blob: 3f45b55fd77eefb0899eb4013634e7e30162f882 [file] [log] [blame]
#!/usr/bin/env python3
"""
A wrapper over the benchmark infrastructure to generate commonly used commands,
parse results and generate csv/graphs.
The script works on manually written TABLE (see below). We can add more commands
in the future.
One example usage is
-> python benchmarks/runner.py --suites=torchbench --inference
This command will generate the commands for the default compilers (see DEFAULTS
below) for inference, run them and visualize the logs.
If you want to just print the commands, you could use the following command
-> python benchmarks/runner.py --print_run_commands --suites=torchbench --inference
Similarly, if you want to just visualize the already finished logs
-> python benchmarks/runner.py --visualize_logs --suites=torchbench --inference
If you want to test float16
-> python benchmarks/runner.py --suites=torchbench --inference --dtypes=float16
"""
import argparse
import dataclasses
import functools
import glob
import importlib
import io
import itertools
import logging
import os
import re
import shutil
import subprocess
import sys
import tempfile
from collections import defaultdict
from datetime import datetime, timedelta, timezone
from os.path import abspath, exists
from random import randint
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
import torch._dynamo
from matplotlib import rcParams
from scipy.stats import gmean
from tabulate import tabulate
rcParams.update({"figure.autolayout": True})
plt.rc("axes", axisbelow=True)
DEFAULT_OUTPUT_DIR = "benchmark_logs"
log = logging.getLogger(__name__)
TABLE = {
"training": {
"ts_nnc": "--training --speedup-ts ",
"ts_nvfuser": "--training --nvfuser --speedup-dynamo-ts ",
"eager": "--training --backend=eager ",
"aot_eager": "--training --backend=aot_eager ",
"aot_cudagraphs": "--training --backend=aot_cudagraphs ",
"aot_nvfuser": "--training --nvfuser --backend=aot_ts_nvfuser ",
"nvprims_nvfuser": "--training --backend=nvprims_nvfuser ",
"inductor": "--training --inductor ",
"inductor_no_cudagraphs": "--training --inductor --disable-cudagraphs ",
},
"inference": {
"ts_nnc": "--speedup-ts",
"ts_nvfuser": "-n100 --speedup-ts --nvfuser",
"trt": "-n100 --speedup-trt",
"ts_nvfuser_cudagraphs": "--backend=cudagraphs_ts",
"inductor": "-n50 --inductor",
},
}
INFERENCE_COMPILERS = tuple(TABLE["inference"].keys())
TRAINING_COMPILERS = tuple(TABLE["training"].keys())
DEFAULTS = {
"training": [
"eager",
"aot_eager",
"inductor",
"inductor_no_cudagraphs",
],
"inference": ["ts_nvfuser_cudagraphs", "inductor"],
"flag_compilers": {
"training": ["inductor", "inductor_no_cudagraphs"],
"inference": ["inductor"],
},
"dtypes": [
"float32",
],
"suites": ["torchbench", "huggingface", "timm_models"],
"devices": [
"cuda",
],
"quick": {
"torchbench": '-k "resnet..$"',
"huggingface": "-k Albert",
"timm_models": ' -k "^resnet" -k "^inception"',
},
}
DASHBOARD_DEFAULTS = {
"dashboard_image_uploader": "/fsx/users/anijain/bin/imgur.sh",
"dashboard_archive_path": "/data/home/anijain/cluster/cron_logs",
"dashboard_gh_cli_path": "/data/home/anijain/miniconda/bin/gh",
}
def flag_speedup(x):
return x < 0.95
def flag_compilation_latency(x):
return x > 120
def flag_compression_ratio(x):
return x < 0.9
def flag_accuracy(x):
return "pass" not in x
FLAG_FNS = {
"speedup": flag_speedup,
"compilation_latency": flag_compilation_latency,
"compression_ratio": flag_compression_ratio,
"accuracy": flag_accuracy,
}
def percentage(part, whole, decimals=2):
if whole == 0:
return 0
return round(100 * float(part) / float(whole), decimals)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--devices", action="append", help="cpu or cuda")
parser.add_argument("--dtypes", action="append", help="float16/float32/amp")
parser.add_argument("--suites", action="append", help="huggingface/torchbench/timm")
parser.add_argument(
"--compilers",
action="append",
help=f"For --inference, options are {INFERENCE_COMPILERS}. For --training, options are {TRAINING_COMPILERS}",
)
parser.add_argument(
"--flag-compilers",
action="append",
help="List of compilers to flag issues. Same format as --compilers.",
)
parser.add_argument(
"--quick", action="store_true", help="Just runs one model. Helps in debugging"
)
parser.add_argument(
