| from typing import NamedTuple, Callable, Any, Tuple, List, Dict, Type, cast, Optional, TypeVar, overload, Union |
| import functools |
| from collections import namedtuple, OrderedDict |
| from dataclasses import dataclass |
| |
| |
| T = TypeVar('T') |
| S = TypeVar('S') |
| U = TypeVar('U') |
| R = TypeVar('R') |
| |
| """ |
| Contains utility functions for working with nested python data structures. |
| |
| A *pytree* is Python nested data structure. It is a tree in the sense that |
| nodes are Python collections (e.g., list, tuple, dict) and the leaves are |
| Python values. Furthermore, a pytree should not contain reference cycles. |
| |
| pytrees are useful for working with nested collections of Tensors. For example, |
| one can use `tree_map` to map a function over all Tensors inside some nested |
| collection of Tensors and `tree_unflatten` to get a flat list of all Tensors |
| inside some nested collection. pytrees are helpful for implementing nested |
| collection support for PyTorch APIs. |
| |
| This pytree implementation is not very performant due to Python overhead |
| To improve the performance we can move parts of the implementation to C++. |
| """ |
| |
| # A NodeDef holds two callables: |
| # - flatten_fn should take the collection and return a flat list of values. |
| # It can also return some context that is used in reconstructing the |
| # collection. |
| # - unflatten_fn should take a flat list of values and some context |
| # (returned by flatten_fn). It returns the collection by reconstructing |
| # it from the list and the context. |
| Context = Any |
| PyTree = Any |
| FlattenFunc = Callable[[PyTree], Tuple[List, Context]] |
| UnflattenFunc = Callable[[List, Context], PyTree] |
| |
| class NodeDef(NamedTuple): |
| flatten_fn: FlattenFunc |
| unflatten_fn: UnflattenFunc |
| |
| SUPPORTED_NODES: Dict[Type[Any], NodeDef] = {} |
| |
| def _register_pytree_node(typ: Any, flatten_fn: FlattenFunc, unflatten_fn: UnflattenFunc) -> None: |
| SUPPORTED_NODES[typ] = NodeDef(flatten_fn, unflatten_fn) |
| |
| def _dict_flatten(d: Dict[Any, Any]) -> Tuple[List[Any], Context]: |
| return list(d.values()), list(d.keys()) |
| |
| def _dict_unflatten(values: List[Any], context: Context) -> Dict[Any, Any]: |
| return {key: value for key, value in zip(context, values)} |
| |
| def _list_flatten(d: List[Any]) -> Tuple[List[Any], Context]: |
| return d, None |
| |
| def _list_unflatten(values: List[Any], context: Context) -> List[Any]: |
| return list(values) |
| |
| def _tuple_flatten(d: Tuple[Any, ...]) -> Tuple[List[Any], Context]: |
| return list(d), None |
| |
| def _tuple_unflatten(values: List[Any], context: Context) -> Tuple[Any, ...]: |
| return tuple(values) |
| |
| def _namedtuple_flatten(d: NamedTuple) -> Tuple[List[Any], Context]: |
| return list(d), type(d) |
| |
| def _namedtuple_unflatten(values: List[Any], context: Context) -> NamedTuple: |
| return cast(NamedTuple, context(*values)) |
| |
| def _odict_flatten(d: 'OrderedDict[Any, Any]') -> Tuple[List[Any], Context]: |
| return list(d.values()), list(d.keys()) |
| |
| def _odict_unflatten(values: List[Any], context: Context) -> 'OrderedDict[Any, Any]': |
| return OrderedDict((key, value) for key, value in zip(context, values)) |
| |
| |
| _register_pytree_node(dict, _dict_flatten, _dict_unflatten) |
| _register_pytree_node(list, _list_flatten, _list_unflatten) |
| _register_pytree_node(tuple, _tuple_flatten, _tuple_unflatten) |
| _register_pytree_node(namedtuple, _namedtuple_flatten, _namedtuple_unflatten) |
| _register_pytree_node(OrderedDict, _odict_flatten, _odict_unflatten) |
| |
| |
| # h/t https://stackoverflow.com/questions/2166818/how-to-check-if-an-object-is-an-instance-of-a-namedtuple |
| def _is_namedtuple_instance(pytree: Any) -> bool: |
| typ = type(pytree) |
| bases = typ.__bases__ |
| if len(bases) != 1 or bases[0] != tuple: |
| return False |
| fields = getattr(typ, '_fields', None) |
| if not isinstance(fields, tuple): |
| return False |
