| #include "caffe2/operators/logit_op.h" |
| |
| #include "caffe2/core/context_gpu.h" |
| |
| namespace caffe2 { |
| |
| namespace { |
| |
| template <typename T> |
| __global__ void LogitKernel(const int N, const T* X, const float eps, T* Y) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| Y[i] = fminf(X[i], (T(1) - eps)); |
| Y[i] = fmaxf(Y[i], eps); |
| Y[i] = logf(Y[i] / (T(1) - Y[i])); |
| } |
| } |
| |
| template <typename T> |
| __global__ void LogitGradientKernel( |
| const int N, |
| const T* X, |
| const T* dY, |
| const float eps, |
| T* dX) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| dX[i] = (X[i] < eps || X[i] > T(1) - eps) ? T(0) |
| : (dY[i] / X[i] / (T(1) - X[i])); |
| } |
| } |
| |
| } // namespace |
| |
| template <> |
| template <typename T> |
| bool LogitFunctor<CUDAContext>:: |
| operator()(const int N, const T* X, T* Y, CUDAContext* context) const { |
| LogitKernel<T> |
| <<<CAFFE_GET_BLOCKS(N), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context->cuda_stream()>>>(N, X, eps_, Y); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| |
| return true; |
| } |
| |
| template <> |
| bool LogitGradientOp<float, CUDAContext>::RunOnDevice() { |
| auto& X = Input(0); |
| auto& dY = Input(1); |
| auto* dX = Output(0); |
| dX->ResizeLike(X); |
| int n = X.size(); |
| LogitGradientKernel<<< |
| CAFFE_GET_BLOCKS(n), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context_.cuda_stream()>>>( |
| n, |
| X.data<float>(), |
| dY.data<float>(), |
| eps_, |
| dX->template mutable_data<float>()); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| |
| return true; |
| } |
| |
| REGISTER_CUDA_OPERATOR( |
| Logit, |
| UnaryElementwiseWithArgsOp< |
| TensorTypes<float>, |
| CUDAContext, |
| LogitFunctor<CUDAContext>>); |
| REGISTER_CUDA_OPERATOR(LogitGradient, LogitGradientOp<float, CUDAContext>); |
| |
| } // namespace caffe2 |