"--output-dir",
help="Choose the output directory to save the logs",
default=DEFAULT_OUTPUT_DIR,
)
# Choose either generation of commands, pretty parsing or e2e runs
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument(
"--print_run_commands",
action="store_true",
help="Generate commands and saves them to run.sh",
)
group.add_argument(
"--visualize_logs",
action="store_true",
help="Pretty print the log files and draw graphs",
)
group.add_argument(
"--run",
action="store_true",
default=True,
help="Generate commands, run and parses the files",
)
parser.add_argument(
"--log-operator-inputs",
action="store_true",
default=False,
help="Log operator inputs",
)
parser.add_argument(
"--extra-args", default="", help="Append commandline with these args"
)
# Choose either inference or training
group_mode = parser.add_mutually_exclusive_group(required=True)
group_mode.add_argument(
"--inference", action="store_true", help="Only run inference related tasks"
)
group_mode.add_argument(
"--training", action="store_true", help="Only run training related tasks"
)
parser.add_argument(
"--update-dashboard",
action="store_true",
default=False,
help="Updates to dashboard",
)
parser.add_argument(
"--no-graphs",
action="store_true",
default=False,
help="Do not genenerate and upload metric graphs",
)
parser.add_argument(
"--no-update-archive",
action="store_true",
default=False,
help="Do not update lookup.csv or the log archive",
)
parser.add_argument(
"--no-gh-comment",
action="store_true",
default=False,
help="Do not write a comment to github",
)
parser.add_argument(
"--update-dashboard-test",
action="store_true",
default=False,
help="does all of --no-graphs, --no-update-lookup, and --no-gh-comment",
)
parser.add_argument(
"--dashboard-image-uploader",
default=DASHBOARD_DEFAULTS["dashboard_image_uploader"],
help="Image uploader command",
)
parser.add_argument(
"--dashboard-archive-path",
default=DASHBOARD_DEFAULTS["dashboard_archive_path"],
help="Archived directory path",
)
parser.add_argument(
"--archive-name",
help="Directory name under dashboard-archive-path to copy output-dir to. "
"If not provided, a generated name is used.",
)
parser.add_argument(
"--dashboard-gh-cli-path",
default=DASHBOARD_DEFAULTS["dashboard_gh_cli_path"],
help="Github CLI path",
)
args = parser.parse_args()
return args
def get_mode(args):
if args.inference:
return "inference"
return "training"
def get_skip_tests(suite):
"""
Generate -x seperated string to skip the unusual setup training tests
"""
skip_tests = set()
original_dir = abspath(os.getcwd())
module = importlib.import_module(suite)
os.chdir(original_dir)
if hasattr(module, "SKIP"):
skip_tests.update(module.SKIP)
if hasattr(module, "SKIP_TRAIN"):
skip_tests.update(module.SKIP_TRAIN)
skip_tests = map(lambda name: f"-x {name}", skip_tests)
skip_str = " ".join(skip_tests)
return skip_str
def generate_csv_name(args, dtype, suite, device, compiler, testing):
mode = get_mode(args)
return f"{compiler}_{suite}_{dtype}_{mode}_{device}_{testing}.csv"
def generate_commands(args, dtypes, suites, devices, compilers, output_dir):
mode = get_mode(args)
with open("run.sh", "w") as runfile:
lines = []
lines.append("# Setup the output directory")
lines.append(f"rm -rf {output_dir}")
lines.append(f"mkdir {output_dir}")
lines.append("")
for testing in ["performance", "accuracy"]:
for iter in itertools.product(suites, devices, dtypes):
suite, device, dtype = iter
lines.append(
f"# Commands for {suite} for device={device}, dtype={dtype} for {mode} and for {testing} testing"
)
info = TABLE[mode]
for compiler in compilers:
base_cmd = info[compiler]
output_filename = f"{output_dir}/{generate_csv_name(args, dtype, suite, device, compiler, testing)}"
cmd = f"python benchmarks/dynamo/{suite}.py --{testing} --{dtype} -d{device} --output={output_filename}"
cmd = f"{cmd} {base_cmd} {args.extra_args} --no-skip --dashboard"
skip_tests_str = get_skip_tests(suite)
cmd = f"{cmd} {skip_tests_str}"
if args.log_operator_inputs:
cmd = f"{cmd} --log-operator-inputs"
if args.quick:
filters = DEFAULTS["quick"][suite]
cmd = f"{cmd} {filters}"
if testing == "performance" and compiler in (
"inductor",
"inductor_no_cudagraphs",
):
cmd = f"{cmd} --cold_start_latency"
lines.append(cmd)
lines.append("")
