needed(flat_param) |
| elif hasattr(flat_param, "_saved_grad_shard"): |
| self._check_sharded(flat_param) |
| self._check_on_compute_device(flat_param) |
| self._check_on_compute_device(flat_param._saved_grad_shard) # type: ignore[attr-defined] |
| # If no sharded gradient was computed this iteration, then there is |
| # no need to forward `_saved_grad_shard` to `grad` |
| if flat_param._post_backward_called: # type: ignore[attr-defined] |
| flat_param.grad = flat_param._saved_grad_shard # type: ignore[attr-defined] |
| cast_grad_to_param_dtype_if_needed(flat_param) |
| else: |
| p_assert( |
| not self.uses_sharded_strategy |
| or not flat_param._post_backward_called, # type: ignore[attr-defined] |
| "All sharded parameters that received a gradient in the " |
| "post-backward should use `_saved_grad_shard`", |
| ) |
| # Delete `_saved_grad_shard` since its existence indicates a previous |
| # gradient to accumulate with in the post-backward hook |
| if hasattr(flat_param, "_saved_grad_shard"): |
| delattr(flat_param, "_saved_grad_shard") |
| |
| @contextlib.contextmanager |
| def to_cpu(self): |
| """ |
| Moves the unpadded unsharded flattened parameter to CPU while in the |
| context and moves it back to the previous device upon exit. For now, |
| this assumes the ``FlatParameter`` is the unpadded unsharded flattened |
| parameter since (1) there is no reason to include the padding in the |
| copy and (2) there is no use case for the sharded flattened parameter. |
| |
| Precondition: ``self.flat_param`` 's data is the unpadded unsharded |
| flattened parameter on the compute device, and the handle uses a |
| sharded strategy. |
| Postcondition: Same as the precondition. |
| """ |
| self._check_sharded_strategy() |
| p_assert( |
| self.flat_param.size() == self.flat_param._unpadded_unsharded_size, |
| f"Expects size {self.flat_param._unpadded_unsharded_size} but got {self.flat_param.size()}", |
| ) |
| self._check_on_compute_device(self.flat_param) |
| # Check that the unpadded unsharded flattened parameter is a view into |
| # the padded unsharded flattened parameter as expected |
| # NOTE: This check is not strictly needed for correctness but is a |
| # useful sanity check since the tensor should only be used internally. |
| unpadded_storage_ptr = self.flat_param._typed_storage()._data_ptr() |
| padded_storage_ptr = ( |
| self._get_padded_unsharded_flat_param()._typed_storage()._data_ptr() |
| ) |
| p_assert( |
| unpadded_storage_ptr == padded_storage_ptr, |
| "Expects the unpadded parameter to be a view into the padded parameter", |
| ) |
| self.flat_param_to(torch.device("cpu")) |
| self._free_unsharded_flat_param() |
| try: |
| yield |
| finally: |
| p_assert( |
| self.flat_param.size() == self.flat_param._unpadded_unsharded_size, |
| f"Expects size {self.flat_param._unpadded_unsharded_size} but got {self.flat_param.size()}", |
| ) |
| padded_unsharded_flat_param = self._alloc_padded_unsharded_flat_param() |
| # Copy from CPU to the compute device |
| padded_unsharded_flat_param[: self.flat_param.numel()].copy_( |
| self.flat_param |
| ) |
| self._use_unsharded_flat_param(padded_unsharded_flat_param) |
| |
| def reshard(self, free_unsharded_flat_param: bool): |
| """ |
| Runs the reshard logic. This includes freeing the unsharded flattened |
| parameter if ``free_unsharded_flat_param`` and switching to using the |
| sharded flattened parameter. |
| """ |
| if free_unsharded_flat_param: |
| self._free_unsharded_flat_param() |
| self._use_sharded_flat_param() |
| |
| def post_reshard(self): |
| """ |
| Runs the post-reshard logic. This includes freeing any memory that |
| can now be freed given that the ``FlatParameter`` points to the full |
| precision sharded flattened parameter. |
| |
| Precondition: ``self.flat_param`` 's data points to the full precision |
| sharded flattened parameter. |
| """ |
| # For `NO_SHARD`, `_mp_shard` is not freed in the post-unshard since |
| # it is also the low precision *unsharded* flattened parameter. Hence, |
| # we delay the free until the reshard. |
| if ( |
| self._uses_param_mixed_precision |
| and not self.uses_sharded_strategy |
