blob: ce16597487d419ad5421e4e53864b0ab4e79e2e9 [file] [log] [blame]
import torch
from collections import namedtuple
from typing import List, Tuple
from torch import Tensor
from .cells import lstm_cell, premul_lstm_cell, premul_lstm_cell_no_bias, flat_lstm_cell
# list[list[T]] -> list[T]
def flatten_list(lst):
result = []
for inner in lst:
result.extend(inner)
return result
'''
Define a creator as a function:
(options) -> (inputs, params, forward, backward_setup, backward)
inputs: the inputs to the returned 'forward'. One can call
forward(*inputs) directly.
params: List[Tensor] all requires_grad=True parameters.
forward: function / graph executor / module
One can call rnn(rnn_inputs) using the outputs of the creator.
backward_setup: backward_inputs = backward_setup(*outputs)
Then, we pass backward_inputs to backward. If None, then it is assumed to
be the identity function.
backward: Given `output = backward_setup(*forward(*inputs))`, performs
backpropagation. If None, then nothing happens.
fastrnns.bench times the forward and backward invocations.
'''
ModelDef = namedtuple('ModelDef', [
'inputs', 'params', 'forward', 'backward_setup', 'backward'])
def lstm_backward_setup(lstm_outputs, seed=None):
hx, _ = lstm_outputs
return simple_backward_setup(hx, seed)
def simple_backward_setup(output, seed=None):
assert isinstance(output, torch.Tensor)
if seed:
torch.manual_seed(seed)
grad_output = torch.randn_like(output)
return output, grad_output
def simple_backward(output, grad_output, **kwargs):
return output.backward(grad_output, **kwargs)
def pytorch_lstm_creator(**kwargs):
input, hidden, _, module = lstm_inputs(return_module=True, **kwargs)
return ModelDef(
inputs=[input, hidden],
params=flatten_list(module.all_weights),
forward=module,
backward_setup=lstm_backward_setup,
backward=simple_backward)
def lstm_creator(script=True, **kwargs):
input, hidden, params, _ = lstm_inputs(return_module=False, **kwargs)
inputs = [input, hidden] + params[0]
return ModelDef(
inputs=inputs,
params=flatten_list(params),
forward=lstm_factory(lstm_cell, script),
backward_setup=lstm_backward_setup,
backward=simple_backward)
def lnlstm_creator(script=True, decompose_layernorm=False, **kwargs):
assert script is True
from .custom_lstms import script_lnlstm
input_size = kwargs['inputSize']
hidden_size = kwargs['hiddenSize']
seq_len = kwargs['seqLength']
batch_size = kwargs['miniBatch']
ge = script_lnlstm(input_size, hidden_size, 1,
decompose_layernorm=decompose_layernorm).cuda()
input = torch.randn(seq_len, batch_size, input_size, device='cuda')
states = [(torch.randn(batch_size, hidden_size, device='cuda'),
torch.randn(batch_size, hidden_size, device='cuda'))]
return ModelDef(
inputs=[input, states],
params=ge.parameters(),
forward=ge,
backward_setup=lstm_backward_setup,
backward=simple_backward)
def dropoutlstm_creator(script=True, **kwargs):
assert script is True
from .custom_lstms import script_lstm, LSTMState
input_size = kwargs['inputSize']
hidden_size = kwargs['hiddenSize']
seq_len = kwargs['seqLength']
batch_size = kwargs['miniBatch']
num_layers = kwargs['numLayers']
ge = script_lstm(input_size, hidden_size, num_layers, dropout=True).cuda()
input = torch.randn(seq_len, batch_size, input_size, device='cuda')
states = [LSTMState(torch.randn(batch_size, hidden_size, device='cuda'),