runfile.writelines([line + "\n" for line in lines])
def generate_dropdown_comment(title, body):
str_io = io.StringIO()
str_io.write(f"{title}\n")
str_io.write("<details>\n")
str_io.write("<summary>see more</summary>\n")
str_io.write(f"{body}")
str_io.write("\n")
str_io.write("</details>\n\n")
return str_io.getvalue()
def build_summary(args):
import git
out_io = io.StringIO()
def print_commit_hash(path, name):
if exists(path):
repo = git.Repo(path, search_parent_directories=True)
sha = repo.head.object.hexsha
date = repo.head.object.committed_datetime
out_io.write(f"{name} commit: {sha}\n")
out_io.write(f"{name} commit date: {date}\n")
else:
out_io.write(f"{name} Absent\n")
def env_var(name):
out_io.write(f"{name} = {os.environ[name]}\n")
out_io.write("\n")
out_io.write("### Run name ###\n")
out_io.write(get_archive_name(args, args.dtypes[0]))
out_io.write("\n")
out_io.write("\n")
out_io.write("### Commit hashes ###\n")
print_commit_hash("../pytorch", "pytorch")
print_commit_hash("../functorch", "functorch")
print_commit_hash("../torchbenchmark", "torchbench")
out_io.write("\n")
out_io.write("### TorchDynamo config flags ###\n")
for key in dir(torch._dynamo.config):
val = getattr(torch._dynamo.config, key)
if not key.startswith("__") and isinstance(val, bool):
out_io.write(f"torch._dynamo.config.{key} = {val}\n")
out_io.write("\n")
out_io.write("### Torch version ###\n")
out_io.write(f"torch: {torch.__version__}\n")
out_io.write("\n")
out_io.write("### Environment variables ###\n")
env_var("TORCH_CUDA_ARCH_LIST")
env_var("CUDA_HOME")
env_var("USE_LLVM")
out_io.write("\n")
out_io.write("### GPU details ###\n")
out_io.write(f"CUDNN VERSION: {torch.backends.cudnn.version()}\n")
out_io.write(f"Number CUDA Devices: {torch.cuda.device_count()}\n")
out_io.write(f"Device Name: {torch.cuda.get_device_name(0)}\n")
out_io.write(
f"Device Memory [GB]: {torch.cuda.get_device_properties(0).total_memory/1e9}\n"
)
title = "## Build Summary"
comment = generate_dropdown_comment(title, out_io.getvalue())
with open(f"{output_dir}/gh_build_summary.txt", "w") as gh_fh:
gh_fh.write(comment)
@functools.lru_cache(None)
def archive_data(archive_name):
if archive_name is not None:
prefix_match = re.search(r"\w+(?=_performance)", archive_name)
if prefix_match is not None:
prefix = prefix_match.group(0)
else:
prefix = ""
day_match = re.search(r"day_(\d+)_", archive_name)
if day_match is not None:
day = day_match.group(1)
else:
day = "000"
else:
now = datetime.now(tz=timezone(timedelta(hours=-8)))
day = now.strftime("%j")
prefix = now.strftime(f"day_{day}_%d_%m_%y")
return day, prefix
@functools.lru_cache(None)
def default_archive_name(dtype):
_, prefix = archive_data(None)
return f"{prefix}_performance_{dtype}_{randint(100, 999)}"
def get_archive_name(args, dtype):
return (
default_archive_name(dtype) if args.archive_name is None else args.archive_name
)
def archive(src_dir, dest_dir_prefix, archive_name, dtype):
if archive_name is None:
archive_name = default_archive_name(dtype)
# Copy the folder to archived location
dest = os.path.join(dest_dir_prefix, archive_name)
shutil.copytree(src_dir, dest, dirs_exist_ok=True)
print(f"copied contents of {src_dir} to {dest}")
def get_metric_title(metric):
if metric == "speedup":
return "Performance speedup"
elif metric == "accuracy":
return "Accuracy"
elif metric == "compilation_latency":
return "Compilation latency (sec)"
elif metric == "compression_ratio":
return "Peak Memory Compression Ratio"
elif metric == "abs_latency":
return "Absolute latency (ms)"
raise RuntimeError("unknown metric")
class Parser:
def __init__(
self, suites, devices, dtypes, compilers, flag_compilers, mode, output_dir
):
self.suites = suites
self.devices = devices
self.dtypes = dtypes
self.compilers = compilers
self.flag_compilers = flag_compilers
self.output_dir = output_dir
self.mode = mode
def has_header(self, output_filename):
header_present = False
with open(output_filename, "r") as f:
line = f.readline()
if "dev" in line:
header_present = True
return header_present
class ParsePerformanceLogs(Parser):
def __init__(
self, suites, devices, dtypes, compilers, flag_compilers, mode, output_dir
):
super().__init__(
suites, devices, dtypes, compilers, flag_compilers, mode, output_dir
)