| and not self._force_full_precision # did not use the low precision shard |
| ): |
| self._free_low_precision_sharded_param() |
| |
| def _free_unsharded_flat_param(self): |
| """ |
| Frees the padded unsharded flattened parameter. The tensor to free |
| depends on the calling context since the unshard may have forced full |
| precision, in which case a different tensor is used. |
| """ |
| self._check_sharded_strategy() |
| unsharded_flat_param = self._get_padded_unsharded_flat_param() |
| self._check_storage_allocated(unsharded_flat_param) |
| self._check_on_compute_device(unsharded_flat_param) |
| # Do not free the memory until all ops in the current stream finish |
| _no_dispatch_record_stream(unsharded_flat_param, torch.cuda.current_stream()) |
| _free_storage(unsharded_flat_param) |
| |
| def _use_sharded_flat_param(self) -> None: |
| """Switches to using the sharded flattened parameter.""" |
| flat_param = self.flat_param |
| if self._offload_params: |
| device = flat_param._local_shard.device # type: ignore[attr-defined] |
| p_assert( |
| device == torch.device("cpu"), |
| f"Expects the local shard to be on CPU but got {device}", |
| ) |
| flat_param.data = flat_param._local_shard # type: ignore[attr-defined] |
| if self._use_orig_params: |
| self._use_sharded_views() |
| # For the post-forward reshard, we may try to use sharded gradient |
| # views (or unsharded gradient views if a gradient was accumulated |
| # in `no_sync()`), but for the post-backward reshard, we delay the |
| # call to after the reduce-scatter. |
| if self._training_state == HandleTrainingState.FORWARD: |
| # TODO: Change `_unpadded_unsharded_size` if we change the |
| # gradient to be computed directly with padding. |
| accumulated_grad_in_no_sync = ( |
| flat_param.grad is not None |
| and self.uses_sharded_strategy |
| and flat_param.grad.shape == flat_param._unpadded_unsharded_size |
| ) |
| if accumulated_grad_in_no_sync: |
| self._use_unsharded_grad_views() |
| else: |
| self._use_sharded_grad_views() |
| |
| ######### |
| # VIEWS # |
| ######### |
| @staticmethod |
| def _get_unflat_views( |
| flat_param: FlatParameter, |
| tensor: Optional[torch.Tensor] = None, |
| ) -> Iterator[Tensor]: |
| """ |
| Returns unflattened ``Tensor`` views into ``tensor`` if it is not |
| ``None`` or ``flat_param`` otherwise, where the unflattening is based |
| on ``flat_param`` 's metadata. |
| |
| In other words, to get views into the unsharded flattened parameter, |
| pass ``tensor`` as ``None``, but to get views into tensor optimizer |
| state, pass ``tensor`` as the optimizer state tensor. |
| """ |
| if tensor is None: |
| tensor = flat_param |
| p_assert( |
| tensor.numel() == flat_param._unpadded_unsharded_size.numel(), |
| f"Expects {flat_param._unpadded_unsharded_size.numel()} numel but got " |
| f"{tensor.numel()} numel", |
| ) |
| views = ( |
| _ext_post_unflatten_transform(subtensor.view(shape), param_extension) |
| for (subtensor, shape, param_extension) in zip( |
| torch.split(tensor, flat_param._numels, dim=0), # type: ignore[arg-type] |
| flat_param._shapes, |
| flat_param._param_extensions, |
| ) |
| ) |
| return views |
| |
| def _use_unsharded_views(self, as_params: bool) -> None: |
| """ |
| Unflattens the unsharded flattened parameter by setting the original |
| module parameter variables to be views into it. |
| |
| Args: |
| as_params (bool): If ``True``, then registers the original |
| parameters as ``nn.Parameter`` s; if ``False``, then registers |
| the original parameters only as ``Tensor`` s. ``False`` should |
| be used during forward/backward computation and when hiding the |
| original parameters from :meth:`nn.Module.named_parameters`. |
| """ |
| self._check_unsharded(self.flat_param) |
| views = self._get_unflat_views(self.flat_param) |
| for i, (view, (param_name, module, _)) in enumerate( |
| zip(views, self.flat_param._param_infos) |
| ): |
| if hasattr(module, param_name): |
| delattr(module, param_name) |
| if self._use_orig_params and as_params: |
| if type(view) is DTensor: |
| # A `DTensor` `view` is not compatible with assigning |
| # `param.data = view`, so we cannot preserve the parameter |
| # variable. |
