blob: 459a0529901dcf29be36236c4c8b46ab0c5d8303 [file] [log] [blame]
# Owner(s): ["oncall: distributed"]
import copy
import os
import pickle
import sys
import tempfile
import threading
import time
from contextlib import suppress
from datetime import timedelta
from itertools import product
from sys import platform
from typing import Callable
import torch
import torch.distributed as dist
if not dist.is_available():
print("distributed package not available, skipping tests", file=sys.stderr)
sys.exit(0)
import torch.distributed.distributed_c10d as c10d
import torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook as powerSGD
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.distributed._spmd.comm_tensor import _wait_comm, CommTensor
from torch.fx.experimental.proxy_tensor import make_fx
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
TestCase,
load_tests,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
instantiate_parametrized_tests,
parametrize
)
from torch.utils.checkpoint import checkpoint
if TEST_WITH_DEV_DBG_ASAN:
print("Multiprocessing spawn is not compatible with dev/dbg asan", file=sys.stderr)
sys.exit(0)
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
if platform == "darwin":
LOOPBACK = "lo0"
else:
LOOPBACK = "lo"
torch.backends.cuda.matmul.allow_tf32 = False
def gpus_for_rank(world_size):
"""Multigpu tests are designed to simulate the multi nodes with multi
GPUs on each node. Nccl backend requires equal #GPUs in each process.
On a single node, all visible GPUs are evenly
divided to subsets, each process only uses a subset.
"""
visible_devices = list(range(torch.cuda.device_count()))
gpus_per_process = torch.cuda.device_count() // world_size
gpus_for_rank = []
for rank in range(world_size):
gpus_for_rank.append(
visible_devices[rank * gpus_per_process : (rank + 1) * gpus_per_process]
)
return gpus_for_rank
class AbstractTimeoutTest(object):
def _test_store_timeout(self, backend, init_method, c2p):
try:
dist.init_process_group(
backend=backend,
init_method=init_method,
world_size=1,
rank=0,
timeout=timedelta(seconds=1),
)
default_store = c10d._get_default_store()
tik = time.time()
with self.assertRaisesRegex(RuntimeError, "Timeout"):
default_store.get("nonexistent key")
tok = time.time()
dist.destroy_process_group()
c2p.append(float(tok - tik))
except RuntimeError as e:
# catch "Address already in use" error and report it to the main
# thread
c2p.append(e)
def _init_methods(self):
f = tempfile.NamedTemporaryFile(delete=False)
if sys.platform == "win32":
yield "file:///%s" % f.name.replace("\\", "/")
f.close()
else:
yield "file://%s" % f.name
f.close()
yield "tcp://127.0.0.1:%d" % common.find_free_port()
def _test_default_store_timeout(self, backend):
for init_method in self._init_methods():
c2p = []
t = threading.Thread(
target=self._test_store_timeout, args=(backend, init_method, c2p)
)
t.daemon = True
t.start()
t.join(5)
self.assertEqual(1, len(c2p))
if isinstance(c2p[0], float):
# waiting time should be 1s, use 3s to rule out false alarm
self.assertGreater(3, c2p[0])
elif isinstance(c2p[0], RuntimeError):
# let @retry_on_connect_failures handle the error
raise c2p[0]
else:
raise RuntimeError("Unexpected type {}".format(type(c2p[0])))
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(2, 10, bias=False)
self.fc2 = nn.Linear(10, 50, bias=False)
self.fc3 = nn.Linear(50, 4, bias=False)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return F.softmax(x, dim=1)
class DoubleGpuNet(nn.Module):
def __init__(self, gpus):
super(DoubleGpuNet, self).__init__()
self.fc1 = nn.Linear(2, 10, bias=False).to(gpus[0])
self.fc2 = nn.Linear(10, 50, bias=False).to(gpus[1])
self.fc3 = nn.Linear(50, 4, bias=False).to(gpus[1])
self.relu = nn.ReLU()
self.no_grad_param = nn.Parameter(
torch.tensor([2, 2]).long(), requires_grad=False
).to(gpus[0])
def forward(self, x):
dev0 = self.fc1.weight.device
dev1 = self.fc2.weight.device
x = self.relu(self.fc1(x.to(dev0)))
x = self.relu(self.fc2(x.to(dev1)))
x = self.fc3(x)
return F.softmax(x, dim=1).to(dev0)
class QuadraGpuNet(nn.Module):
def __init__(self, gpus):
super(QuadraGpuNet, self).__init__()
self.fc1 = nn.Linear(2, 10, bias=False).to(gpus[0])
self.fc2 = nn.Linear(10, 50, bias=False).to(gpus[1])
self.fc3 = nn.Linear(50, 4, bias=False).to(gpus[2])
self.fc4 = nn.Linear(4, 4, bias=False).to(gpus[3])
self.relu = nn.ReLU()
self.no_grad_param = nn.Parameter(
torch.tensor([2, 2]).long(), requires_grad=False
).to(gpus[0])
def forward(self, x):
dev0 = self.fc1.weight.device
dev1 = self.fc2.weight.device
dev2 = self.fc3.weight.device
dev3 = self.fc4.weight.device
x = self.relu(self.fc1(x.to(dev0)))
x = self.relu(self.fc2(x.to(dev1)))
x = self.relu(self.fc3(x.to(dev2)))
x = self.fc4(x.to(dev3))
return F.softmax(x, dim=1).to(dev0)
class ConvNet(nn.Module):
def __init__(self, gpus, layouts, dtypes):
super(ConvNet, self).__init__()
self.dtypes = dtypes
if isinstance(gpus, list):
self.layer_gpus = gpus
else:
gpus = [gpus] * 4
self.conv0 = torch.nn.Conv2d(8, 16, (2, 2)).to(
device=gpus[0], memory_format=layouts[0], dtype=dtypes[0]
)
self.conv1 = torch.nn.Conv2d(16, 32, (2, 2)).to(
device=gpus[1], memory_format=layouts[1], dtype=dtypes[1]
)
self.conv2 = torch.nn.Conv2d(32, 16, (2, 2)).to(
device=gpus[2], memory_format=layouts[2], dtype=dtypes[2]
)
self.conv3 = torch.nn.Conv2d(16, 8, (2, 2)).to(
device=gpus[3], memory_format=layouts[3], dtype=dtypes[3]
)
def forward(self, x):
x = x.to(self.dtypes[0])