self.parsed_frames = defaultdict(lambda: defaultdict(None))
self.untouched_parsed_frames = defaultdict(lambda: defaultdict(None))
self.metrics = [
"speedup",
"abs_latency",
"compilation_latency",
"compression_ratio",
]
self.bottom_k = 50
self.parse()
def plot_graph(self, df, title):
labels = df.columns.values.tolist()
labels = labels[3:]
df.plot(
x="name",
y=labels,
kind="bar",
width=0.65,
title=title,
ylabel="Speedup over eager",
xlabel="",
grid=True,
figsize=(max(len(df.index) / 4, 5), 10),
edgecolor="black",
)
plt.tight_layout()
plt.savefig(f"{self.output_dir}/{title}.png")
def read_csv(self, output_filename):
if self.has_header(output_filename):
return pd.read_csv(output_filename)
else:
return pd.read_csv(
output_filename,
names=[
"dev",
"name",
"batch_size",
"speedup",
"abs_latency",
"compilation_latency",
"compression_ratio",
],
header=None,
engine="python",
)
def parse(self):
self.extract_df("accuracy", "accuracy")
for metric in self.metrics:
self.extract_df(metric, "performance")
def clean_batch_sizes(self, frames):
# Clean up batch sizes when its 0
if len(frames) == 1:
return frames
batch_sizes = frames[0]["batch_size"].to_list()
for frame in frames[1:]:
frame_batch_sizes = frame["batch_size"].to_list()
for idx, (batch_a, batch_b) in enumerate(
zip(batch_sizes, frame_batch_sizes)
):
assert batch_a == batch_b or batch_a == 0 or batch_b == 0, print(
f"a={batch_a}, b={batch_b}"
)
batch_sizes[idx] = max(batch_a, batch_b)
for frame in frames:
frame["batch_size"] = batch_sizes
return frames
def extract_df(self, metric, testing):
for iter in itertools.product(self.suites, self.devices, self.dtypes):
suite, device, dtype = iter
frames = []
for compiler in self.compilers:
output_filename = f"{self.output_dir}/{compiler}_{suite}_{dtype}_{self.mode}_{device}_{testing}.csv"
df = self.read_csv(output_filename)
if metric not in df:
df.insert(len(df.columns), metric, np.nan)
df = df[["dev", "name", "batch_size", metric]]
df.rename(columns={metric: compiler}, inplace=True)
df["batch_size"] = df["batch_size"].astype(int)
frames.append(df)
# Merge the results
frames = self.clean_batch_sizes(frames)
if len(self.compilers) == 1:
df = frames[0]
else:
# Merge data frames
df = pd.merge(frames[0], frames[1], on=["dev", "name", "batch_size"])
for idx in range(2, len(frames)):
df = pd.merge(df, frames[idx], on=["dev", "name", "batch_size"])
df_copy = df.copy()
df_copy = df_copy.sort_values(
by=list(reversed(self.compilers)), ascending=False
)
if "inductor" in self.compilers:
df_copy = df_copy.sort_values(by="inductor", ascending=False)
self.untouched_parsed_frames[suite][metric] = df_copy
if testing == "performance":
df_accuracy = self.parsed_frames[suite]["accuracy"]
perf_rows = []
for model_name in df["name"]:
perf_row = df[df["name"] == model_name].copy()
acc_row = df_accuracy[df_accuracy["name"] == model_name]
for compiler in self.compilers:
if not perf_row.empty:
if acc_row.empty:
perf_row[compiler] = 0.0
elif acc_row[compiler].iloc[0] not in (
"pass",
"pass_due_to_skip",
):
perf_row[compiler] = 0.0
perf_rows.append(perf_row)
df = pd.concat(perf_rows)
df = df.sort_values(by=list(reversed(self.compilers)), ascending=False)
if "inductor" in self.compilers:
df = df.sort_values(by="inductor", ascending=False)
self.parsed_frames[suite][metric] = df
def get_passing_entries(self, compiler, df):
return df[compiler][df[compiler] > 0]
def comp_time(self, compiler, df):
df = self.get_passing_entries(compiler, df)
# df = df.sort_values(by=compiler, ascending=False)[compiler][: self.bottom_k]
if df.empty:
return "0.0"
return f"{df.mean():.2f}"
def geomean(self, compiler, df):
cleaned_df = self.get_passing_entries(compiler, df).clip(1)
if cleaned_df.empty:
return "0.0x"
return f"{gmean(cleaned_df):.2f}x"
def passrate(self, compiler, df):
total = len(df.index)
passing = df[df[compiler] > 0.0][compiler].count()
perc = int(percentage(passing, total, decimals=0))
return f"{perc}%, {passing}/{total}"
def memory(self, compiler, df):
df = self.get_passing_entries(compiler, df)
df = df.fillna(0)
df = df[df > 0]
if df.empty:
return "0.0x"
return f"{df.mean():.2f}x"
def exec_summary_df(self, fn, metric):
"""
Generate a table with passrate and geomean perf
"""
cols = {}
cols["Compiler"] = self.compilers
for suite in self.suites:
df = self.parsed_frames[suite][metric]
# speedups = [self.geomean(compiler, df) for compiler in self.compilers]
speedups = [fn(compiler, df) for compiler in self.compilers]
col = pd.Series(data=speedups, index=self.compilers)
cols[suite] = col
df = pd.DataFrame(cols)
df = df.fillna(0)
df.to_csv(os.path.join(self.output_dir, f"{fn.__name__}.csv"))
return df
def exec_summary_text(self, caption, fn, metric):
df = self.exec_summary_df(fn, metric)
tabform = tabulate(df, headers="keys", tablefmt="pretty", showindex="never")
str_io = io.StringIO()
str_io.write(f"{caption}")
str_io.write("~~~\n")
str_io.write(f"{tabform}\n")
str_io.write("~~~\n")
return str_io.getvalue()
def generate_executive_summary(self):
description = (
"We evaluate different backends "
"across three benchmark suites - torchbench, huggingface and timm. We run "
"these experiments on A100 GPUs. Each experiment runs one iteration of forward "
"and backward pass. For accuracy, we check the numerical correctness of forward "
"pass outputs and gradients by comparing with native pytorch. We measure speedup "
"by normalizing against the performance of native pytorch. We report mean "
"compilation latency numbers and peak memory footprint reduction ratio. \n\n"
"Caveats\n"
"1) Batch size has been reduced to workaround OOM errors. Work is in progress to "
"reduce peak memory footprint.\n"
"2) Experiments do not cover dynamic shapes.\n"
"3) Experimental setup does not have optimizer.\n\n"
)
comment = generate_dropdown_comment("", description)
str_io = io.StringIO()
str_io.write("\n")
str_io.write("## Executive Summary ##\n")
str_io.write(comment)
speedup_caption = "Geometric mean speedup \n"
speedup_summary = self.exec_summary_text(
speedup_caption, self.geomean, "speedup"
)
passrate_caption = "Passrate\n"
passrate_summary = self.exec_summary_text(
passrate_caption, self.passrate, "speedup"
)
comp_time_caption = "Mean compilation time (seconds)\n"
comp_time_summary = self.exec_summary_text(
comp_time_caption, self.comp_time, "compilation_latency"
)
peak_memory_caption = (
"Peak memory footprint compression ratio (higher is better)\n"
)
peak_memory_summary = self.exec_summary_text(
peak_memory_caption, self.memory, "compression_ratio"
)
str_io.write(
"To measure performance, compilation latency and memory footprint reduction, "
"we remove the models that fail accuracy checks.\n\n"
)
str_io.write(passrate_summary)
str_io.write(speedup_summary)
str_io.write(comp_time_summary)
str_io.write(peak_memory_summary)
self.executive_summary = str_io.getvalue()
def flag_bad_entries(self, suite, metric, flag_fn):
df = self.untouched_parsed_frames[suite][metric]
df = df.drop("dev", axis=1)
df = df.rename(columns={"batch_size": "bs"})
# apply flag_fn elementwise to flag_compilers columns,
# if one element fails, the entire row is flagged
flag = np.logical_or.reduce(
df[self.flag_compilers].applymap(flag_fn),
axis=1,
)
df = df[flag]
df = df.assign(suite=suite)
return df.reindex(columns=["suite", "name"] + self.flag_compilers)
def generate_warnings(self):
title = "## Warnings ##"
body = (
"We flag models where:\n\n"
" - accuracy fails\n"
" - speedup < 0.95x (NOTE: 0.0 speedup typically signifies a failure in the performance test)\n"
" - compilation latency > 120 sec.\n"
" - compression ratio < 0.9\n"
"\n"
)
for metric in [
"accuracy",
"speedup",
"compilation_latency",
"compression_ratio",
]:
dfs = []
for suite in self.suites:
dfs.append(self.flag_bad_entries(suite, metric, FLAG_FNS[metric]))
df = pd.concat(dfs, axis=0)
if df.empty:
continue
tabform = tabulate(df, headers="keys", tablefmt="pretty", showindex="never")
str_io = io.StringIO()
str_io.write("\n")
str_io.write(get_metric_title(metric) + " warnings\n")
str_io.write("~~~\n")
str_io.write(f"{tabform}\n")
str_io.write("~~~\n")
body += str_io.getvalue()
comment = generate_dropdown_comment(title, body)
return comment
def prepare_message(self, suite):
title = f"## {suite} suite with {self.dtypes[0]} precision ##"
body = ""
for metric in [
"speedup",
"accuracy",
"compilation_latency",
"compression_ratio",
"abs_latency",
]:
df = self.untouched_parsed_frames[suite][metric]
df = df.drop("dev", axis=1)
df = df.rename(columns={"batch_size": "bs"})
tabform = tabulate(df, headers="keys", tablefmt="pretty", showindex="never")