torch.randn(batch_size, hidden_size, device='cuda'))
for _ in range(num_layers)]
return ModelDef(
inputs=[input, states],
params=ge.parameters(),
forward=ge,
backward_setup=lstm_backward_setup,
backward=simple_backward)
def lstm_premul_creator(script=True, **kwargs):
input, hidden, params, _ = lstm_inputs(return_module=False, **kwargs)
inputs = [input, hidden] + params[0]
return ModelDef(
inputs=inputs,
params=flatten_list(params),
forward=lstm_factory_premul(premul_lstm_cell, script),
backward_setup=lstm_backward_setup,
backward=simple_backward)
def lstm_premul_bias_creator(script=True, **kwargs):
input, hidden, params, _ = lstm_inputs(return_module=False, **kwargs)
inputs = [input, hidden] + params[0]
return ModelDef(
inputs=inputs,
params=flatten_list(params),
forward=lstm_factory_premul_bias(premul_lstm_cell_no_bias, script),
backward_setup=lstm_backward_setup,
backward=simple_backward)
def lstm_simple_creator(script=True, **kwargs):
input, hidden, params, _ = lstm_inputs(return_module=False, **kwargs)
inputs = [input] + [h[0] for h in hidden] + params[0]
return ModelDef(
inputs=inputs,
params=flatten_list(params),
forward=lstm_factory_simple(flat_lstm_cell, script),
backward_setup=lstm_backward_setup,
backward=simple_backward)
def lstm_multilayer_creator(script=True, **kwargs):
input, hidden, params, _ = lstm_inputs(return_module=False, **kwargs)
inputs = [input, hidden, flatten_list(params)]
return ModelDef(
inputs=inputs,
params=flatten_list(params),
forward=lstm_factory_multilayer(lstm_cell, script),
backward_setup=lstm_backward_setup,
backward=simple_backward)
def imagenet_cnn_creator(arch, jit=True):
def creator(device='cuda', **kwargs):
model = arch().to(device)
x = torch.randn(32, 3, 224, 224, device=device)
if jit:
model = torch.jit.trace(model, x)
return ModelDef(
inputs=(x,),
params=list(model.parameters()),
forward=model,
backward_setup=simple_backward_setup,
backward=simple_backward)
return creator
def varlen_lstm_inputs(minlen=30, maxlen=100,
numLayers=1, inputSize=512, hiddenSize=512,
miniBatch=64, return_module=False, device='cuda',
seed=None, **kwargs):
if seed is not None:
torch.manual_seed(seed)
lengths = torch.randint(
low=minlen, high=maxlen, size=[miniBatch],
dtype=torch.long, device=device)
x = [torch.randn(length, inputSize, device=device)
for length in lengths]
hx = torch.randn(numLayers, miniBatch, hiddenSize, device=device)
cx = torch.randn(numLayers, miniBatch, hiddenSize, device=device)
lstm = torch.nn.LSTM(inputSize, hiddenSize, numLayers).to(device)
if return_module:
return x, lengths, (hx, cx), lstm.all_weights, lstm
else:
# NB: lstm.all_weights format:
# wih, whh, bih, bhh = lstm.all_weights[layer]
return x, lengths, (hx, cx), lstm.all_weights, None
def varlen_lstm_backward_setup(forward_output, seed=None):
if seed:
torch.manual_seed(seed)
rnn_utils = torch.nn.utils.rnn
sequences = forward_output[0]
padded = rnn_utils.pad_sequence(sequences)
grad = torch.randn_like(padded)
return padded, grad
def varlen_pytorch_lstm_creator(**kwargs):
rnn_utils = torch.nn.utils.rnn
sequences, _, hidden, _, module = varlen_lstm_inputs(
return_module=True, **kwargs)
def forward(sequences, hidden):
packed = rnn_utils.pack_sequence(sequences, enforce_sorted=False)
out, new_hidden = module(packed, hidden)
padded, lengths = rnn_utils.pad_packed_sequence(out)