| setattr(module, param_name, nn.Parameter(view)) |
| continue |
| param = self.flat_param._params[i] # type: ignore[index] |
| setattr(module, param_name, param) |
| param.data = view |
| elif as_params: |
| module.register_parameter(param_name, nn.Parameter(view)) |
| else: # `as_params=False` |
| param_var: Tensor = view |
| if self._use_orig_params: |
| if self._training_state == HandleTrainingState.FORWARD: |
| assert self.flat_param._tensors is not None |
| # Save the `Tensor` for the pre-backward |
| self.flat_param._tensors[i] = view # save for pre-backward |
| elif self._training_state == HandleTrainingState.BACKWARD_PRE: |
| # Use the saved `Tensor` variable from the forward to |
| # preserve the autograd graph so that the post-backward |
| # hook fires (e.g. for reentrant AC) |
| assert self.flat_param._tensors is not None # mypy |
| tensor = self.flat_param._tensors[i] |
| p_assert( |
| tensor is not None, |
| "Expects `Tensor` to have been saved in forward", |
| ) |
| tensor.data = view # type: ignore[union-attr] |
| assert tensor is not None # mypy |
| param_var = tensor |
| setattr(module, param_name, param_var) |
| if ( |
| self._use_orig_params |
| and self._training_state == HandleTrainingState.FORWARD |
| ): |
| module._parameters[param_name] = param_var # type: ignore[assignment] |
| for i, ( |
| param_name, |
| module, |
| _, |
| prim_param_name, |
| prim_module, |
| prim_module_name, |
| ) in enumerate(self.flat_param._shared_param_infos): |
| if hasattr(module, param_name): |
| delattr(module, param_name) |
| p_assert( |
| hasattr(prim_module, prim_param_name), |
| f"Module {prim_module_name} is missing parameter {prim_param_name}", |
| ) |
| prim_param: Union[Tensor, nn.Parameter] = getattr( |
| prim_module, prim_param_name |
| ) |
| p_assert( |
| not as_params or isinstance(prim_param, nn.Parameter), |
| f"as_params={as_params} type(prim_param)={type(prim_param)}", |
| ) |
| if self._use_orig_params and as_params: |
| shared_param = self.flat_param._shared_params[i] # type: ignore[index] |
| setattr(module, param_name, shared_param) |
| shared_param.data = prim_param |
| elif as_params: |
| assert isinstance(prim_param, nn.Parameter) |
| module.register_parameter(param_name, prim_param) |
| else: |
| setattr(module, param_name, prim_param) |
| if ( |
| self._use_orig_params |
| and self._training_state == HandleTrainingState.FORWARD |
| ): |
| module._parameters[param_name] = prim_param # type: ignore[assignment] |
| |
| def _use_unsharded_grad_views(self) -> None: |
| """ |
| Unflattens the unsharded flattened parameter's gradient by setting the |
| original module parameter variables' gradients to be views into it. |
| """ |
| # Expects the gradient to be in `flat_param.grad` |
| if self.flat_param.grad is None: |
| assert self.flat_param._params is not None # mypy |
| assert self.flat_param._shared_params is not None # mypy |
| for param in chain( |
| self.flat_param._params, # type: ignore[attr-defined] |
| self.flat_param._shared_params, # type: ignore[attr-defined] |
| ): |
| param.grad = None |
| return |
| self._check_unsharded(self.flat_param.grad) |
| views = self._get_unflat_views(self.flat_param, self.flat_param.grad) |
| for i, (view, (param_name, module, _)) in enumerate( |
| zip(views, self.flat_param._param_infos) |
| ): |
| p_assert( |
| hasattr(module, param_name), |
| f"{self.flat_param._fqns[i]} is missing", |
| ) |
| param = getattr(module, param_name) |
| if param.shape != view.shape or param.dtype != view.dtype: |
| # NOTE: This is a hack using `.data` to side step the |
| # check that parameter/gradient sizes and dtypes match. Here, |
| # `param` can have the sharded size, and `grad` can have the |
| # unsharded size. Orthgonally, `param` can have the full |
| # precision dtype from `reshard()`, and `grad` can have the |
| # parameter low precision dtype. Both of these mismatches |
| # happen when running in `no_sync()`. |
| if param.grad is None: |
| param.grad = torch.empty_like(param) |
| param.grad.data = view |
| else: |
| param.grad = view |
| for i, ( |
| param_name, |
| module, |
| module_name, |
| prim_param_name, |
| prim_module, |