str_io = io.StringIO()
str_io.write("\n")
str_io.write(get_metric_title(metric) + "\n")
str_io.write("~~~\n")
str_io.write(f"{tabform}\n")
str_io.write("~~~\n")
body += str_io.getvalue()
comment = generate_dropdown_comment(title, body)
return comment
def gen_summary_files(self):
self.generate_executive_summary()
for suite in self.suites:
self.plot_graph(
self.untouched_parsed_frames[suite]["speedup"],
f"{suite}_{self.dtypes[0]}",
)
with open(f"{self.output_dir}/gh_title.txt", "w") as gh_fh:
str_io = io.StringIO()
str_io.write("\n")
str_io.write(f"# Performance Dashboard for {self.dtypes[0]} precision ##\n")
str_io.write("\n")
gh_fh.write(str_io.getvalue())
with open(f"{self.output_dir}/gh_executive_summary.txt", "w") as gh_fh:
gh_fh.write(self.executive_summary)
with open(f"{self.output_dir}/gh_warnings.txt", "w") as gh_fh:
warnings_body = self.generate_warnings()
gh_fh.write(warnings_body)
str_io = io.StringIO()
for suite in self.suites:
str_io.write(self.prepare_message(suite))
str_io.write("\n")
with open(f"{self.output_dir}/gh_{self.mode}.txt", "w") as gh_fh:
gh_fh.write(str_io.getvalue())
def parse_logs(args, dtypes, suites, devices, compilers, flag_compilers, output_dir):
mode = get_mode(args)
build_summary(args)
parser_class = ParsePerformanceLogs
parser = parser_class(
suites, devices, dtypes, compilers, flag_compilers, mode, output_dir
)
parser.gen_summary_files()
return
@dataclasses.dataclass
class LogInfo:
# Day of the year this log was generated
day: str
# Directory path where all logs are present
dir_path: str
def get_date(log_info):
return datetime.strptime(f"{log_info.day}", "%j").strftime("%m-%d")
def find_last_2_with_filenames(lookup_file, dashboard_archive_path, dtype, filenames):
df = pd.read_csv(lookup_file, names=("day", "mode", "prec", "path"))
df = df[df["mode"] == "performance"]
df = df[df["prec"] == dtype]
df = df[::-1]
last2 = []
for path in df["path"]:
output_dir = os.path.join(dashboard_archive_path, path)
fullpaths = [
os.path.join(dashboard_archive_path, path, name) for name in filenames
]
if all([os.path.exists(fullpath) for fullpath in fullpaths]):
last2.append(output_dir)
if len(last2) >= 2:
return last2
return None
class SummaryStatDiffer:
def __init__(self, args):
self.args = args
self.lookup_file = os.path.join(self.args.dashboard_archive_path, "lookup.csv")
assert os.path.exists(self.lookup_file)
def generate_diff(self, last2, filename, caption):
df_cur, df_prev = [pd.read_csv(os.path.join(path, filename)) for path in last2]
df_merge = df_cur.merge(df_prev, on="Compiler", suffixes=("_cur", "_prev"))
data = {col: [] for col in ("compiler", "suite", "prev_value", "cur_value")}
for _, row in df_merge.iterrows():
if row["Compiler"] in self.args.flag_compilers:
for suite in self.args.suites:
if suite + "_prev" not in row or suite + "_cur" not in row:
continue
data["compiler"].append(row["Compiler"])
data["suite"].append(suite)
data["prev_value"].append(row[suite + "_prev"])
data["cur_value"].append(row[suite + "_cur"])
df = pd.DataFrame(data)
tabform = tabulate(df, headers="keys", tablefmt="pretty", showindex="never")
str_io = io.StringIO()
str_io.write("\n")
str_io.write(f"{caption}\n")
str_io.write("~~~\n")
str_io.write(f"{tabform}\n")
str_io.write("~~~\n")
return str_io.getvalue()
def generate_comment(self):
title = "## Summary Statistics Diff ##\n"
body = (
"For each relevant compiler, we compare the summary statistics "
"for the most 2 recent reports that actually run the compiler.\n\n"
)
dtype = self.args.dtypes[0]
last2 = find_last_2_with_filenames(
self.lookup_file,
self.args.dashboard_archive_path,
dtype,
["geomean.csv", "passrate.csv"],
)
if last2 is None:
body += "Could not find most 2 recent reports.\n\n"
else:
for state, path in zip(("Current", "Previous"), last2):
body += f"{state} report name: {path}\n\n"
body += self.generate_diff(last2, "passrate.csv", "Passrate diff")
body += self.generate_diff(
last2, "geomean.csv", "Geometric mean speedup diff"
)
comment = generate_dropdown_comment(title, body)
with open(f"{self.args.output_dir}/gh_summary_diff.txt", "w") as gh_fh:
gh_fh.write(comment)
class RegressionDetector:
"""
Compares the most recent 2 benchmarks to find previously unflagged models
that are now flagged.