# XXX: It's more efficient to store the output in its padded form,
# but that might not be conducive to loss computation.
# Un-padding the output also makes the backward pass 2x slower...
# return [padded[:lengths[i], i, :] for i in range(lengths.size(0))]
return padded, new_hidden
return ModelDef(
inputs=[sequences, hidden],
params=flatten_list(module.all_weights),
forward=forward,
backward_setup=lstm_backward_setup,
backward=simple_backward)
def varlen_lstm_factory(cell, script):
def dynamic_rnn(sequences: List[Tensor], hiddens: Tuple[Tensor, Tensor], wih: Tensor,
whh: Tensor, bih: Tensor, bhh: Tensor
) -> Tuple[List[Tensor], Tuple[List[Tensor], List[Tensor]]]:
hx, cx = hiddens
hxs = hx.unbind(1)
cxs = cx.unbind(1)
# List of: (output, hx, cx)
outputs = []
hx_outs = []
cx_outs = []
for batch in range(len(sequences)):
output = []
hy, cy = hxs[batch], cxs[batch]
inputs = sequences[batch].unbind(0)
for seq_idx in range(len(inputs)):
hy, cy = cell(
inputs[seq_idx].unsqueeze(0), (hy, cy), wih, whh, bih, bhh)
output += [hy]
outputs += [torch.stack(output)]
hx_outs += [hy.unsqueeze(0)]
cx_outs += [cy.unsqueeze(0)]
return outputs, (hx_outs, cx_outs)
if script:
cell = torch.jit.script(cell)
dynamic_rnn = torch.jit.script(dynamic_rnn)
return dynamic_rnn
def varlen_lstm_creator(script=False, **kwargs):
sequences, _, hidden, params, _ = varlen_lstm_inputs(
return_module=False, **kwargs)
inputs = [sequences, hidden] + params[0]
return ModelDef(
inputs=inputs,
params=flatten_list(params),
forward=varlen_lstm_factory(lstm_cell, script),
backward_setup=varlen_lstm_backward_setup,
backward=simple_backward)
# cudnn_layernorm_lstm: since cudnn does not have Layernorm LSTM, we cannot benchmark
# the lowerbound directly. Instead, we only benchmark the forward pass by mimicing the
# computation of a cudnn lstm + seq_len * 3 layernorm computation. This should serve
# as a perf lowerbound for the Layernorm LSTM forward pass(given that Layernorm itself
# is invariant), the lowerbound of backward pass is hard to get since we lose the
# intermediate results, we can still optimize the layernorm implementation to make
# a faster forward lowerbound though.
def layernorm_pytorch_lstm_creator(**kwargs):
input, hidden, _, module = lstm_inputs(return_module=True, **kwargs)
batch_size = kwargs['miniBatch']
hidden_size = kwargs['hiddenSize']
ln_i = torch.nn.LayerNorm(4 * hidden_size).cuda()
ln_h = torch.nn.LayerNorm(4 * hidden_size).cuda()
ln_c = torch.nn.LayerNorm(hidden_size).cuda()
ln_input1 = torch.randn(batch_size, 4 * hidden_size, device='cuda')
def forward(input, hidden):
out, new_hidden = module(input, hidden)
# plus (seq_len * three laynorm cell computation) to mimic the lower bound of
# Layernorm cudnn LSTM in the forward pass
seq_len = len(input.unbind(0))
hy, cy = new_hidden
for i in range(seq_len):
ln_i_output = ln_i(ln_input1)
ln_h_output = ln_h(ln_input1)
cy = ln_c(cy)
return out, (hy, cy)
return ModelDef(
inputs=[input, hidden],
params=flatten_list(module.all_weights),
forward=forward,
backward_setup=lstm_backward_setup,
backward=None)
# input: lstm.all_weights format (wih, whh, bih, bhh = lstm.all_weights[layer])
# output: packed_weights with format
# packed_weights[0] is wih with size (layer, 4*hiddenSize, inputSize)
# packed_weights[1] is whh with size (layer, 4*hiddenSize, hiddenSize)
# packed_weights[2] is bih with size (layer, 4*hiddenSize)
# packed_weights[3] is bhh with size (layer, 4*hiddenSize)
def stack_weights(weights):
def unzip_columns(mat):
assert isinstance(mat, list)
assert isinstance(mat[0], list)
layers = len(mat)
columns = len(mat[0])
return [[mat[layer][col] for layer in range(layers)]
for col in range(columns)]
# XXX: script fns have problems indexing multidim lists, so we try to
# avoid them by stacking tensors
all_weights = weights
packed_weights = [torch.stack(param)
for param in unzip_columns(all_weights)]
return packed_weights
# returns: x, (hx, cx), all_weights, lstm module with all_weights as params
def lstm_inputs(seqLength=100, numLayers=1, inputSize=512, hiddenSize=512,
miniBatch=64, dropout=0.0, return_module=False, device='cuda', seed=None):