# Could say
# x = self.conv0(x).to(device=self.conv1.weight.device, dtype=self.dtypes[1])
# etc. But I don't want to appeal to the weights' devices directly, because part of this test's purpose
# is to verify weights are where expected if the model gets replicated.
gpus = self.layer_gpus if hasattr(self, "layer_gpus") else [x.device] * 4
x = self.conv0(x).to(device=gpus[1], dtype=self.dtypes[1])
x = self.conv1(x).to(device=gpus[2], dtype=self.dtypes[2])
x = self.conv2(x).to(device=gpus[3], dtype=self.dtypes[3])
return self.conv3(x)
class Task(nn.Module):
def __init__(self):
super().__init__()
self.p = nn.Parameter(torch.ones(2, 2))
def forward(self, x):
return self.p + x
class ModuleForDdpCommHook(nn.Module):
def __init__(self):
super().__init__()
self.t0 = Task()
def forward(self, x, rank):
return self.t0(x + rank)
class SparseGradientModule(nn.Module):
def __init__(self):
super(SparseGradientModule, self).__init__()
self.embedding = nn.EmbeddingBag(10, 10, sparse=True)
def forward(self, x):
return F.softmax(self.embedding(x), dim=1)
class CommonDistributedDataParallelTest(object):
def tearDown(self):
# DistributedDataParallel test doesn't seem to call FileStore destructor
# TODO: investigate this test and the test is known to have issues
# Use this hack to remove files for that test
try:
os.remove(self.file_name)
except OSError:
pass
@property
def world_size(self):
return 2
def _prepare_single_device_module(
self,
process_group,
devices,
device_ids,
global_batch_size,
gradient_as_bucket_view=False,
):
model = Net()
device = devices[0] if devices else torch.device("cuda:%d" % self.rank)
ddp_model = DistributedDataParallel(
copy.deepcopy(model).to(device),
device_ids=device_ids,
process_group=process_group,
bucket_cap_mb=0.001,
gradient_as_bucket_view=gradient_as_bucket_view,
)
model.to(device)
input = torch.randn(global_batch_size, 2).to(device)
target = torch.randn(global_batch_size, 4).to(device)
return model, ddp_model, input, target
def _prepare_multi_device_module(
self,
process_group,
devices,
device_ids,
global_batch_size,
gradient_as_bucket_view=False,
):
self.assertTrue(
len(devices) == 2 or len(devices) == 4,
"unexpected devices for ddp tests {}".format(devices),
)
if len(devices) == 2:
model = DoubleGpuNet(devices)
elif len(devices) == 4:
model = QuadraGpuNet(devices)
ddp_model = DistributedDataParallel(
copy.deepcopy(model),
device_ids=device_ids,
process_group=process_group,
bucket_cap_mb=0.001,
gradient_as_bucket_view=gradient_as_bucket_view,
)
input = torch.randn(global_batch_size, 2).cuda(devices[0])
target = torch.randn(global_batch_size, 4)
return model, ddp_model, input, target
def _get_store(self):
return dist.FileStore(self.file_name, self.world_size)
def _get_process_group(self):
raise NotImplementedError("To be implemented by child class")
def _train_model(self, model, input_var, target, loss, run_checkpoint=False, use_reentrant=True):
model.train()
if run_checkpoint:
output = checkpoint(model, input_var, use_reentrant=use_reentrant)
else:
output = model(input_var)
l = loss(output, target)
l.backward()
def _test_ddp_checkpointing(
self,
input_model,
process_group,
use_bucket_view,
find_unused_parameters=False,
static_graph=False,
run_checkpoint=False,
use_reentrant=True,
allow_none_grads=False,
):
# to reproduce the same training results
torch.cuda.set_device(self.rank)
torch.manual_seed(31415)
model = copy.deepcopy(input_model).cuda()
ddp_model = copy.deepcopy(input_model).cuda()
ddp_model = nn.parallel.DistributedDataParallel(
ddp_model,
bucket_cap_mb=1,
gradient_as_bucket_view=use_bucket_view,
device_ids=[self.rank],
process_group=process_group,
find_unused_parameters=find_unused_parameters,
static_graph=static_graph,
)
self.assertEqual(
ddp_model._get_ddp_logging_data().get("static_graph", 0), static_graph
)
input, ddp_input, target, ddp_target = self._prepare_dummy_data()
loss = nn.MSELoss()
n_iters = 5
for i in range(n_iters):
model.zero_grad(set_to_none=False)
ddp_model.zero_grad(set_to_none=False)
self._train_model(model, input, target, loss, run_checkpoint=run_checkpoint, use_reentrant=use_reentrant)
self._train_model(
ddp_model, ddp_input, ddp_target, loss, run_checkpoint=run_checkpoint, use_reentrant=use_reentrant
)
for i, j in zip(model.parameters(), ddp_model.parameters()):
if not allow_none_grads:
self.assertTrue(i.grad is not None)
self.assertTrue(j.grad is not None)
self.assertEqual(i.grad, j.grad, rtol=1.3e-06, atol=5e-5)
# A list of tests for ddp with activation checkpointing
# when gradient_as_bucket_view=True, False.
# Most of the tests are referred to
# https://github.com/facebookresearch/fairscale/blob/main/tests/nn/pipe/test_checkpoint_ddp.py
class CheckpointOnceModule(nn.Module):
"""
Runs checkpoint for a single layer in the model.
"""
def __init__(self, use_reentrant=True):
super().__init__()
self.l1 = nn.Linear(20, 20)
self.l2 = nn.Linear(20, 20)
self.use_reentrant = use_reentrant
def forward(self, inp):
x = self.l1(inp)
x = checkpoint(self.l2, x, use_reentrant=self.use_reentrant)
return x
class CheckpointTwiceModule(CheckpointOnceModule):
"""
Runs checkpoint for the same layer twice in a model. This simulates use
cases such as pipeline parallel where the same layer can be checkpointed
more than one time.
"""
def __init__(self, use_reentrant=True):
super().__init__(use_reentrant=use_reentrant)
def forward(self, inp):
x = self.l1(inp)
x = checkpoint(self.l2, x, use_reentrant=self.use_reentrant)
x = checkpoint(self.l2, x, use_reentrant=self.use_reentrant)
return x
class CheckpointTwiceModuleWeightSharing(CheckpointTwiceModule):
"""
Similar to CheckpointTwiceModule but the weights are shared.
"""
def __init__(self, use_reentrant=True):
super().__init__(use_reentrant=use_reentrant)
# Share weights
self.l1.weight = self.l2.weight
def forward(self, inp):
x = self.l1(inp)
x = checkpoint(self.l2, x, use_reentrant=self.use_reentrant)
x = checkpoint(self.l2, x, use_reentrant=self.use_reentrant)
return x
class DynamicCheckpointTwiceModule(CheckpointTwiceModule):
def __init__(self, use_reentrant=True):
super().__init__(use_reentrant=use_reentrant)
self.count = 0
def forward(self, inp):
if self.count % 2:
x = checkpoint(self.l1, inp, use_reentrant=self.use_reentrant)
else:
x = checkpoint(self.l2, inp, use_reentrant=self.use_reentrant)
self.count += 1
return x
class DynamicCheckpointTwiceModuleWeightSharing(DynamicCheckpointTwiceModule):
def __init__(self, use_reentrant=True):
super().__init__(use_reentrant=use_reentrant)
# Share weights
self.l1.weight = self.l2.weight
def _prepare_dummy_data(self):
ddp_bs = 16
bs = ddp_bs * self.world_size
input = torch.rand((bs, 20), device="cuda", requires_grad=True)
target = torch.randn((bs, 20), device="cuda")
offset = self.rank * ddp_bs
ddp_input = input[offset : offset + ddp_bs]
ddp_target = target[offset : offset + ddp_bs]
return input, ddp_input, target, ddp_target
@skip_if_lt_x_gpu(2)
@parametrize("use_reentrant", [True, False])
def test_ddp_checkpointing_once(self, use_reentrant):
"""
DDP works as expected when layer is checkpointed only once.