| _, |
| ) in enumerate(self.flat_param._shared_param_infos): |
| p_assert( |
| hasattr(module, param_name), |
| f"{module_name + '.' + param_name if module_name else param_name} is missing", |
| ) # did not save FQN info in `_shared_param_infos` |
| param = getattr(module, param_name) |
| prim_param = getattr(prim_module, prim_param_name) |
| if ( |
| param.shape != prim_param.grad.shape |
| or param.dtype != prim_param.grad.dtype |
| ): |
| # NOTE: This is the same hack to use `.data` to side step the |
| # size check. |
| if param.grad is None: |
| param.grad = torch.empty_like(param) |
| param.grad.data = prim_param.grad |
| else: |
| param.grad = prim_param.grad |
| |
| @contextlib.contextmanager |
| def unflatten_as_params(self) -> Generator: |
| """ |
| Assumes the flattened parameter is unsharded. When in the context, |
| unflattens the original parameters as ``nn.Parameter`` views into the |
| flattened parameter, and after the context, restores the original |
| parameters as ``Tensor`` views into the flattened parameter. |
| """ |
| self._use_unsharded_views(as_params=True) |
| try: |
| yield |
| finally: |
| self._use_unsharded_views(as_params=False) |
| |
| @torch.no_grad() |
| def _use_sharded_views(self) -> None: |
| """ |
| Sets the original module parameter variables' data to be flattened |
| views into the sharded flattened parameter. |
| |
| The views are kept as flattened to simplify the case where a parameter |
| is sharded across ranks. Parameters whose data is not present in the |
| sharded flattened parameter have their data set to a size-0 empty |
| tensor. We do not delete them to ensure to preserve expected behaviors |
| like model printability. Parameters whose data is present must preserve |
| their variables to be passable to an optimizer. |
| """ |
| if not self.uses_sharded_strategy: |
| # For `NO_SHARD`, use the *unflattened* unsharded views since we |
| # have the unsharded parameter |
| self._use_unsharded_views(as_params=True) |
| return |
| self._check_sharded(self.flat_param) |
| start, end = self.flat_param._shard_indices # type: ignore[attr-defined] |
| offset = 0 |
| assert self.flat_param._params is not None |
| for i, (param, (param_name, module, _)) in enumerate( |
| zip(self.flat_param._params, self.flat_param._param_infos) |
| ): |
| setattr(module, param_name, param) |
| in_sharded_flat_param = ( |
| i >= start |
| and i <= end |
| and self.flat_param._shard_param_offsets # type: ignore[attr-defined] |
| ) |
| if in_sharded_flat_param: |
| param_start, param_end = self.flat_param._shard_param_offsets[i - start] # type: ignore[attr-defined] |
| numel_in_shard = param_end - param_start + 1 |
| param.data = self.flat_param[offset : offset + numel_in_shard] |
| offset += numel_in_shard |
| else: |
| # Allow the original data to be freed via garbage collection |
| param.data = torch.empty( |
| 0, |
| dtype=self.flat_param.dtype, # in case `flat_param` changed dtype |
| device=self.flat_param.device, |
| requires_grad=False, |
| ) |
| assert self.flat_param._shared_params is not None |
| for i, ( |
| param, |
| (param_name, module, _, prim_param_name, prim_module, _), |
| ) in enumerate( |
| zip(self.flat_param._shared_params, self.flat_param._shared_param_infos) |
| ): |
| setattr(module, param_name, param) |
| prim_param = getattr(prim_module, prim_param_name) |
| param.data = prim_param # could be both empty and non-empty |
| if self._training_state == HandleTrainingState.BACKWARD_POST: |
| assert self.flat_param._tensors is not None # mypy |
| # Clear the saved `Tensor`s since they are unneeded now |
| for i in range(len(self.flat_param._tensors)): |
| self.flat_param._tensors[i] = None # type: ignore[index] |
| |
| @torch.no_grad() |
| def _use_sharded_grad_views(self) -> None: |
| """ |
| Sets the original module parameter variables' gradients to be flattened |
| views into the sharded flattened parameter's gradient. This is a no-op |
| if there is no gradient. |
| |
| Parameters whose data is not present in the sharded flattened parameter |
| and parameters with ``requires_grad=False`` have their gradients set to |
| ``None``. Since the gradient variables do not need to be preserved, |