"""
def __init__(self, args):
self.args = args
self.lookup_file = os.path.join(self.args.dashboard_archive_path, "lookup.csv")
assert os.path.exists(self.lookup_file)
def generate_comment(self):
title = "## Recent Regressions ##\n"
body = (
"For each relevant compiler, we compare the most recent 2 reports "
"(that actually run the compiler) to find previously unflagged "
"models that are now flagged as problematic (according to the "
"'Warnings' section).\n\n"
)
dtype = self.args.dtypes[0]
device = self.args.devices[0]
for suite in self.args.suites:
body += f"### Regressions for {suite} ###\n"
last2 = {}
for compiler in self.args.flag_compilers:
filenames = [
generate_csv_name(
self.args, dtype, suite, device, compiler, testing
)
for testing in ["performance", "accuracy"]
]
compiler_last2 = find_last_2_with_filenames(
self.lookup_file, self.args.dashboard_archive_path, dtype, filenames
)
if compiler_last2 is not None:
last2[compiler] = [
ParsePerformanceLogs(
[suite],
[device],
[dtype],
[compiler],
[compiler],
get_mode(self.args),
output_dir,
)
for output_dir in compiler_last2
]
for state, path in zip(("Current", "Previous"), compiler_last2):
body += (
f"{state} report name (compiler: {compiler}, "
f"suite: {suite}): {path}\n\n"
)
regressions_present = False
for metric in [
"accuracy",
"speedup",
"compilation_latency",
"compression_ratio",
]:
dfs = []
for compiler in self.args.flag_compilers:
if last2[compiler] is None:
continue
df_cur, df_prev = [
last2[compiler][i].untouched_parsed_frames[suite][metric]
for i in (0, 1)
]
df_merge = df_cur.merge(
df_prev, on="name", suffixes=("_cur", "_prev")
)
flag_fn = FLAG_FNS[metric]
flag = np.logical_and(
df_merge[compiler + "_prev"].apply(
lambda x: not pd.isna(x) and not flag_fn(x)
),
df_merge[compiler + "_cur"].apply(
lambda x: not pd.isna(x) and flag_fn(x)
),
)
df_bad = df_merge[flag]
dfs.append(
pd.DataFrame(
data={
"compiler": compiler,
"name": df_bad["name"],
"prev_status": df_bad[compiler + "_prev"],
"cur_status": df_bad[compiler + "_cur"],
}
)
)
if not dfs:
continue
df = pd.concat(dfs, axis=0)
if df.empty:
continue
regressions_present = True
tabform = tabulate(
df, headers="keys", tablefmt="pretty", showindex="never"
)
str_io = io.StringIO()
str_io.write("\n")
str_io.write(f"{get_metric_title(metric)} regressions\n")
str_io.write("~~~\n")
str_io.write(f"{tabform}\n")
str_io.write("~~~\n")
body += str_io.getvalue()
if not regressions_present:
body += "No regressions found.\n"
comment = generate_dropdown_comment(title, body)
with open(f"{self.args.output_dir}/gh_metric_regression.txt", "w") as gh_fh:
gh_fh.write(comment)
class RegressionTracker:
"""
Plots progress of different metrics over time to detect regressions.
"""
def __init__(self, args):
self.args = args
self.suites = self.args.suites
self.lookup_file = os.path.join(self.args.dashboard_archive_path, "lookup.csv")
assert os.path.exists(self.lookup_file)
self.k = 10
def find_last_k(self):
"""
Find the last k pairs of (day number, log_path)
"""
dtype = self.args.dtypes[0]
df = pd.read_csv(self.lookup_file, names=("day", "mode", "prec", "path"))
df = df[df["mode"] == "performance"]
df = df[df["prec"] == dtype]
log_infos = []
for day, path in zip(df["day"], df["path"]):
log_infos.append(LogInfo(day, path))
assert len(log_infos) >= self.k
log_infos = log_infos[len(log_infos) - self.k :]
return log_infos
def generate_comment(self):
title = "## Metrics over time ##\n"
str_io = io.StringIO()
if not self.args.update_dashboard_test and not self.args.no_graphs:
for name in glob.glob(self.args.output_dir + "/*over_time.png"):
output = (
subprocess.check_output([self.args.dashboard_image_uploader, name])
.decode("ascii")
.rstrip()
)
str_io.write(f"\n{name} : ![]({output})\n")
comment = generate_dropdown_comment(title, str_io.getvalue())
with open(f"{self.args.output_dir}/gh_regression.txt", "w") as gh_fh:
gh_fh.write(comment)
def diff(self):
log_infos = self.find_last_k()
for metric in ["geomean", "passrate", "comp_time", "memory"]:
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 5))
for idx, suite in enumerate(self.suites):
dfs = []
for log_info in log_infos:
dir_path = os.path.join(
self.args.dashboard_archive_path, log_info.dir_path
)
assert os.path.exists(dir_path)
gmean_filename = os.path.join(dir_path, f"{metric}.csv")
if not os.path.exists(gmean_filename):
continue
df = pd.read_csv(gmean_filename)
if suite not in df:
continue
if metric == "geomean" or metric == "memory":
df[suite] = df[suite].str.replace("x", "").astype(float)
elif metric == "passrate":
df[suite] = df[suite].str.split("%").str[0].astype(float)
df.insert(0, "day", get_date(log_info))
df = df.pivot(index="day", columns="Compiler", values=suite)
# Interim stage when both inductor_cudagraphs and inductor exist
df = df.rename(columns={"inductor_cudagraphs": "inductor"})
for col_name in df.columns:
if col_name not in self.args.compilers:
df = df.drop(columns=[col_name])
dfs.append(df)
df = pd.concat(dfs)
df = df.interpolate(method="linear")
ax = df.plot(
ax=axes[idx],
kind="line",
ylabel=metric,
xlabel="Date",
grid=True,
ylim=0 if metric == "passrate" else 0.8,
title=suite,
style=".-",
legend=False,
)
ax.legend(loc="lower right", ncol=2)
plt.tight_layout()
plt.savefig(os.path.join(output_dir, f"{metric}_over_time.png"))
self.generate_comment()
class DashboardUpdater:
"""
Aggregates the information and makes a comment to Performance Dashboard.