"""
process_group = self._get_process_group()
for use_bucket_view, static_graph in product((False, True), (False, True)):
self._test_ddp_checkpointing(
self.CheckpointOnceModule(use_reentrant=use_reentrant),
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=static_graph,
)
if static_graph:
# find_unused_parameters does not make a difference, since it is
# ignored for static graph.
self._test_ddp_checkpointing(
self.CheckpointOnceModule(),
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=static_graph,
find_unused_parameters=True,
)
@skip_if_lt_x_gpu(2)
@parametrize("use_reentrant", [True, False])
def test_ddp_checkpointing_unused_params(self, use_reentrant):
"""
With reentrant autograd checkpointing impl, DDP will fail when there are
unused params in the model and no static graph training. With
non-reentrant checkpointing implementation, this works as expected.
"""
process_group = self._get_process_group()
for use_bucket_view in (True, False):
err_ctx = (
suppress() if not use_reentrant else
self.assertRaisesRegex(
RuntimeError,
"Expected to mark a variable ready only once."
)
)
with err_ctx:
model = self._test_ddp_checkpointing(
self.CheckpointOnceModule(use_reentrant=use_reentrant),
process_group=process_group,
use_bucket_view=use_bucket_view,
find_unused_parameters=True,
)
# test passes when static_graph is true
model = self._test_ddp_checkpointing(
self.CheckpointOnceModule(use_reentrant=use_reentrant),
process_group=process_group,
use_bucket_view=use_bucket_view,
find_unused_parameters=True,
static_graph=True,
)
@skip_if_lt_x_gpu(2)
@parametrize("use_reentrant", [True, False])
def test_ddp_checkpointing_twice(self, use_reentrant):
"""
Checkpoitning twice fails for non-static graph with reentrant checkpoint
implementation, succeeds with non-reentrant checkpoint implementation.
"""
process_group = self._get_process_group()
for use_bucket_view in (True, False):
err_ctx = (
suppress() if not use_reentrant else
self.assertRaisesRegex(
RuntimeError,
"Expected to mark a variable ready only once."
)
)
with err_ctx:
model = self._test_ddp_checkpointing(
self.CheckpointTwiceModule(use_reentrant=use_reentrant),
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=False,
)
with err_ctx:
model = self._test_ddp_checkpointing(
self.CheckpointTwiceModule(use_reentrant=use_reentrant),
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=False,
find_unused_parameters=True,
)
@skip_if_lt_x_gpu(2)
@parametrize("use_reentrant", [True, False])
def test_ddp_checkpointing_twice_static_graph(self, use_reentrant):
"""
Regardless of reentrant or non-reentrant checkpointing impl,
checkpointing twice works with static graph enabled.
"""
process_group = self._get_process_group()
for use_bucket_view in (True, False):
# Test passes when static_graph=True.
model = self._test_ddp_checkpointing(
self.CheckpointTwiceModule(use_reentrant=use_reentrant),
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=True,
)
@skip_if_lt_x_gpu(2)
def test_ddp_checkpointing_dynamic_module(self):
"""
Dynamic module can be checkpointed, multiple times, with non-reentrant
checkpointing implementation.
"""
process_group = self._get_process_group()
for use_bucket_view in (True, False):
model = self._test_ddp_checkpointing(
self.DynamicCheckpointTwiceModule(use_reentrant=False),
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=False,
find_unused_parameters=True,
# Grads can be none sometimes due to dynamic module not using
# all params.
allow_none_grads=True
)
@skip_if_lt_x_gpu(2)
def test_ddp_checkpointing_dynamic_weight_sharing(self):
"""
Dynamic module can be checkpointed multiple times with weight sharing
using non-reentrant checkpointing implementation.
"""
process_group = self._get_process_group()
for use_bucket_view in (True, False):
model = self._test_ddp_checkpointing(
self.DynamicCheckpointTwiceModuleWeightSharing(use_reentrant=False),
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=False,
find_unused_parameters=True,
# Grads can be none sometimes due to dynamic module not using
# all params.
allow_none_grads=True
)
# DDP works as expected if there is weight sharing among layers
@skip_if_lt_x_gpu(2)
@parametrize("use_reentrant", [True, False])
def test_ddp_checkpointing_weight_sharing(self, use_reentrant):
"""
Test that checkpointing with weight sharing works.
"""
process_group = self._get_process_group()
torch.cuda.set_device(self.rank)
for use_bucket_view, static_graph in product((False, True), (False, True)):
torch.manual_seed(31415)
l1 = nn.Linear(20, 20)
l2 = nn.Linear(20, 20)
l1.weight = l2.weight
model = nn.Sequential(l1, l2)
# TODO: non-reentrant based checkpointing of DDP module with
# static_graph runs into the below issue, see
# https://github.com/pytorch/pytorch/issues/70865 and
# https://github.com/pytorch/pytorch/issues/58111 for details.
err_ctx = (
self.assertRaisesRegex(
RuntimeError,
"Your training graph has changed in this iteration"
) if static_graph and not use_reentrant else suppress()
)
with err_ctx:
self._test_ddp_checkpointing(
model,
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=static_graph,
run_checkpoint=True,
use_reentrant=use_reentrant,
)
@skip_if_lt_x_gpu(2)
def test_ddp_checkpointing_twice_weight_sharing(self):
"""
Checkpointing should work with static graph in the case of checkpointing
same layer twice and having weights shared acrosss layers.
"""
process_group = self._get_process_group()
torch.cuda.set_device(self.rank)
for use_bucket_view in (True, False):
model = self._test_ddp_checkpointing(
self.CheckpointTwiceModuleWeightSharing(),
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=True,
)
def test_invalid_powerSGD_state(self):
for start_powerSGD_iter, use_error_feedback, warm_start in product(
[0, 1], [True, False], [True, False]
):
if not use_error_feedback and not warm_start:
continue
with self.assertRaisesRegex(
ValueError,
"Expect `start_powerSGD_iter` > 1 if `use_error_feedback` or `warm_start` is enabled, "
"because PowerSGD can only be applied after the first two iterations in DDP.",
):
state = powerSGD.PowerSGDState(
process_group=None,
matrix_approximation_rank=1,
start_powerSGD_iter=start_powerSGD_iter,
use_error_feedback=use_error_feedback,
warm_start=warm_start,
)
def _test_ddp_with_process_group(
self,
process_group,
devices,
device_ids,
multi_device=False,
gradient_as_bucket_view=False,
):
"""
Note: we pass down `device_ids` all the way to DistributedDataParallel
as part of the test. Below you find tests that either use a list of
integers, a list of `torch.Device` instances, or an empty list.