| this method does not manipulate existing ``Tensor`` data directly and |
| creates new ``Tensor`` variables instead. |
| """ |
| flat_param = self.flat_param |
| self._check_sharded(flat_param) |
| grad = self.sharded_grad |
| if grad is None: |
| assert flat_param._params is not None # mypy |
| assert flat_param._shared_params is not None # mypy |
| for param in chain(flat_param._params, flat_param._shared_params): # type: ignore[attr-defined] |
| param.grad = None |
| return |
| self._check_sharded(grad) |
| start, end = flat_param._shard_indices # type: ignore[attr-defined] |
| offset = 0 |
| assert flat_param._params is not None |
| for i, param in enumerate(flat_param._params): |
| in_sharded_flat_param = ( |
| i >= start |
| and i <= end |
| and flat_param._shard_param_offsets # type: ignore[attr-defined] |
| ) |
| if in_sharded_flat_param: |
| param_start, param_end = flat_param._shard_param_offsets[i - start] # type: ignore[attr-defined] |
| numel_in_shard = param_end - param_start + 1 |
| assert flat_param._is_grad_none is not None # mypy |
| if param.requires_grad and not flat_param._is_grad_none[i]: |
| if self._keep_low_precision_grads or param.dtype != grad.dtype: |
| # NOTE: This is a hack using `.data` to side step the |
| # check that parameter/gradient dtypes match. Here, |
| # `param` has full precision; `grad` has low precision. |
| if param.grad is None: |
| # `.grad` must have the same shape as `param` |
| param.grad = torch.empty_like(param) |
| param.grad.data = grad[ |
| offset : offset + numel_in_shard |
| ].reshape(param.shape) |
| else: |
| param.grad = grad[offset : offset + numel_in_shard].reshape( |
| param.shape |
| ) |
| else: |
| param.grad = None |
| offset += numel_in_shard |
| else: |
| param.grad = None |
| assert flat_param._shared_params is not None |
| for i, (param, (_, _, _, prim_param_name, prim_module, _)) in enumerate( |
| zip(flat_param._shared_params, flat_param._shared_param_infos) |
| ): |
| in_sharded_flat_param = hasattr(prim_module, prim_param_name) |
| if in_sharded_flat_param and param.requires_grad: |
| prim_param = getattr(prim_module, prim_param_name) |
| param.grad = prim_param.grad # share the same reference |
| else: |
| param.grad = None |
| |
| @torch.no_grad() |
| def _writeback_orig_params(self) -> bool: |
| """ |
| Iterates over the original parameters and writes back any parameters |
| that changed storages (due to a non-inplace operator) to the handle's |
| ``FlatParameter``. This method preserves the ``FlatParameter` 's |
| device even if an original parameter's device changes. |
| |
| Raises: |
| RuntimeError: If an original parameter or gradient changes storages |
| but no longer has the expected flattened shape. |
| Returns: ``True`` if some writeback happened, and ``False`` otherwise. |
| """ |
| if self.uses_sharded_strategy and not self.is_sharded(self.flat_param): |
| # For `NO_SHARD`, we may still need to writeback |
| return False |
| flat_param = self.flat_param |
| start, end = flat_param._shard_indices # type: ignore[attr-defined] |
| offset = 0 |
| assert flat_param._params is not None |
| wroteback = False |
| for i, (param, (param_name, module, _)) in enumerate( |
| zip(flat_param._params, flat_param._param_infos) |
| ): |
| if not hasattr(module, param_name): |
| # Do not writeback if original parameters are deregistered |
| # (e.g. during model checkpointing) |
| continue |
| in_sharded_flat_param = ( |
| i >= start |
| and i <= end |
| and self.flat_param._shard_param_offsets # type: ignore[attr-defined] |
| ) |
| if not in_sharded_flat_param: |
| continue |
| param_start, param_end = flat_param._shard_param_offsets[i - start] # type: ignore[attr-defined] |
| numel_in_shard = param_end - param_start + 1 |
| |
| # Check for parameter writeback |
| param_changed = getattr(module, param_name) is not param |
| needs_param_writeback = ( |
| param_changed # changed parameter variable itself |
| or not _same_storage(param, flat_param) # changed `.data` |
| ) |
| if param_changed: |
| # NOTE: The gradient is not preserved after a parameter change. |
| param = getattr(module, param_name) |