https://github.com/pytorch/torchdynamo/issues/681
"""
def __init__(self, args):
self.args = args
self.output_dir = args.output_dir
self.lookup_file = os.path.join(self.args.dashboard_archive_path, "lookup.csv")
assert os.path.exists(self.lookup_file)
try:
if not self.args.update_dashboard_test and not self.args.no_update_archive:
self.update_lookup_file()
except subprocess.CalledProcessError:
sys.stderr.write("failed to update lookup file\n")
def update_lookup_file(self):
dtype = self.args.dtypes[0]
day, _ = archive_data(self.args.archive_name)
target_dir = get_archive_name(self.args, dtype)
# Update lookup csv the folder to arhived logs
subprocess.check_call(
f'echo "{day},performance,{dtype},{target_dir}" >> {self.lookup_file}',
shell=True,
)
def archive(self):
dtype = self.args.dtypes[0]
# Copy the folder to archived location
archive(
self.output_dir,
self.args.dashboard_archive_path,
self.args.archive_name,
dtype,
)
def upload_graphs(self):
title = "## Performance graphs ##\n"
str_io = io.StringIO()
if not self.args.update_dashboard_test and not self.args.no_graphs:
for name in glob.glob(self.output_dir + "/*png"):
if "over_time" not in name:
output = (
subprocess.check_output(
[self.args.dashboard_image_uploader, name]
)
.decode("ascii")
.rstrip()
)
str_io.write(f"\n{name} : ![]({output})\n")
comment = generate_dropdown_comment(title, str_io.getvalue())
with open(f"{self.output_dir}/gh_graphs.txt", "w") as gh_fh:
gh_fh.write(comment)
def gen_comment(self):
files = [
"gh_title.txt",
"gh_executive_summary.txt",
"gh_summary_diff.txt",
"gh_warnings.txt",
"gh_regression.txt",
"gh_metric_regression.txt",
"gh_training.txt",
"gh_graphs.txt",
"gh_build_summary.txt",
]
all_lines = []
for f in files:
try:
with open(os.path.join(self.output_dir, f), "r") as fh:
all_lines.extend(fh.readlines())
except FileNotFoundError:
pass
return "\n".join([x.rstrip() for x in all_lines])
def comment_on_gh(self, comment):
"""
Send a commment to dashboard
"""
with tempfile.NamedTemporaryFile(mode="w", delete=False) as f:
f.write(comment)
filename = f.name
subprocess.check_call(
[
self.args.dashboard_gh_cli_path,
"issue",
"comment",
"--repo=https://github.com/pytorch/torchdynamo.git",
"681",
"-F",
filename,
]
)
os.remove(filename)
def update(self):
self.upload_graphs()
SummaryStatDiffer(self.args).generate_comment()
RegressionDetector(self.args).generate_comment()
try:
RegressionTracker(self.args).diff()
except Exception as e:
logging.exception(e)
with open(f"{self.args.output_dir}/gh_regression.txt", "w") as gh_fh:
gh_fh.write("")
comment = self.gen_comment()
print(comment)
if not self.args.update_dashboard_test:
if not self.args.no_gh_comment:
self.comment_on_gh(comment)
if not self.args.no_update_archive:
self.archive()
if __name__ == "__main__":
args = parse_args()
def extract(key):
return DEFAULTS[key] if getattr(args, key, None) is None else getattr(args, key)
dtypes = extract("dtypes")
suites = extract("suites")
devices = extract("devices")
if args.inference:
compilers = DEFAULTS["inference"] if args.compilers is None else args.compilers
flag_compilers = (
DEFAULTS["flag_compilers"]["inference"]
if args.flag_compilers is None
else args.flag_compilers
)
else:
assert args.training
compilers = DEFAULTS["training"] if args.compilers is None else args.compilers
flag_compilers = (
DEFAULTS["flag_compilers"]["training"]
if args.flag_compilers is None
else args.flag_compilers
)
output_dir = args.output_dir
args.compilers = compilers
args.devices = devices
args.dtypes = dtypes
flag_compilers = list(set(flag_compilers) & set(compilers))
args.flag_compilers = flag_compilers
args.suites = suites
if args.print_run_commands:
generate_commands(args, dtypes, suites, devices, compilers, output_dir)
elif args.visualize_logs:
parse_logs(args, dtypes, suites, devices, compilers, flag_compilers, output_dir)
elif args.run:
generate_commands(args, dtypes, suites, devices, compilers, output_dir)
# generate memoized archive name now so that the date is reflective
# of when the run started
get_archive_name(args, dtypes[0])
# TODO - Do we need to worry about segfaults
try:
os.system("bash run.sh")
except Exception as e:
print(
"Running commands failed. Please run manually (bash run.sh) and inspect the errors."
)
raise e
if not args.log_operator_inputs:
if not args.no_update_archive:
archive(
output_dir,
args.dashboard_archive_path,
args.archive_name,
dtypes[0],
)
parse_logs(
args, dtypes, suites, devices, compilers, flag_compilers, output_dir
)
if not args.no_update_archive:
archive(
output_dir,
args.dashboard_archive_path,
args.archive_name,
dtypes[0],
)
if args.update_dashboard:
DashboardUpdater(args).update()