The `devices` argument is used to control placement of the model and
must always be specified as list of `torch.Device` instances.
"""
local_batch_size = 1 if devices is None else len(devices)
global_batch_size = self.world_size * local_batch_size
if multi_device:
model, ddp_model, input, target = self._prepare_multi_device_module(
process_group,
devices,
device_ids,
global_batch_size,
gradient_as_bucket_view,
)
ddp_logging_data = ddp_model._get_ddp_logging_data()
self.assertTrue(ddp_logging_data.get("is_multi_device_module"))
else:
model, ddp_model, input, target = self._prepare_single_device_module(
process_group,
devices,
device_ids,
global_batch_size,
gradient_as_bucket_view,
)
ddp_logging_data = ddp_model._get_ddp_logging_data()
self.assertFalse(ddp_logging_data.get("is_multi_device_module"))
def step_model(model, input, target):
model.train()
output = model(input)
loss = F.mse_loss(output, target.to(output.device))
loss.backward()
def update_parameters(model):
for param in model.parameters():
with torch.no_grad():
param -= param.grad
param.grad = None
# check two model parameters over 2 iterations
for iteration in range(2):
# single cpu/gpu training
step_model(model, input, target)
# DDP training, DDP scatters subsets of input_cpu to nodes/GPUs
step_model(
ddp_model,
input[
self.rank * local_batch_size : (self.rank + 1) * local_batch_size
],
target[
self.rank * local_batch_size : (self.rank + 1) * local_batch_size
],
)
# Update weights and run a second iteration to shake out errors
update_parameters(model)
update_parameters(ddp_model)
self.assertEqual(
len(list(model.parameters())), len(list(ddp_model.parameters()))
)
for i, j in zip(model.parameters(), ddp_model.parameters()):
self.assertEqual(i, j, rtol=1.3e-06, atol=5e-5)
# Shuffle the input so that DDP input is different
torch.manual_seed(1337 + iteration)
input = input[torch.randperm(global_batch_size)]
def _gpu_model_with_ddp_comm_hook(
self, process_group, hook=None, gradient_as_bucket_view=False, state=None
):
device_id = gpus_for_rank(self.world_size)[self.rank][0]
gpu_model = DistributedDataParallel(
ModuleForDdpCommHook().to(device_id),
device_ids=[device_id],
process_group=process_group,
gradient_as_bucket_view=gradient_as_bucket_view,
)
# Register a DDP communication hook if any.
if hook is not None:
gpu_model.register_comm_hook(state, hook)
return gpu_model
def _gpu_model_with_builtin_ddp_comm_hook(
self, process_group, hook=None, gradient_as_bucket_view=False
):
device_id = gpus_for_rank(self.world_size)[self.rank][0]
gpu_model = DistributedDataParallel(
ModuleForDdpCommHook().to(device_id),
device_ids=[device_id],
process_group=process_group,
gradient_as_bucket_view=gradient_as_bucket_view,
)
# Register a built-in DDP communication hook if defined
if hook is not None:
gpu_model._register_builtin_comm_hook(hook)
return gpu_model
def _run_and_verify_hook(self, model, input, expected_grad):
# Run forward
output = model(input, self.rank)
# Run backward
output.mean().backward()
[self.assertEqual(p.grad, expected_grad) for p in model.parameters()]
def _simple_hook(
self, state: object, bucket: dist.GradBucket
) -> torch.futures.Future[torch.Tensor]:
fut = torch.futures.Future()
fut.set_result(torch.ones_like(bucket.buffer()))
def fut_then(fut):
# Add ones to fut's result.
t = fut.value()
return t + torch.ones_like(t)
return fut.then(fut_then)
def _test_not_nan(self, model, x):
y = model(x)
self.assertFalse(y.isnan().any().item())
y.sum().backward()
for p in model.parameters():
self.assertFalse(p.grad.isnan().any().item())
@skip_if_lt_x_gpu(2)
def test_sync_batch_norm_only_empty_input(self):
pg = self._get_process_group()
model = torch.nn.Sequential(
nn.BatchNorm2d(2),
).to(device=self.rank)
model = DistributedDataParallel(
model,
device_ids=[self.rank],
process_group=pg,
)
model = nn.SyncBatchNorm.convert_sync_batchnorm(
model,
process_group=pg,
)
model.train()
# only rank 0 receives empty inputs
x = torch.zeros(
(1 if self.rank != 0 else 0, 2, 11, 13),
dtype=torch.float32,
device=self.rank
)
# input requires grad, this will trigger the collective communication
# in the backward pass
x.requires_grad = True
self._test_not_nan(model, x)
# input does not requires grad
x.requires_grad = False
self._test_not_nan(model, x)
# all ranks receive empty inputs
x = torch.zeros(
(0, 2, 11, 13),
dtype=torch.float32,
device=self.rank
)
# input requires grad, this will trigger the collective communication
# in the backward pass
x.requires_grad = True
self._test_not_nan(model, x)
# input does not requires grad
x.requires_grad = False
self._test_not_nan(model, x)
@skip_if_lt_x_gpu(2)
def test_sync_batch_norm_empty_input(self):
pg = self._get_process_group()
model = torch.nn.Sequential(
nn.Conv2d(2, 2, 3),
nn.BatchNorm2d(2),
nn.Linear(28, 2),
).to(device=self.rank)
model = DistributedDataParallel(
model,
device_ids=[self.rank],
process_group=pg,
)
model = nn.SyncBatchNorm.convert_sync_batchnorm(
model,
process_group=pg,
)
model.train()
# only rank 0 receives empty inputs
x = torch.zeros(
(3 if self.rank != 0 else 0, 2, 30, 30),
dtype=torch.float32,
device=self.rank
)
self._test_not_nan(model, x)
# all ranks receive empty inputs
x = torch.zeros(
(0, 2, 30, 30),
dtype=torch.float32,
device=self.rank
)
self._test_not_nan(model, x)
class ComputeBucketAssignmentTest(TestCase):
def test_single_limit_single_dtype(self):
tensors = [
torch.empty([100], dtype=torch.float),
torch.empty([200], dtype=torch.float),
torch.empty([100], dtype=torch.float),
torch.empty([50], dtype=torch.float),
]
result, per_bucket_size_limits = dist._compute_bucket_assignment_by_size(
tensors, [400]
)
self.assertTrue(all(size_lim == 400 for size_lim in per_bucket_size_limits))
self.assertEqual([[0], [1], [2], [3]], result)
def test_single_limit_multi_dtype(self):
tensors = [
torch.empty([50], dtype=torch.float),
torch.empty([25], dtype=torch.double),
torch.empty([50], dtype=torch.float),
torch.empty([25], dtype=torch.double),
torch.empty([50], dtype=torch.float),
torch.empty([25], dtype=torch.double),
]
result, per_bucket_size_limits = dist._compute_bucket_assignment_by_size(
tensors, [400]
)
self.assertTrue(all(size_lim == 400 for size_lim in per_bucket_size_limits))
self.assertEqual([[0, 2], [1, 3], [4], [5]], result)
def test_multi_limit_single_dtype(self):
tensors = [
torch.empty([10], dtype=torch.float),
torch.empty([10], dtype=torch.float),
torch.empty([10], dtype=torch.float),
torch.empty([10], dtype=torch.float),
]
result, per_bucket_size_limits = dist._compute_bucket_assignment_by_size(
tensors, [40, 80]
)
self.assertEqual(per_bucket_size_limits, [40, 80, 80])
self.assertEqual([[0], [1, 2], [3]], result)
def test_multi_limit_multi_dtype(self):
tensors = [
torch.empty([50], dtype=torch.float),
torch.empty([25], dtype=torch.double),
torch.empty([50], dtype=torch.float),
torch.empty([25], dtype=torch.double),
torch.empty([50], dtype=torch.float),
torch.empty([25], dtype=torch.double),
]
result, per_bucket_size_limits = dist._compute_bucket_assignment_by_size(
tensors, [200, 400]
)
self.assertEqual([[0], [1], [2, 4], [3, 5]], result)
self.assertEqual(per_bucket_size_limits, [200, 200, 400, 400])
class AbstractCommTest(object):
@property
def op_timeout_sec(self):
return 1
@property
def world_size(self):
return 2
@property
def device(self):
self.fail("test subclass didn't override device")
def _verify_sequence_number_across_pg(self, pg, verify_pg):
seq_num = pg._get_sequence_number_for_group()
obj_list = [None for _ in range(dist.get_world_size(verify_pg))]
