| import torch |
| from . import _functional as F |
| from .optimizer import Optimizer, _maximize_doc |
| |
| __all__ = ['SparseAdam'] |
| |
| class SparseAdam(Optimizer): |
| def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, maximize: bool = False): |
| if not 0.0 < lr: |
| raise ValueError("Invalid learning rate: {}".format(lr)) |
| if not 0.0 < eps: |
| raise ValueError("Invalid epsilon value: {}".format(eps)) |
| if not 0.0 <= betas[0] < 1.0: |
| raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
| if not 0.0 <= betas[1] < 1.0: |
| raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
| |
| params = list(params) |
| |
| sparse_params = [] |
| for index, param in enumerate(params): |
| if isinstance(param, dict): |
| # given param group, convert given params to a list first before iterating |
| param['params'] = list(param.get("params", [])) |
| for d_index, d_param in enumerate(param['params']): |
| if d_param.is_sparse: |
| sparse_params.append([index, d_index]) |
| elif param.is_sparse: |
| sparse_params.append(index) |
| if sparse_params: |
| raise ValueError( |
| f"Sparse params at indices {sparse_params}: SparseAdam requires dense parameter tensors" |
| ) |
| |
| defaults = dict(lr=lr, betas=betas, eps=eps, maximize=maximize) |
| super(SparseAdam, self).__init__(params, defaults) |
| |
| @torch.no_grad() |
| def step(self, closure=None): |
| """Performs a single optimization step. |
| |
| Args: |
| closure (Callable, optional): A closure that reevaluates the model |
| and returns the loss. |
| """ |
| loss = None |
| if closure is not None: |
| with torch.enable_grad(): |
| loss = closure() |
| |
| for group in self.param_groups: |
| params_with_grad = [] |
| grads = [] |
| exp_avgs = [] |
| exp_avg_sqs = [] |
| state_steps = [] |
| eps = group['eps'] |
| lr = group['lr'] |
| beta1, beta2 = group['betas'] |
| maximize = group.get('maximize', False) |
| |
| for p in group['params']: |
| if p.grad is not None: |
| params_with_grad.append(p) |
| if not p.grad.is_sparse: |
| raise RuntimeError('SparseAdam does not support dense gradients, please consider Adam instead') |
| grads.append(p.grad) |
| |
| state = self.state[p] |
| |
| # State initialization |
| if len(state) == 0: |
| state['step'] = 0 |
| # Exponential moving average of gradient values |
| state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
| # Exponential moving average of squared gradient values |
| state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
| |
| exp_avgs.append(state['exp_avg']) |
| exp_avg_sqs.append(state['exp_avg_sq']) |
| |
| # update the steps for each param group update |
| state['step'] += 1 |
| # record the step after step update |
| state_steps.append(state['step']) |
| |
| F.sparse_adam(params_with_grad, |
| grads, |
| exp_avgs, |
| exp_avg_sqs, |
| state_steps, |
| beta1=beta1, |
| beta2=beta2, |
| lr=group['lr'], |
| eps=group['eps'], |
| maximize=maximize) |
| |
| return loss |
| |
| SparseAdam.__doc__ = r"""Implements lazy version of Adam algorithm suitable for sparse tensors. |
| |
| In this variant, only moments that show up in the gradient get updated, and |
| only those portions of the gradient get applied to the parameters. |
| |
| Args: |
| params (iterable): iterable of parameters to optimize or dicts defining |
| parameter groups |
| lr (float, optional): learning rate (default: 1e-3) |
| betas (Tuple[float, float], optional): coefficients used for computing |
| running averages of gradient and its square (default: (0.9, 0.999)) |
| eps (float, optional): term added to the denominator to improve |
| numerical stability (default: 1e-8) |
| {maximize} |
| |
| .. _Adam\: A Method for Stochastic Optimization: |
| https://arxiv.org/abs/1412.6980 |
| |
| """.format(maximize=_maximize_doc) |