| flat_param._params[i] = param |
| if needs_param_writeback: |
| expected_shape = torch.Size([numel_in_shard]) |
| self._writeback_tensor( |
| param, flat_param, i, expected_shape, offset, True |
| ) |
| wroteback = True |
| |
| # Check for gradient writeback |
| # NOTE: Since this method is called in the pre-unshard, which is |
| # only called during computation in the pre-forward or |
| # pre-backward, the sharded gradient should be guaranteed to be in |
| # `.grad`, not in `._saved_grad_shard`. |
| if param.grad is None and flat_param.grad is not None: |
| expected_shape = torch.Size([numel_in_shard]) |
| self._writeback_tensor( |
| None, flat_param.grad, i, expected_shape, offset, False |
| ) |
| elif param.grad is not None: |
| # For `NO_SHARD` + CPU offloading, `_cpu_grad` is always in |
| # memory and owns the gradient storage, so it will never |
| # require gradient writeback. |
| flat_param_grad = ( |
| flat_param.grad |
| if self.uses_sharded_strategy or not self._offload_params |
| else flat_param._cpu_grad # type: ignore[attr-defined] |
| ) |
| needs_grad_writeback = flat_param_grad is None or not _same_storage( |
| param.grad, flat_param_grad |
| ) |
| if needs_grad_writeback: |
| if flat_param_grad is None: |
| flat_param_grad = torch.zeros_like(flat_param) |
| expected_shape = torch.Size([numel_in_shard]) |
| self._writeback_tensor( |
| param.grad, flat_param_grad, i, expected_shape, offset, False |
| ) |
| flat_param.grad = flat_param_grad |
| offset += numel_in_shard |
| # TODO (awgu): Handle shared parameters. We need to re-generate the |
| # shared parameter data structures in case sharedness changed. |
| for i, ( |
| param_name, |
| module, |
| _, |
| prim_param_name, |
| prim_module, |
| _, |
| ) in enumerate(flat_param._shared_param_infos): |
| if getattr(module, param_name) is not getattr(prim_module, prim_param_name): |
| raise NotImplementedError( |
| "Changing shared parameters is not supported yet" |
| ) |
| return wroteback |
| |
| def _writeback_tensor( |
| self, |
| src_tensor: Optional[Tensor], |
| dst_tensor: Tensor, |
| tensor_index: int, |
| expected_shape: torch.Size, |
| offset: int, |
| is_param: bool, # else gradient |
| ) -> None: |
| """ |
| Writes back ``src_tensor`` to ``dst_tensor`` at offset ``offset``, |
| where ``src_tensor`` should have shape ``expected_shape``. ``is_param`` |
| indicates if the tensor is the parameter (if ``True``) or gradient (if |
| ``False``). If ``src_tensor`` is ``None``, then the effect is zeroing |
| instead of copying. ``tensor_index`` gives the index of ``src_tensor`` |
| in the metadata structures. |
| |
| Raises: |
| RuntimeError: If the ``src_tensor`` does not have the expected |
| shape. |
| """ |
| p_assert( |
| len(expected_shape) == 1, |
| f"Expects a 1D expected shape but got {expected_shape}", |
| ) |
| if self._debug_level == dist.DebugLevel.DETAIL: |
| rank = self.rank if hasattr(self, "rank") else dist.get_rank() |
| src_shape = src_tensor.shape if src_tensor is not None else None |
| src_device = src_tensor.device if src_tensor is not None else None |
| warnings.warn( |
| f"[Rank {rank}] {'Parameter' if is_param else 'Gradient'} needs " |
| f"writeback in {self._training_state}\n" |
| f"expected shape={expected_shape} shape={src_shape} " |
| f"expected device={dst_tensor.device} device={src_device}" |
| ) |
| if src_tensor is not None and src_tensor.shape != expected_shape: |
| # NOTE: Gradient shape mismatch is not possible in practice since |
| # the gradient shape is enforced to match that of the parameter and |
| # we already check for parameter shape mismatch. |
| raise RuntimeError( |
| f"Cannot writeback when the {'parameter' if is_param else 'gradient'} " |
| f"shape changes\nExpects {expected_shape} but got {src_tensor.shape}" |
| ) |
| if src_tensor is not None: |
| dst_tensor[offset : offset + expected_shape.numel()].copy_(src_tensor) |
| else: |
| dst_tensor[offset : offset + expected_shape.numel()].zero_() |
| assert self.flat_param._is_grad_none is not None |
| self.flat_param._is_grad_none[tensor_index] = True |
| |
| def _clear_grads_if_needed(self): |
| """ |