| return all(type(entry) == str for entry in fields) |
| |
| def _get_node_type(pytree: Any) -> Any: |
| if _is_namedtuple_instance(pytree): |
| return namedtuple |
| return type(pytree) |
| |
| # A leaf is defined as anything that is not a Node. |
| def _is_leaf(pytree: PyTree) -> bool: |
| return _get_node_type(pytree) not in SUPPORTED_NODES.keys() |
| |
| |
| # A TreeSpec represents the structure of a pytree. It holds: |
| # "type": the type of root Node of the pytree |
| # context: some context that is useful in unflattening the pytree |
| # children_specs: specs for each child of the root Node |
| # num_leaves: the number of leaves |
| @dataclass |
| class TreeSpec: |
| type: Any |
| context: Context |
| children_specs: List['TreeSpec'] |
| |
| def __post_init__(self) -> None: |
| self.num_leaves: int = sum([spec.num_leaves for spec in self.children_specs]) |
| |
| def __repr__(self, indent: int = 0) -> str: |
| repr_prefix: str = f'TreeSpec({self.type.__name__}, {self.context}, [' |
| children_specs_str: str = '' |
| if len(self.children_specs): |
| indent += len(repr_prefix) |
| children_specs_str += self.children_specs[0].__repr__(indent) |
| children_specs_str += ',' if len(self.children_specs) > 1 else '' |
| children_specs_str += ','.join(['\n' + ' ' * indent + child.__repr__(indent) for child in self.children_specs[1:]]) |
| repr_suffix: str = f'{children_specs_str}])' |
| return repr_prefix + repr_suffix |
| |
| |
| class LeafSpec(TreeSpec): |
| def __init__(self) -> None: |
| super().__init__(None, None, []) |
| self.num_leaves = 1 |
| |
| def __repr__(self, indent: int = 0) -> str: |
| return '*' |
| |
| def tree_flatten(pytree: PyTree) -> Tuple[List[Any], TreeSpec]: |
| """Flattens a pytree into a list of values and a TreeSpec that can be used |
| to reconstruct the pytree. |
| """ |
| if _is_leaf(pytree): |
| return [pytree], LeafSpec() |
| |
| node_type = _get_node_type(pytree) |
| flatten_fn = SUPPORTED_NODES[node_type].flatten_fn |
| child_pytrees, context = flatten_fn(pytree) |
| |
| # Recursively flatten the children |
| result : List[Any] = [] |
| children_specs : List['TreeSpec'] = [] |
| for child in child_pytrees: |
| flat, child_spec = tree_flatten(child) |
| result += flat |
| children_specs.append(child_spec) |
| |
| return result, TreeSpec(node_type, context, children_specs) |
| |
| |
| def tree_unflatten(values: List[Any], spec: TreeSpec) -> PyTree: |
| """Given a list of values and a TreeSpec, builds a pytree. |
| This is the inverse operation of `tree_flatten`. |
| """ |
| if not isinstance(spec, TreeSpec): |
| raise ValueError( |
| f'tree_unflatten(values, spec): Expected `spec` to be instance of ' |
| f'TreeSpec but got item of type {type(spec)}.') |
| if len(values) != spec.num_leaves: |
| raise ValueError( |
| f'tree_unflatten(values, spec): `values` has length {len(values)} ' |
| f'but the spec refers to a pytree that holds {spec.num_leaves} ' |
| f'items ({spec}).') |
| if isinstance(spec, LeafSpec): |
| return values[0] |
| |
| unflatten_fn = SUPPORTED_NODES[spec.type].unflatten_fn |
| |
| # Recursively unflatten the children |
| start = 0 |
| end = 0 |
| child_pytrees = [] |
| for child_spec in spec.children_specs: |
| end += child_spec.num_leaves |
| child_pytrees.append(tree_unflatten(values[start:end], child_spec)) |
| start = end |
| |
| return unflatten_fn(child_pytrees, spec.context) |
| |
| def tree_map(fn: Any, pytree: PyTree) -> PyTree: |
| flat_args, spec = tree_flatten(pytree) |
| return tree_unflatten([fn(i) for i in flat_args], spec) |
| |
| Type2 = Tuple[Type[T], Type[S]] |
| Type3 = Tuple[Type[T], Type[S], Type[U]] |
| TypeAny = Union[Type[Any], Tuple[Type[Any], ...]] |
| |
| Fn3 = Callable[[Union[T, S, U]], R] |
| Fn2 = Callable[[Union[T, S]], R] |
| Fn = Callable[[T], R] |
| FnAny = Callable[[Any], R] |
| |
| MapOnlyFn = Callable[[T], Callable[[Any], Any]] |
| |
| # These specializations help with type inference on the lambda passed to this |
| # function |
| @overload |
| def map_only(ty: Type2[T, S]) -> MapOnlyFn[Fn2[T, S, Any]]: |