# We use a separate pg to verify the sequence numbers, otherwise these
# collectives will themselves increment the sequence number.
dist.all_gather_object(obj_list, seq_num, group=verify_pg)
self.assertEqual(len(set(obj_list)), 1)
return obj_list[0]
def _test_sequence_num_incremented(self, process_group, ranks):
# verify initial sequence numbers. Use a distinct process group for
# verification to keep counts as expected with respect to process_group.
verify_pg = dist.new_group(
ranks=ranks,
backend="gloo",
)
assert dist.get_world_size(process_group) == dist.get_world_size(verify_pg)
initial_num = (
self._verify_sequence_number_across_pg(
pg=process_group, verify_pg=verify_pg
)
if not c10d._rank_not_in_group(process_group)
else -1
)
# Verify sequence numbers are appropriately incremented
for i in range(10):
t = torch.ones(1, device=torch.cuda.current_device())
dist.all_reduce(t, group=process_group)
if not c10d._rank_not_in_group(process_group):
seq_num = self._verify_sequence_number_across_pg(
pg=process_group,
verify_pg=verify_pg,
)
self.assertEqual(initial_num + i + 1, seq_num)
if dist.get_world_size(process_group) > 2:
# Test when certain ranks don't call collectives
if dist.get_rank(process_group) not in [0, 2]:
dist.all_reduce(t, group=process_group, async_op=True)
# Now ranks 0 and 2 should be lagging by 1.
if not c10d._rank_not_in_group(process_group):
seq_num = process_group._get_sequence_number_for_group()
rank = dist.get_rank(process_group)
obj_list = [None for _ in range(dist.get_world_size(verify_pg))]
dist.all_gather_object(obj_list, (rank, seq_num), group=verify_pg)
rank_to_seq_num = {rank: num for (rank, num) in obj_list}
self.assertEqual(len(set(rank_to_seq_num.values())), 2)
self.assertEqual(rank_to_seq_num[0], rank_to_seq_num[2])
expected_same = {
rank_to_seq_num[i]
for i in rank_to_seq_num.keys()
if i not in [0, 2]
}
self.assertEqual(len(expected_same), 1)
self.assertEqual(rank_to_seq_num[0] + 1, rank_to_seq_num[1])
def _test_sequence_num_incremented_default_group(self, backend_name):
torch.cuda.set_device(self.rank)
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend_name,
world_size=self.world_size,
rank=self.rank,
store=store,
)
self._test_sequence_num_incremented(
c10d._get_default_group(),
ranks=list(i for i in range(dist.get_world_size())),
)
def _test_sequence_num_incremented_subgroup(self, backend_name):
torch.cuda.set_device(self.rank)
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend_name,
world_size=self.world_size,
rank=self.rank,
store=store,
)
subgroup_ranks = [0, 1, 2]
subgroup = dist.new_group(subgroup_ranks)
self._test_sequence_num_incremented(subgroup, subgroup_ranks)
def _test_sequence_num_set_default_pg(self, backend):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend,
world_size=self.world_size,
rank=self.rank,
store=store,
)
default_pg = c10d._get_default_group()
seq_num = default_pg._get_sequence_number_for_group()
obj_list = [None for _ in range(dist.get_world_size())]
dist.all_gather_object(obj_list, seq_num)
self.assertEqual(len(set(obj_list)), 1)
def _test_sequence_num_set_new_group(self, backend):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend,
world_size=self.world_size,
rank=self.rank,
store=store,
)
subgroup = dist.new_group([0, 1])
if not c10d._rank_not_in_group(subgroup):
subgroup_seq = subgroup._get_sequence_number_for_group()
obj_list = [None for _ in range(dist.get_world_size(subgroup))]
dist.all_gather_object(obj_list, subgroup_seq, group=subgroup)
self.assertEqual(len(set(obj_list)), 1)
def _test_warn_not_in_group(self, backend):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend,
world_size=self.world_size,
rank=self.rank,
store=store,
)
in_group_ranks = list(filter(lambda x: x % 2 == 0, range(self.world_size)))
group = dist.new_group(in_group_ranks)
x = torch.zeros(2, 2).cuda(self.rank)
xs = [torch.zeros(2, 2).cuda(self.rank) for _ in range(len(in_group_ranks))]
if self.rank not in in_group_ranks:
msg = ".*{}.*does not belong to.*"
with self.assertWarnsOnceRegex(UserWarning, msg.format("all_gather")):
dist.all_gather(xs, x, group=group)
with self.assertWarnsOnceRegex(UserWarning, msg.format("all_reduce")):
dist.all_reduce(x, group=group)
with self.assertWarnsOnceRegex(UserWarning, msg.format("barrier")):
dist.barrier(group=group)
with self.assertWarnsOnceRegex(UserWarning, msg.format("broadcast")):
dist.broadcast(x, src=0, group=group)
else:
dist.all_gather(xs, x, group=group)
dist.all_reduce(x, group=group)
dist.barrier(group=group)
dist.broadcast(x, src=0, group=group)
def _test_rank_membership(self, backend):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend,
world_size=self.world_size,
rank=self.rank,
store=store,
)
self.assertTrue(self.world_size > 1)
group = dist.new_group(ranks=[1])
self.assertEqual(dist.get_group_rank(group, 1), 0)
with self.assertRaisesRegex(RuntimeError, "not part of group"):
dist.get_group_rank(group, 0)
with self.assertRaisesRegex(RuntimeError, "not registered"):
dist.get_group_rank(DummyProcessGroup(self.rank, self.world_size), 0)
self.assertEqual(dist.get_global_rank(group, 0), 1)
with self.assertRaisesRegex(RuntimeError, "not part of group"):
dist.get_global_rank(group, 1)
with self.assertRaisesRegex(RuntimeError, "not registered"):
dist.get_global_rank(DummyProcessGroup(self.rank, self.world_size), 0)
self.assertEqual(dist.get_process_group_ranks(group), [1])
def _test_tensor_dtype_mismatch(self, backend):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend,
world_size=self.world_size,
rank=self.rank,
store=store,
)
tensor = torch.ones(2, 2, device=self.device) * 7
tensor_h = tensor.half()
tensor_list = [torch.zeros(2, 2, device=self.device) for _ in range(self.world_size)]
tensor_list_h = list(tensor_list)
tensor_list_h[1] = tensor_list_h[1].half()
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.all_gather(tensor_list_h, tensor)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.all_gather(tensor_list, tensor_h)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.all_gather_coalesced([tensor_list_h], tensor_list)
dist.all_gather_coalesced([tensor_list], tensor_list_h)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.all_reduce_coalesced(tensor_list_h)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.reduce_scatter(tensor, tensor_list_h)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.reduce_scatter(tensor_h, tensor_list)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.all_to_all_single(tensor_h, tensor)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.all_to_all(tensor_list_h, tensor_list)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.all_to_all(tensor_list, tensor_list_h)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.scatter(tensor, tensor_list_h)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.gather(tensor_h, tensor_list)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.gather(tensor, tensor_list_h)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.scatter(tensor_h, tensor_list)