| When ``use_orig_params=True``, sets the underlying ``flat_param.grad`` |
| to ``None`` if *all* of the original parameters' ``.grad`` are |
| ``None``. This is targeting ``optim.zero_grad(set_to_none=True)``, in |
| which case we want to free the gradients as soon after the |
| ``zero_grad()`` call as possible. |
| """ |
| if not self._use_orig_params: |
| return |
| flat_param = self.flat_param |
| assert flat_param._params is not None |
| if all(param.grad is None for param in flat_param._params): |
| flat_param.grad = None |
| |
| def _deregister_orig_params(self): |
| for (param_name, module, _) in self.flat_param._param_infos: |
| if hasattr(module, param_name): |
| delattr(module, param_name) |
| for (param_name, module, _, _, _, _) in self.flat_param._shared_param_infos: |
| if hasattr(module, param_name): |
| delattr(module, param_name) |
| |
| ########### |
| # HELPERS # |
| ########### |
| def flat_param_to(self, *args, **kwargs): |
| """Wraps an in-place call to ``.to()`` for ``self.flat_param``.""" |
| self.flat_param.data = self.flat_param.to(*args, **kwargs) |
| if self._use_orig_params: |
| # Refresh the views because their storage may have changed |
| if self.is_sharded(self.flat_param): |
| self._use_sharded_views() |
| else: |
| self._use_unsharded_views(as_params=True) |
| |
| def _get_modules(self) -> Set[nn.Module]: |
| """Returns a :class:`set` of the modules whose parameters are included |
| in this handle's flattened parameter.""" |
| return set(pi.module for pi in self.flat_param._param_infos).union( |
| set(spi.module for spi in self.flat_param._shared_param_infos) |
| ) |
| |
| def is_sharded(self, tensor: Tensor) -> bool: |
| """ |
| Returns if ``tensor`` is *currently* sharded. For ``NO_SHARD``, we |
| choose to have this always return ``False`` for clarity. |
| """ |
| if ( |
| not hasattr(self.flat_param, "_sharded_size") |
| or not self.uses_sharded_strategy |
| ): |
| # `_sharded_size` is defined iff `handle.shard()` has been called |
| return False |
| sharded_size = self.flat_param._sharded_size # type: ignore[attr-defined] |
| return tensor.size() == sharded_size |
| |
| def parameter_module_names(self) -> Iterator[Tuple[str, str]]: |
| shared_param_infos = [ |
| ParamInfo(param_name, module, module_name) |
| for ( |
| param_name, |
| module, |
| module_name, |
| _, |
| _, |
| _, |
| ) in self.flat_param._shared_param_infos |
| ] |
| for param_name, _, module_name in chain( |
| self.flat_param._param_infos, shared_param_infos |
| ): |
| yield (param_name, module_name) |
| |
| def shared_parameter_module_names(self) -> Iterator[Tuple[str, str]]: |
| for param_name, _, module_name in [ |
| ParamInfo(param_name, module, module_name) |
| for ( |
| param_name, |
| module, |
| module_name, |
| _, |
| _, |
| _, |
| ) in self.flat_param._shared_param_infos |
| ]: |
| yield (param_name, module_name) |
| |
| @property |
| def _fqns_in_shard(self) -> List[str]: |
| """Returns the FQNs of the parameters present in this rank's shard.""" |
| fqns_in_shard: List[str] = [] |
| start, end = self.flat_param._shard_indices # type: ignore[attr-defined] |
| for i in range(len(self.flat_param._fqns)): |
| if i >= start and i <= end and self.flat_param._shard_param_offsets: # type: ignore[attr-defined] |
| fqns_in_shard.append(self.flat_param._fqns[i]) |
| return fqns_in_shard |
| |
| @property |
| def sharded_grad(self) -> Optional[Tensor]: |
| """Returns the handle's sharded gradient.""" |
| flat_param = self.flat_param |
| # Priority for non-`None`: `_cpu_grad` > `_saved_grad_shard` > `grad` |
| # - CPU offloading: `_cpu_grad` |
| # - No CPU offloading + sharded strategies: `_saved_grad_shard` |
| # - No CPU offloading + `NO_SHARD`: `grad` |
| if hasattr(flat_param, "_cpu_grad"): |
| grad = flat_param._cpu_grad # type: ignore[attr-defined] |
| elif hasattr(flat_param, "_saved_grad_shard"): |
| grad = flat_param._saved_grad_shard # type: ignore[attr-defined] |
| else: |
| # If in the forward, then there may be an accumulated gradient, |
| # which will be in `.grad` |
| p_assert( |
| flat_param.grad is None |
| or not self.uses_sharded_strategy |
| or self._training_state == HandleTrainingState.FORWARD, |
