| import warnings |
| |
| import torch |
| from . import comm |
| from torch.autograd import Function |
| from torch._utils import _get_device_index |
| from typing import List, Optional |
| |
| |
| class Broadcast(Function): |
| |
| @staticmethod |
| def forward(ctx, target_gpus, *inputs): |
| assert all(i.device.type != 'cpu' for i in inputs), ( |
| 'Broadcast function not implemented for CPU tensors' |
| ) |
| target_gpus = [_get_device_index(x, True) for x in target_gpus] |
| ctx.target_gpus = target_gpus |
| if len(inputs) == 0: |
| return tuple() |
| ctx.num_inputs = len(inputs) |
| ctx.input_device = inputs[0].get_device() |
| outputs = comm.broadcast_coalesced(inputs, ctx.target_gpus) |
| non_differentiables = [] |
| for idx, input_requires_grad in enumerate(ctx.needs_input_grad[1:]): |
| if not input_requires_grad: |
| for output in outputs: |
| non_differentiables.append(output[idx]) |
| ctx.mark_non_differentiable(*non_differentiables) |
| return tuple([t for tensors in outputs for t in tensors]) |
| |
| @staticmethod |
| def backward(ctx, *grad_outputs): |
| return (None,) + ReduceAddCoalesced.apply(ctx.input_device, ctx.num_inputs, *grad_outputs) |
| |
| |
| class ReduceAddCoalesced(Function): |
| |
| @staticmethod |
| def forward(ctx, destination, num_inputs, *grads): |
| ctx.target_gpus = [grads[i].get_device() for i in range(0, len(grads), num_inputs)] |
| |
| grads_ = [grads[i:i + num_inputs] |
| for i in range(0, len(grads), num_inputs)] |
| return comm.reduce_add_coalesced(grads_, destination) |
| |
| @staticmethod |
| def backward(ctx, *grad_outputs): |
| return (None, None,) + Broadcast.apply(ctx.target_gpus, *grad_outputs) |
| |
| |
| class Gather(Function): |
| |
| @staticmethod |
| def forward(ctx, target_device, dim, *inputs): |
| assert all(i.device.type != 'cpu' for i in inputs), ( |
| 'Gather function not implemented for CPU tensors' |
| ) |
| if (target_device == 'cpu'): |
| ctx.target_device = 'cpu' |
| else: |
| target_device = _get_device_index(target_device, True) |
| ctx.target_device = target_device |
| ctx.dim = dim |
| ctx.input_gpus = tuple(i.get_device() for i in inputs) |
| if all(t.dim() == 0 for t in inputs) and dim == 0: |
| inputs = tuple(t.view(1) for t in inputs) |
| warnings.warn('Was asked to gather along dimension 0, but all ' |
| 'input tensors were scalars; will instead unsqueeze ' |
| 'and return a vector.') |
| ctx.unsqueezed_scalar = True |
| else: |
| ctx.unsqueezed_scalar = False |
| ctx.input_sizes = tuple(i.size(ctx.dim) for i in inputs) |
| return comm.gather(inputs, ctx.dim, ctx.target_device) |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| scattered_grads = Scatter.apply(ctx.input_gpus, ctx.input_sizes, ctx.dim, grad_output) |
| if ctx.unsqueezed_scalar: |
| scattered_grads = tuple(g[0] for g in scattered_grads) |
| return (None, None) + scattered_grads |
| |
| |
| class Scatter(Function): |
| |
| @staticmethod |
| def forward(ctx, target_gpus, chunk_sizes, dim, input): |
| target_gpus = [_get_device_index(x, True) for x in target_gpus] |
| ctx.dim = dim |
| ctx.input_device = input.get_device() if input.device.type != "cpu" else -1 |
| streams = None |
| if torch.cuda.is_available() and ctx.input_device == -1: |
| # Perform CPU to GPU copies in a background stream |
| streams = [_get_stream(device) for device in target_gpus] |
| outputs = comm.scatter(input, target_gpus, chunk_sizes, ctx.dim, streams) |
| # Synchronize with the copy stream |
| if streams is not None: |
| for i, output in enumerate(outputs): |
| with torch.cuda.device(target_gpus[i]): |
| main_stream = torch.cuda.current_stream() |
| main_stream.wait_stream(streams[i]) |
| output.record_stream(main_stream) |
| return outputs |
| |
| @staticmethod |
| def backward(ctx, *grad_output): |
| return None, None, None, Gather.apply(ctx.input_device, ctx.dim, *grad_output) |
| |
| |
| # background streams used for copying |
| _streams: Optional[List[Optional[torch.cuda.Stream]]] = None |
| |
| |
| def _get_stream(device: int): |
| """Gets a background stream for copying between CPU and GPU""" |
| global _streams |
| if device == -1: |
| return None |
| if _streams is None: |
| _streams = [None] * torch.cuda.device_count() |
| if _streams[device] is None: |
| _streams[device] = torch.cuda.Stream(device) |
| return _streams[device] |