def _test_tensor_dtype_complex(self, backend):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend,
world_size=self.world_size,
rank=self.rank,
store=store,
)
tensor = torch.rand(2, device=self.device)
tensor_c = torch.view_as_complex(tensor)
tensor_list = [torch.rand(2, device=self.device) for _ in range(self.world_size)]
tensor_list_c = list(tensor_list)
tensor_list_c[1] = torch.view_as_complex(tensor_list_c[1])
dist.all_gather(tensor_list, tensor)
dist.all_gather(tensor_list, tensor_c)
dist.all_gather(tensor_list_c, tensor)
dist.all_gather(tensor_list_c, tensor_c)
class CommTest(AbstractCommTest, MultiProcessTestCase):
def setUp(self):
super(CommTest, self).setUp()
self._spawn_processes()
def tearDown(self):
super(CommTest, self).tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
def test_debug_level(self):
try:
del os.environ["TORCH_DISTRIBUTED_DEBUG"]
except KeyError:
pass
dist.set_debug_level_from_env()
# Default should be off
default_debug_mode = dist.get_debug_level()
self.assertEqual(default_debug_mode, dist.DebugLevel.OFF)
mapping = {
"OFF": dist.DebugLevel.OFF,
"off": dist.DebugLevel.OFF,
"oFf": dist.DebugLevel.OFF,
"INFO": dist.DebugLevel.INFO,
"info": dist.DebugLevel.INFO,
"INfO": dist.DebugLevel.INFO,
"DETAIL": dist.DebugLevel.DETAIL,
"detail": dist.DebugLevel.DETAIL,
"DeTaIl": dist.DebugLevel.DETAIL,
}
invalid_debug_modes = ["foo", 0, 1, -1]
for mode in mapping.keys():
os.environ["TORCH_DISTRIBUTED_DEBUG"] = str(mode)
dist.set_debug_level_from_env()
set_debug_mode = dist.get_debug_level()
self.assertEqual(
set_debug_mode,
mapping[mode],
f"Expected {mode} to map to {mapping[mode]} but got {set_debug_mode}",
)
for mode in invalid_debug_modes:
os.environ["TORCH_DISTRIBUTED_DEBUG"] = str(mode)
with self.assertRaisesRegex(RuntimeError, "The value of TORCH_DISTRIBUTED_DEBUG must"):
dist.set_debug_level_from_env()
class DummyWork(dist._Work):
def wait(self, timeout=5.0):
if torch.cuda.is_available():
torch.cuda.current_stream().synchronize()
return True
class DummyProcessGroup(dist.ProcessGroup):
def getBackendName(self):
return "Dummy"
def allgather(self, output_tensor_lists, input_tensor_list, opts=None):
for output_tensor_list, input_tensor in zip(output_tensor_lists, input_tensor_list):
for output_tensor in output_tensor_list:
output_tensor.copy_(input_tensor)
return DummyWork()
def allreduce(self, tensor_list, opts=None):
for tensor in tensor_list:
tensor.add_(2)
return DummyWork()
def barrier(self, opts=None):
store = c10d._get_default_store()
key = "TEST:DummyProcessGroup:barrier"
if self.rank() == 0:
worker_count = 0
# By default, TCPServer lives on rank 0. So rank 0 needs to make
# sure that it does not exit too early before other ranks finish
# using the store.
# Note that, _store_based_barrier does not solve this problem, as
# all ranks need to run at least one store.add(key, 0) before
# exiting, but there is no guarantee that rank 0 is still alive at
# that point.
while worker_count < self.size() - 1:
worker_count = store.add(key, 0)
else:
store.add(key, 1)
return DummyWork()
def broadcast(self, tensor_list, opts=None):
for tensor in tensor_list:
tensor.add_(1)
return DummyWork()
def reduce_scatter(self, output_tensor_list, input_tensor_lists, opts=None):
for output_tensor, input_tensor_list in zip(output_tensor_list, input_tensor_lists):
output_tensor.copy_(input_tensor_list[self.rank()])
return DummyWork()
def send(self, tensor_list, dst, tag=0):
for tensor in tensor_list:
tensor.add_(1)
return DummyWork()
def recv(self, tensor_list, src, tag=0):
for tensor in tensor_list:
tensor.add_(2)
return DummyWork()
class PythonProcessGroupExtensionTest(MultiProcessTestCase):
def setUp(self):
super(PythonProcessGroupExtensionTest, self).setUp()
self._spawn_processes()
def tearDown(self):
super(PythonProcessGroupExtensionTest, self).tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
def test_get_backend_name(self):
dpg = DummyProcessGroup(0, 1)
self.assertEqual("Dummy", dpg.name())
def test_backend_class_attr(self):
dist.Backend.register_backend(
"dummy",
PythonProcessGroupExtensionTest.create_dummy
)
self.assertEqual(dist.Backend.DUMMY, "DUMMY")
self.assertEqual(
dist.Backend._plugins["DUMMY"].creator_fn,
PythonProcessGroupExtensionTest.create_dummy
)
class Options:
def __init__(self):
pass
def create(self):
pass
@staticmethod
def create_dummy(store, group_rank, group_size, timeout):
return DummyProcessGroup(group_rank, group_size)
def test_collectives(self):
dist.Backend.register_backend("dummy", PythonProcessGroupExtensionTest.create_dummy)
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '6789'
dist.init_process_group("dummy", rank=self.rank, world_size=self.world_size)
# test all_gather
input_tensor = torch.ones(2, 2) * 7
output_tensor_list = [torch.zeros(2, 2) for _ in range(self.world_size)]
dist.all_gather(output_tensor_list, input_tensor)
for tensor in output_tensor_list:
self.assertEqual(tensor, input_tensor)
# test all_reduce
input_tensor = torch.ones(2, 2) * 7
dist.all_reduce(input_tensor)
self.assertEqual(input_tensor, torch.ones(2, 2) * 7 + 2)
# test broadcast
input_tensor = torch.zeros(2, 2)
dist.broadcast(input_tensor, 0, async_op=True).wait()
self.assertEqual(torch.ones(2, 2), input_tensor)
# test reduce_scatter
output_tensor = torch.zeros(2, 2)
input_tensor_list = [torch.ones(2, 2) for _ in range(self.world_size)]
dist.reduce_scatter(output_tensor, input_tensor_list)
self.assertEqual(output_tensor, torch.zeros(2, 2) + 1)
dist.barrier()
dist.destroy_process_group()
def test_send_recv(self):
dist.Backend.register_backend("dummy", PythonProcessGroupExtensionTest.create_dummy)
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '6789'
dist.init_process_group("dummy", rank=self.rank, world_size=self.world_size)
# test send
input_tensor = torch.zeros(2, 2)
dist.send(input_tensor, (self.rank + 1) % self.world_size)
self.assertEqual(input_tensor, torch.zeros(2, 2) + 1)
with self.assertRaises(ValueError):
dist.send(input_tensor, dist.get_rank())
# test recv
input_tensor = torch.zeros(2, 2)
dist.recv(input_tensor, (self.rank + 1) % self.world_size)
self.assertEqual(input_tensor, torch.zeros(2, 2) + 2)
dist.barrier()