| ... |
| |
| @overload |
| def map_only(ty: Type[T]) -> MapOnlyFn[Fn[T, Any]]: |
| ... |
| |
| # This specialization is needed for the implementations below that call |
| @overload |
| def map_only(ty: TypeAny) -> MapOnlyFn[FnAny[Any]]: |
| ... |
| |
| def map_only(ty: TypeAny) -> MapOnlyFn[FnAny[Any]]: |
| """ |
| Suppose you are writing a tree_map over tensors, leaving everything |
| else unchanged. Ordinarily you would have to write: |
| |
| def go(t): |
| if isinstance(t, Tensor): |
| return ... |
| else: |
| return t |
| |
| With this function, you only need to write: |
| |
| @map_only(Tensor) |
| def go(t): |
| return ... |
| |
| You can also directly use 'tree_map_only' |
| """ |
| def deco(f: Callable[[T], Any]) -> Callable[[Any], Any]: |
| @functools.wraps(f) |
| def inner(x: T) -> Any: |
| if isinstance(x, ty): |
| return f(x) |
| else: |
| return x |
| return inner |
| return deco |
| |
| @overload |
| def tree_map_only(ty: Type[T], fn: Fn[T, Any], pytree: PyTree) -> PyTree: |
| ... |
| |
| @overload |
| def tree_map_only(ty: Type2[T, S], fn: Fn2[T, S, Any], pytree: PyTree) -> PyTree: |
| ... |
| |
| @overload |
| def tree_map_only(ty: Type3[T, S, U], fn: Fn3[T, S, U, Any], pytree: PyTree) -> PyTree: |
| ... |
| |
| def tree_map_only(ty: TypeAny, fn: FnAny[Any], pytree: PyTree) -> PyTree: |
| return tree_map(map_only(ty)(fn), pytree) |
| |
| def tree_all(pred: Callable[[Any], bool], pytree: PyTree) -> bool: |
| flat_args, _ = tree_flatten(pytree) |
| return all(map(pred, flat_args)) |
| |
| def tree_any(pred: Callable[[Any], bool], pytree: PyTree) -> bool: |
| flat_args, _ = tree_flatten(pytree) |
| return any(map(pred, flat_args)) |
| |
| @overload |
| def tree_all_only(ty: Type[T], pred: Fn[T, bool], pytree: PyTree) -> bool: |
| ... |
| |
| @overload |
| def tree_all_only(ty: Type2[T, S], pred: Fn2[T, S, bool], pytree: PyTree) -> bool: |
| ... |
| |
| @overload |
| def tree_all_only(ty: Type3[T, S, U], pred: Fn3[T, S, U, bool], pytree: PyTree) -> bool: |
| ... |
| |
| def tree_all_only(ty: TypeAny, pred: FnAny[bool], pytree: PyTree) -> bool: |
| flat_args, _ = tree_flatten(pytree) |
| return all(pred(x) for x in flat_args if isinstance(x, ty)) |
| |
| @overload |
| def tree_any_only(ty: Type[T], pred: Fn[T, bool], pytree: PyTree) -> bool: |
| ... |
| |
| @overload |
| def tree_any_only(ty: Type2[T, S], pred: Fn2[T, S, bool], pytree: PyTree) -> bool: |
| ... |
| |
| def tree_any_only(ty: TypeAny, pred: FnAny[bool], pytree: PyTree) -> bool: |
| flat_args, _ = tree_flatten(pytree) |
| return any(pred(x) for x in flat_args if isinstance(x, ty)) |
| |
| # Broadcasts a pytree to the provided TreeSpec and returns the flattened |
| # values. If this is not possible, then this function returns None. |
| # |
| # For example, given pytree=0 and spec=TreeSpec(list, None, [LeafSpec(), LeafSpec()]), |
| # would return [0, 0]. This is useful for part of the vmap implementation: |
| # a user can pass in vmap(fn, in_dims)(*inputs). `in_dims` should be |
| # broadcastable to the tree structure of `inputs` and we use |
| # _broadcast_to_and_flatten to check this. |
| def _broadcast_to_and_flatten(pytree: PyTree, spec: TreeSpec) -> Optional[List[Any]]: |
| assert isinstance(spec, TreeSpec) |
| |
| if _is_leaf(pytree): |
| return [pytree] * spec.num_leaves |
| if isinstance(spec, LeafSpec): |
| return None |
| node_type = _get_node_type(pytree) |
| if node_type != spec.type: |
| return None |
| |
| flatten_fn = SUPPORTED_NODES[node_type].flatten_fn |
| child_pytrees, ctx = flatten_fn(pytree) |
| |
| # Check if the Node is different from the spec |
| if len(child_pytrees) != len(spec.children_specs) or ctx != spec.context: |
| return None |
| |
| # Recursively flatten the children |
| result : List[Any] = [] |
| for child, child_spec in zip(child_pytrees, spec.children_specs): |
| flat = _broadcast_to_and_flatten(child, child_spec) |
| if flat is not None: |
| result += flat |
| else: |
| return None |
| |
| return result |