| from contextlib import contextmanager |
| from typing import Any, List, Tuple, cast |
| import random |
| import torch |
| import time |
| from torch.utils.benchmark import Timer |
| |
| def extract_ir(filename: str) -> List[str]: |
| BEGIN = "<GRAPH_EXPORT>" |
| END = "</GRAPH_EXPORT>" |
| pfx = None |
| current = "" |
| graphs = [] |
| with open(filename, "r") as f: |
| split_strs = f.read().split(BEGIN) |
| for i, split_str in enumerate(split_strs): |
| if i == 0: |
| continue |
| end_loc = split_str.find(END) |
| if end_loc == -1: |
| continue |
| s = split_str[:end_loc] |
| pfx = split_strs[i - 1].splitlines()[-1] |
| lines = [x[len(pfx):] for x in s.splitlines(keepends=True)] |
| graphs.append(''.join(lines)) |
| |
| return graphs |
| |
| |
| def make_tensor_from_type(inp_type: torch._C.TensorType): |
| size = inp_type.sizes() |
| stride = inp_type.strides() |
| device = inp_type.device() |
| dtype = inp_type.dtype() |
| assert size is not None |
| assert stride is not None |
| assert device is not None |
| assert dtype is not None |
| return torch.empty_strided(size=size, stride=stride, device=device, dtype=dtype) |
| |
| def load_graph_and_inputs(ir: str) -> Tuple[Any, List[Any]]: |
| graph = torch._C.parse_ir(ir, parse_tensor_constants=True) |
| graph.makeMultiOutputIntoTuple() |
| inputs = [] |
| for inp in graph.inputs(): |
| if isinstance(inp.type(), torch._C.FloatType): |
| inputs.append(random.uniform(.1, 100)) |
| elif isinstance(inp.type(), torch._C.IntType): |
| inputs.append(random.randint(1, 100)) |
| elif isinstance(inp.type(), torch._C.TensorType): |
| tensorType = cast(torch._C.TensorType, inp.type()) |
| inputs.append(make_tensor_from_type(tensorType)) |
| elif isinstance(inp.type(), torch._C.BoolType): |
| inputs.append(random.randint(0, 1) == 1) |
| else: |
| raise NotImplementedError(f"A default value is not implemented for type {inp.type()}") |
| |
| func = torch._C._create_function_from_graph("forward", graph) |
| torch._C._jit_pass_erase_shape_information(func.graph) |
| return (func, inputs) |
| |
| def time_cuda(fn, inputs, test_runs): |
| t = Timer(stmt="fn(*inputs)", globals={"fn": fn, "inputs" : inputs}) |
| times = t.blocked_autorange() |
| return times.median * 1000 # time in ms |
| |
| def time_cpu(fn, inputs, test_runs): |
| s = time.perf_counter() |
| for _ in range(test_runs): |
| fn(*inputs) |
| e = time.perf_counter() |
| return (e - s) / test_runs * 1000 # time in ms |
| |
| def run_test(ir, inputs, *, warmup_runs=10, test_runs=20) -> float: |
| graph, _ = load_graph_and_inputs(ir) |
| for _ in range(warmup_runs): |
| graph(*inputs) |
| |
| is_cpu = None |
| for input in inputs: |
| if isinstance(input, torch.Tensor): |
| is_cpu = input.device.type == "cpu" |
| break |
| assert is_cpu is not None |
| |
| out = time_cpu(graph, inputs, test_runs) if is_cpu else time_cuda(graph, inputs, test_runs) |
| return out |
| |
| @contextmanager |
| def no_fuser(*args, **kwargs): |
| old_optimize = torch._C._get_graph_executor_optimize(False) |
| try: |
| yield |
| finally: |
| torch._C._get_graph_executor_optimize(old_optimize) |
| |
| def run_baseline_no_fusion(ir, inputs) -> float: |
| with no_fuser(): |
| return run_test(ir, inputs) |
| |
| |
| def run_nnc(ir, inputs, dynamic) -> float: |
| try: |
| strat = [("DYNAMIC", 10)] if dynamic else [("STATIC", 10)] |
| old_strat = torch.jit.set_fusion_strategy(strat) |
| with torch.jit.fuser("fuser1"): |
| return run_test(ir, inputs) |
| finally: |
| torch.jit.set_fusion_strategy(old_strat) |
| |
| def run_nvfuser(ir, inputs) -> float: |
| with torch.jit.fuser("fuser2"): |
| return run_test(ir, inputs) |