# intentionally not calling into `destroy_process_group` as not all
# user applications would explicitly that.
instantiate_parametrized_tests(CommonDistributedDataParallelTest)
class ProcessGroupWithDispatchedCollectivesTests(MultiProcessTestCase):
@property
def world_size(self):
return 1
def setUp(self):
super(ProcessGroupWithDispatchedCollectivesTests, self).setUp()
self._spawn_processes()
def tearDown(self):
super(ProcessGroupWithDispatchedCollectivesTests, self).tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
def _call_collective_with_varying_tensors(self, backend, collective, *args):
# call collective with varying tensors to ensure that the tensors are
# correctly dispatched
# TODO: this will be updated in the future to not be backend specific
device = "cuda" if backend == "nccl" else "cpu"
# ensure supported devices (cpu, cuda) succeeds during dispatch call
tensor = torch.zeros(2, 2, device=torch.device(device))
# multi tensor collectives
if collective == dist.barrier:
collective()
elif collective in (dist.all_gather, dist.gather):
collective([tensor], tensor, *args)
elif collective == dist.scatter:
collective(tensor, [tensor], *args)
elif collective in (dist.reduce_scatter, dist.all_to_all):
# gloo does not support reduce_scatter or all_to_all
if backend != "gloo":
if collective == dist.reduce_scatter:
collective(tensor, [tensor], *args)
else:
collective([tensor], [tensor], *args)
else:
collective(tensor, *args)
# TODO: backend will be replaced with a non specified backend
def _test_collectives(self, backend):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend,
world_size=self.world_size,
rank=self.rank,
store=store,
)
collectives_and_args = [
(dist.reduce, self.rank),
(dist.broadcast, self.rank),
(dist.all_reduce,),
(dist.all_gather,),
(dist.reduce_scatter,),
(dist.barrier,),
(dist.all_to_all,),
(dist.scatter,),
]
for collective, *args in collectives_and_args:
with self.subTest(collective=collective, args=args):
self._call_collective_with_varying_tensors(backend, collective, *args)
def _test_allreduce_coalesced(self, backend):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend,
world_size=self.world_size,
rank=self.rank,
store=store,
)
# TODO: this will be updated in the future to not be backend specific
device = "cuda" if backend == "nccl" else "cpu"
tensors = [torch.ones(10, 10, device=torch.device(device))]
dist.all_reduce_coalesced(tensors, dist.ReduceOp.SUM)
for tensor in tensors:
self.assertEqual(tensor, torch.ones(10, 10) * self.world_size)
def _test_all_to_all_single(self, backend):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend,
world_size=self.world_size,
rank=self.rank,
store=store,
)
device = "cuda" if backend == "nccl" else "cpu"
# test alltoall_base
input_tensor = torch.ones(2, 2, device=torch.device(device))
output_tensor = torch.zeros(2, 2, device=torch.device(device))
dist.all_to_all_single(output_tensor, input_tensor)
class CompilerTest(MultiProcessTestCase):
def setUp(self):
super(CompilerTest, self).setUp()
self._spawn_processes()
def tearDown(self):
super(CompilerTest, self).tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
def _get_process_group(self):
raise NotImplementedError("To be implemented by subclass")
def _test_work_wait(self, x: torch.Tensor, comm_fn: Callable):
pg = self._get_default_group()
def fn(x: torch.Tensor) -> torch.Tensor:
# N.B.: explicitly wrapping with CommTensor instead of updating
# all_reduce Python implementation, as the later will need more
# discussion.
y = CommTensor(x + x)
work, z = comm_fn(y, group=pg)
# this wait() will be ignored in tracing mode as
# ProxyTorchDispatchMode only supports torch.Tensor, _ProxyTensor,
# and torch.nn.Parameter objects
work.wait()
if isinstance(z, list):
return [zz * 2 for zz in z]
elif isinstance(z, torch.Tensor):
return z * 2
else:
raise RuntimeError("Unexpected return type")
xx = x.clone()
# trace fn into a GraphModule
traced_fn = make_fx(fn)(xx)
traced_fn.graph.lint()
traced_fn.graph.eliminate_dead_code()
# make sure the mul op indeed waits for comm
for node in traced_fn.graph.nodes:
if node.op == "call_function" and "mul.Tensor" in node.target.__name__:
prev = node.args[0]
curr = None
waited = False
commed = False
while prev is not None and not commed:
curr = prev
waited |= all([
curr.op == "call_function",
curr.target == _wait_comm,
])
commed |= all([
curr.op == "call_function",
CommTensor._is_supported(curr.target.__name__),
])
prev = curr.args[0]
self.assertTrue(waited)
self.assertTrue(commed)
