| import warnings |
| from typing import Union, Iterable, List, Dict, Tuple, Optional |
| |
| import torch |
| from torch import Tensor |
| from torch._six import inf |
| from torch.utils._foreach_utils import _group_tensors_by_device_and_dtype |
| |
| _tensor_or_tensors = Union[torch.Tensor, Iterable[torch.Tensor]] |
| |
| __all__ = ['clip_grad_norm_', 'clip_grad_norm', 'clip_grad_value_'] |
| |
| def clip_grad_norm_( |
| parameters: _tensor_or_tensors, max_norm: float, norm_type: float = 2.0, |
| error_if_nonfinite: bool = False, foreach: Optional[bool] = None) -> torch.Tensor: |
| r"""Clips gradient norm of an iterable of parameters. |
| |
| The norm is computed over all gradients together, as if they were |
| concatenated into a single vector. Gradients are modified in-place. |
| |
| Args: |
| parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a |
| single Tensor that will have gradients normalized |
| max_norm (float): max norm of the gradients |
| norm_type (float): type of the used p-norm. Can be ``'inf'`` for |
| infinity norm. |
| error_if_nonfinite (bool): if True, an error is thrown if the total |
| norm of the gradients from :attr:`parameters` is ``nan``, |
| ``inf``, or ``-inf``. Default: False (will switch to True in the future) |
| foreach (bool): use the faster foreach-based implementation. |
| If ``None``, use the foreach implementation for CUDA and CPU tensors and silently fall back to the slow |
| implementation for other device types. |
| Default: ``None`` |
| |
| Returns: |
| Total norm of the parameter gradients (viewed as a single vector). |
| """ |
| if isinstance(parameters, torch.Tensor): |
| parameters = [parameters] |
| grads = [p.grad for p in parameters if p.grad is not None] |
| max_norm = float(max_norm) |
| norm_type = float(norm_type) |
| if len(grads) == 0: |
| return torch.tensor(0.) |
| first_device = grads[0].device |
| grouped_grads: Dict[Tuple[torch.device, torch.dtype], List[List[Tensor]]] \ |
| = _group_tensors_by_device_and_dtype([[g.detach() for g in grads]]) # type: ignore[assignment] |
| |
| if norm_type == inf: |
| norms = [g.detach().abs().max().to(first_device) for g in grads] |
| total_norm = norms[0] if len(norms) == 1 else torch.max(torch.stack(norms)) |
| else: |
| norms = [] |
| for ((device, _), [grads]) in grouped_grads.items(): |
| if (foreach is None or foreach) and device.type in {'cpu', 'cuda'}: |
| norms.extend(torch._foreach_norm(grads, norm_type)) |
| elif foreach: |
| raise RuntimeError(f'foreach=True was passed, but can\'t use the foreach API on {device.type} tensors') |
| else: |
| norms.extend([torch.norm(g, norm_type) for g in grads]) |
| |
| total_norm = torch.norm(torch.stack([norm.to(first_device) for norm in norms]), norm_type) |
| |
| if error_if_nonfinite and torch.logical_or(total_norm.isnan(), total_norm.isinf()): |
| raise RuntimeError( |
| f'The total norm of order {norm_type} for gradients from ' |
| '`parameters` is non-finite, so it cannot be clipped. To disable ' |
| 'this error and scale the gradients by the non-finite norm anyway, ' |
| 'set `error_if_nonfinite=False`') |
| clip_coef = max_norm / (total_norm + 1e-6) |
| # Note: multiplying by the clamped coef is redundant when the coef is clamped to 1, but doing so |
| # avoids a `if clip_coef < 1:` conditional which can require a CPU <=> device synchronization |
| # when the gradients do not reside in CPU memory. |
| clip_coef_clamped = torch.clamp(clip_coef, max=1.0) |
| for ((device, _), [grads]) in grouped_grads.items(): |
| if (foreach is None or foreach) and device.type in ('cpu', 'cuda'): |
| torch._foreach_mul_(grads, clip_coef_clamped.to(device)) # type: ignore[call-overload] |
| elif foreach: |
| raise RuntimeError(f'foreach=True was passed, but can\'t use the foreach API on {device.type} tensors') |
| else: |
| clip_coef_clamped_device = clip_coef_clamped.to(device) |
| for g in grads: |
| g.detach().mul_(clip_coef_clamped_device) |
| |
| return total_norm |
| |
| |
| def clip_grad_norm( |
| parameters: _tensor_or_tensors, max_norm: float, norm_type: float = 2., |
| error_if_nonfinite: bool = False, foreach: Optional[bool] = None) -> torch.Tensor: |
| r"""Clips gradient norm of an iterable of parameters. |
| |
| .. warning:: |
| This method is now deprecated in favor of |
| :func:`torch.nn.utils.clip_grad_norm_`. |
| """ |
| warnings.warn("torch.nn.utils.clip_grad_norm is now deprecated in favor " |
| "of torch.nn.utils.clip_grad_norm_.", stacklevel=2) |
| return clip_grad_norm_(parameters, max_norm, norm_type, error_if_nonfinite, foreach) |
| |
| |
| def clip_grad_value_(parameters: _tensor_or_tensors, clip_value: float, foreach: Optional[bool] = None) -> None: |
| r"""Clips gradient of an iterable of parameters at specified value. |
| |
| Gradients are modified in-place. |
| |
| Args: |
| parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a |
| single Tensor that will have gradients normalized |
| clip_value (float): maximum allowed value of the gradients. |
| The gradients are clipped in the range |
| :math:`\left[\text{-clip\_value}, \text{clip\_value}\right]` |
| foreach (bool): use the faster foreach-based implementation |
| If ``None``, use the foreach implementation for CUDA and CPU tensors and silently fall back to the slow |
| implementation for other device types. |
| Default: ``None`` |
| """ |
| if isinstance(parameters, torch.Tensor): |
| parameters = [parameters] |
| clip_value = float(clip_value) |
| |
| grads = [p.grad for p in parameters if p.grad is not None] |
| grouped_grads: Dict[Tuple[torch.device, torch.dtype], List[List[Tensor]]] \ |
| = _group_tensors_by_device_and_dtype([grads]) # type: ignore[assignment] |
| |
| for ((device, _), [grads]) in grouped_grads.items(): |
| if (foreach is None or foreach) and device.type in {'cpu', 'cuda'}: |
| torch._foreach_clamp_min_(grads, -clip_value) |
| torch._foreach_clamp_max_(grads, clip_value) |
| elif foreach: |
| raise RuntimeError(f'foreach=True was passed, but can\'t use the foreach API on {device.type} tensors') |
| else: |
| for grad in grads: |
| grad.data.clamp_(min=-clip_value, max=clip_value) |