if seed is not None:
torch.manual_seed(seed)
x = torch.randn(seqLength, miniBatch, inputSize, device=device)
hx = torch.randn(numLayers, miniBatch, hiddenSize, device=device)
cx = torch.randn(numLayers, miniBatch, hiddenSize, device=device)
lstm = torch.nn.LSTM(inputSize, hiddenSize, numLayers, dropout=dropout)
if 'cuda' in device:
lstm = lstm.cuda()
if return_module:
return x, (hx, cx), lstm.all_weights, lstm
else:
# NB: lstm.all_weights format:
# wih, whh, bih, bhh = lstm.all_weights[layer]
return x, (hx, cx), lstm.all_weights, None
def lstm_factory(cell, script):
def dynamic_rnn(input: Tensor, hidden: Tuple[Tensor, Tensor], wih: Tensor, whh: Tensor,
bih: Tensor, bhh: Tensor) -> Tuple[Tensor, Tuple[Tensor, Tensor]]:
hx, cx = hidden
outputs = []
inputs = input.unbind(0)
hy, cy = hx[0], cx[0]
for seq_idx in range(len(inputs)):
hy, cy = cell(inputs[seq_idx], (hy, cy), wih, whh, bih, bhh)
outputs += [hy]
return torch.stack(outputs), (hy.unsqueeze(0), cy.unsqueeze(0))
if script:
cell = torch.jit.script(cell)
dynamic_rnn = torch.jit.script(dynamic_rnn)
return dynamic_rnn
# premul: we're going to premultiply the inputs & weights
def lstm_factory_premul(premul_cell, script):
def dynamic_rnn(input: Tensor, hidden: Tuple[Tensor, Tensor], wih: Tensor, whh: Tensor,
bih: Tensor, bhh: Tensor) -> Tuple[Tensor, Tuple[Tensor, Tensor]]:
hx, cx = hidden
outputs = []
inputs = torch.matmul(input, wih.t()).unbind(0)
hy, cy = hx[0], cx[0]
for seq_idx in range(len(inputs)):
hy, cy = premul_cell(inputs[seq_idx], (hy, cy), whh, bih, bhh)
outputs += [hy]
return torch.stack(outputs), (hy.unsqueeze(0), cy.unsqueeze(0))
if script:
premul_cell = torch.jit.script(premul_cell)
dynamic_rnn = torch.jit.script(dynamic_rnn)
return dynamic_rnn
# premul: we're going to premultiply the inputs & weights, and add bias
def lstm_factory_premul_bias(premul_cell, script):
def dynamic_rnn(input: Tensor, hidden: Tuple[Tensor, Tensor], wih: Tensor, whh: Tensor,
bih: Tensor, bhh: Tensor) -> Tuple[Tensor, Tuple[Tensor, Tensor]]:
hx, cx = hidden
outputs = []
inpSize = input.size()
# add bias for all timesteps instead of going step-by-step, results in a single reduction kernel in the backward
# FIXME matmul(x,y) + bias currently goes through jit AD, and backward formula in AD is not optimized for this
# case. Workaround with mm and views.
inpSize = input.size()
inputs = torch.mm(input.view(-1, inpSize[2]), wih.t()) + bih
inputs = inputs.view(inpSize[0], inpSize[1], -1).unbind(0)
hy, cy = hx[0], cx[0]
for seq_idx in range(len(inputs)):
hy, cy = premul_cell(inputs[seq_idx], (hy, cy), whh, bhh)
outputs += [hy]
return torch.stack(outputs), (hy.unsqueeze(0), cy.unsqueeze(0))
if script:
premul_cell = torch.jit.script(premul_cell)
dynamic_rnn = torch.jit.script(dynamic_rnn)
return dynamic_rnn
# simple: flat inputs (no tuples), no list to accumulate outputs
# useful mostly for benchmarking older JIT versions
def lstm_factory_simple(cell, script):
def dynamic_rnn(input, hx, cx, wih, whh, bih, bhh):
hy = hx # for scoping
cy = cx # for scoping
inputs = input.unbind(0)
for seq_idx in range(len(inputs)):
hy, cy = cell(inputs[seq_idx], hy, cy, wih, whh, bih, bhh)
return hy, cy
if script:
cell = torch.jit.script(cell)
dynamic_rnn = torch.jit.script(dynamic_rnn)
return dynamic_rnn
def lstm_factory_multilayer(cell, script):
def dynamic_rnn(input: Tensor, hidden: Tuple[Tensor, Tensor], params: List[Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]]:
params_stride = 4 # NB: this assumes that biases are there
hx, cx = hidden
hy, cy = hidden # for scoping...
inputs, outputs = input.unbind(0), []
for layer in range(hx.size(0)):
hy = hx[layer]
cy = cx[layer]
base_idx = layer * params_stride
wih = params[base_idx]
whh = params[base_idx + 1]
bih = params[base_idx + 2]
bhh = params[base_idx + 3]
for seq_idx in range(len(inputs)):
hy, cy = cell(inputs[seq_idx], (hy, cy), wih, whh, bih, bhh)
outputs += [hy]
inputs, outputs = outputs, []
return torch.stack(inputs), (hy.unsqueeze(0), cy.unsqueeze(0))
if script:
cell = torch.jit.script(cell)
dynamic_rnn = torch.jit.script(dynamic_rnn)
return dynamic_rnn