# Update input to make sure we are not recording it as constant during
# tracing.
x += 1
xx += 1
y = fn(x)
yy = traced_fn(xx)
# check correctness
self.assertEqual(y, yy)
xx += 1
yy = traced_fn(xx)
self.assertNotEqual(y, yy)
def _test_allreduce_work_wait(self, tensor):
def comm_fn(tensor, group=None):
work = dist.all_reduce(tensor, group=group, async_op=True)
return work, tensor
self._test_work_wait(tensor, comm_fn=comm_fn)
def _test_allgather_work_wait(self, tensor):
def comm_fn(tensor, group=None):
out_tensors = [torch.zeros_like(tensor) for _ in range(group.size())]
work = dist.all_gather(out_tensors, tensor, group=group, async_op=True)
work.wait()
return work, sum(out_tensors)
self._test_work_wait(tensor, comm_fn=comm_fn)
def _test_allgather_into_tensor_work_wait(self, tensor):
def comm_fn(tensor, group=None):
out_tensors = [torch.zeros_like(tensor) for _ in range(group.size())]
output_tensor = torch.cat(out_tensors, dim=0)
work = dist.all_gather_into_tensor(output_tensor, tensor, group=group, async_op=True)
work.wait()
return work, output_tensor
self._test_work_wait(tensor, comm_fn=comm_fn)
def _test_reduce_scatter_work_wait(self, tensor):
def comm_fn(tensor, group=None):
in_tensors = [tensor.clone() + i for i in range(group.size())]
out_tensor = torch.zeros_like(tensor)
work = dist.reduce_scatter(out_tensor, in_tensors, group=group, async_op=True)
return work, out_tensor
self._test_work_wait(tensor, comm_fn=comm_fn)
def _test_reduce_scatter_tensor_work_wait(self, tensor):
def comm_fn(tensor, group=None):
out_tensor = torch.zeros_like(tensor).chunk(group.size(), dim=0)[self.rank]
work = dist.reduce_scatter_tensor(out_tensor, tensor, group=group, async_op=True)
return work, out_tensor
self._test_work_wait(tensor, comm_fn=comm_fn)
def _test_broadcast_work_wait(self, tensor):
def comm_fn(tensor, group=None):
work = dist.broadcast(tensor, src=0, group=group, async_op=True)
return work, tensor
self._test_work_wait(tensor, comm_fn=comm_fn)
def _test_scatter_work_wait(self, tensor):
def comm_fn(tensor, group=None):
in_tensors = [tensor + i for i in range(group.size())] if self.rank == 0 else None
out_tensor = torch.zeros_like(tensor)
work = dist.scatter(out_tensor, in_tensors, src=0, group=group, async_op=True)
return work, out_tensor
self._test_work_wait(tensor, comm_fn=comm_fn)
def _test_alltoall_work_wait(self, tensor):
def comm_fn(tensor, group=None):
out_tensors = [torch.zeros_like(tensor) for _ in range(group.size())]
in_tensors = [tensor for i in range(group.size())]
work = dist.all_to_all(out_tensors, in_tensors, group=group, async_op=True)
return work, out_tensors
self._test_work_wait(tensor, comm_fn=comm_fn)
def _test_nested_comm_tensor_wrapping(self, tensor):
def comm_fn(tensor, group=None):
work = dist.all_reduce(CommTensor(tensor), group=group, async_op=True)
return work, tensor
self._test_work_wait(tensor, comm_fn=comm_fn)
def _test_consecutive_comm_work_wait(self, tensor):
def comm_fn(tensor, group=None):
work1 = dist.all_reduce(tensor, group=group, async_op=True)
work1.wait()
work2 = dist.all_reduce(tensor, group=group, async_op=True)
return work2, tensor
self._test_work_wait(tensor, comm_fn=comm_fn)
class ReduceOpTest(TestCase):
# Ref: https://github.com/pytorch/pytorch/issues/87191
def test_op_isinstance_of_reduceop(self):
for reduce_op in (
c10d.ReduceOp.SUM, c10d.ReduceOp.AVG, c10d.ReduceOp.PRODUCT, c10d.ReduceOp.MIN, c10d.ReduceOp.MAX,
c10d.ReduceOp.BAND, c10d.ReduceOp.BOR, c10d.ReduceOp.BXOR,
):
self.assertTrue(isinstance(reduce_op, c10d.ReduceOp))
for scale in (torch.tensor(1.0), 2.0):
self.assertTrue(isinstance(dist._make_nccl_premul_sum(scale), c10d.ReduceOp))
# Ref: https://github.com/pytorch/pytorch/pull/87303#discussion_r1002879700
def test_reduceop_copyable(self):
for reduce_op in (
c10d.ReduceOp.SUM, c10d.ReduceOp.AVG, c10d.ReduceOp.PRODUCT, c10d.ReduceOp.MIN, c10d.ReduceOp.MAX,
c10d.ReduceOp.BAND, c10d.ReduceOp.BOR, c10d.ReduceOp.BXOR,
):
self.assertEqual(copy.copy(reduce_op), reduce_op)
self.assertEqual(copy.deepcopy(reduce_op), reduce_op)
self.assertEqual(copy.copy(c10d.ReduceOp(reduce_op)), reduce_op)
self.assertEqual(copy.deepcopy(c10d.ReduceOp(reduce_op)), reduce_op)
for scale in (torch.tensor(1.0), 2.0):
reduce_op = dist._make_nccl_premul_sum(scale)
self.assertEqual(copy.copy(reduce_op), reduce_op)
self.assertEqual(copy.deepcopy(reduce_op), reduce_op)
def test_reduceop_pickle(self):
for reduce_op in (
c10d.ReduceOp.SUM, c10d.ReduceOp.AVG, c10d.ReduceOp.PRODUCT, c10d.ReduceOp.MIN, c10d.ReduceOp.MAX,
c10d.ReduceOp.BAND, c10d.ReduceOp.BOR, c10d.ReduceOp.BXOR,
):
pickle.loads(pickle.dumps(reduce_op))
orig = c10d.ReduceOp(reduce_op)
self.assertEqual(pickle.loads(pickle.dumps(orig)), orig)
for scale in (torch.tensor(1.0), 2.0):
reduce_op = dist._make_nccl_premul_sum(scale)
self.assertEqual(pickle.loads(pickle.dumps(reduce_op)), reduce_op)
# Ref: https://github.com/pytorch/pytorch/issues/90072
def test_reduceop_equal(self):
not_reduceop = "abc"
for reduce_op in (
c10d.ReduceOp.SUM, c10d.ReduceOp.AVG, c10d.ReduceOp.PRODUCT, c10d.ReduceOp.MIN, c10d.ReduceOp.MAX,
c10d.ReduceOp.BAND, c10d.ReduceOp.BOR, c10d.ReduceOp.BXOR,
):
reduce_op_obj = c10d.ReduceOp(reduce_op)
# this calls `ReduceOp.__eq__(self, other)`
self.assertEqual(reduce_op_obj, reduce_op_obj)
self.assertEqual(reduce_op_obj, reduce_op)
self.assertNotEqual(reduce_op_obj, not_reduceop)
self.assertNotEqual(reduce_op, not_reduceop)
# TODO(crcrpar): This needs to be `assertEqual` for the associativity even though
# the comparison of `RedOpType` and `ReduceOp` sounds less likely to happen compared
# to that of `ReduceOp` and `RedOptype`.
# this calls `RedOpType.__eq__(self, other)`
self.assertNotEqual(reduce_op, reduce_op_obj)
self.assertFalse(None in (reduce_op, reduce_op_obj))
self.assertFalse(not_reduceop in (reduce_op, reduce_op_obj))
if __name__ == "__main__":
assert (
not torch.cuda._initialized
), "test_distributed must not have initialized CUDA context on main process"
run_tests()