| "Sharded strategies should use `_cpu_grad` or `_saved_grad_shard` " |
| "unless in FORWARD (for the post-forward reshard)", |
| ) |
| grad = flat_param.grad |
| return grad |
| |
| def _reset_is_grad_none(self) -> None: |
| """ |
| Resets the ``_is_grad_none`` mask as needed. This method should only be |
| called in the post-backward after gradient computation, in which case |
| if a parameter requires gradient, then it will surely receive a |
| gradient and we may reset its mask entry to ``False``. |
| """ |
| if not self._use_orig_params: |
| return |
| p_assert( |
| self._training_state == HandleTrainingState.BACKWARD_POST, |
| "Expects to only be called in the post-backward after gradient computation", |
| ) |
| flat_param = self.flat_param |
| assert flat_param._params is not None # mypy |
| for i, param in enumerate(flat_param._params): |
| # As long as the parameter requires gradient, it should receive a |
| # meaningful gradient (even if the gradient happens to be zeros) |
| if param.requires_grad: |
| assert flat_param._is_grad_none is not None # mypy |
| flat_param._is_grad_none[i] = False |
| |
| ####################### |
| # CHECKS & INVARIANTS # |
| ####################### |
| def _check_sharded_strategy(self): |
| p_assert(self.uses_sharded_strategy, "Expects sharded strategy") |
| |
| def _check_on_compute_device(self, tensor: Tensor): |
| p_assert( |
| tensor.device == self.device, |
| f"Expects tensor to be on the compute device {self.device}", |
| ) |
| |
| def _check_on_cpu(self, tensor: Tensor): |
| p_assert( |
| tensor.device == torch.device("cpu"), |
| f"Expects tensor to be on CPU but got {tensor.device}", |
| ) |
| |
| @staticmethod |
| def _check_storage_freed(tensor: Tensor): |
| storage_size: int = tensor._typed_storage()._size() |
| p_assert( |
| storage_size == 0, |
| f"Expects storage to be freed but got storage with size {storage_size}", |
| ) |
| |
| @staticmethod |
| def _check_storage_allocated(tensor: Tensor): |
| storage_size: int = tensor._typed_storage()._size() |
| p_assert(storage_size > 0, "Expects storage to be allocated") |
| |
| def _check_low_precision_shard(self): |
| p_assert( |
| self._uses_param_mixed_precision, |
| "Not using low precision for parameters", |
| ) |
| p_assert( |
| getattr(self.flat_param, "_mp_shard", None) is not None, |
| "Expects `_mp_shard` to exist", |
| ) |
| device = self.flat_param._mp_shard.device # type: ignore[attr-defined] |
| p_assert( |
| device == self.device, |
| f"Expects the low precision shard to be on {self.device} but got {device}", |
| ) |
| |
| def _check_unsharded(self, tensor: Tensor): |
| msg_prefix = "Expects tensor to be unsharded " |
| p_assert(tensor is not None, msg_prefix + "but got `None`") |
| unsharded_size = self.flat_param._unpadded_unsharded_size |
| p_assert( |
| tensor.size() == unsharded_size, |
| msg_prefix + f"with size {unsharded_size} but got {tensor.size()}", |
| ) |
| |
| def _check_sharded(self, tensor: Tensor): |
| msg_prefix = "Expects tensor to be sharded " |
| p_assert(tensor is not None, msg_prefix + "but got `None`") |
| sharded_size = self.flat_param._sharded_size # type: ignore[attr-defined] |
| p_assert( |
| tensor.size() == sharded_size, |
| msg_prefix + f"with size {sharded_size} but got {tensor.size()}", |
| ) |
| |
| ############## |
| # PROPERTIES # |
| ############## |
| @property |
| def uses_sharded_strategy(self) -> bool: |
| return self._sharding_strategy != HandleShardingStrategy.NO_SHARD |
| |
| @property |
| def _uses_param_mixed_precision(self) -> bool: |
| return self._fwd_bwd_param_dtype != self._orig_param_dtype |
| |
| @property |
| def _uses_reduce_mixed_precision(self) -> bool: |
| return self._reduce_dtype != self._orig_param_dtype |
| |
| @property |
| def _force_full_precision(self) -> bool: |
| return ( |
| self._training_state == HandleTrainingState.SUMMON_FULL_PARAMS |
| and self._uses_param_mixed_precision |
| ) |
| |
| |
| # A handles key represents the group of `FlatParamHandle`s involved in a given |
| # module's forward. These will be all-gathered together in the pre-forward and |
| # pre-backward. |
| _HandlesKey = Tuple[FlatParamHandle, ...] |