| import random |
| import unittest |
| from typing import Dict, List, Tuple |
| |
| from tools.testing.test_selections import calculate_shards |
| |
| |
| class TestCalculateShards(unittest.TestCase): |
| tests: List[str] = [ |
| "super_long_test", |
| "long_test1", |
| "long_test2", |
| "normal_test1", |
| "normal_test2", |
| "normal_test3", |
| "short_test1", |
| "short_test2", |
| "short_test3", |
| "short_test4", |
| "short_test5", |
| ] |
| |
| test_times: Dict[str, float] = { |
| "super_long_test": 55, |
| "long_test1": 22, |
| "long_test2": 18, |
| "normal_test1": 9, |
| "normal_test2": 7, |
| "normal_test3": 5, |
| "short_test1": 1, |
| "short_test2": 0.6, |
| "short_test3": 0.4, |
| "short_test4": 0.3, |
| "short_test5": 0.01, |
| } |
| |
| def assert_shards_equal( |
| self, |
| expected_shards: List[Tuple[float, List[str]]], |
| actual_shards: List[Tuple[float, List[str]]], |
| ) -> None: |
| for expected, actual in zip(expected_shards, actual_shards): |
| self.assertAlmostEqual(expected[0], actual[0]) |
| self.assertListEqual(expected[1], actual[1]) |
| |
| def test_calculate_2_shards_with_complete_test_times(self) -> None: |
| expected_shards = [ |
| (60, ["super_long_test", "normal_test3"]), |
| ( |
| 58.31, |
| [ |
| "long_test1", |
| "long_test2", |
| "normal_test1", |
| "normal_test2", |
| "short_test1", |
| "short_test2", |
| "short_test3", |
| "short_test4", |
| "short_test5", |
| ], |
| ), |
| ] |
| self.assert_shards_equal( |
| expected_shards, calculate_shards(2, self.tests, self.test_times) |
| ) |
| |
| def test_calculate_1_shard_with_complete_test_times(self) -> None: |
| expected_shards = [ |
| ( |
| 118.31, |
| [ |
| "super_long_test", |
| "long_test1", |
| "long_test2", |
| "normal_test1", |
| "normal_test2", |
| "normal_test3", |
| "short_test1", |
| "short_test2", |
| "short_test3", |
| "short_test4", |
| "short_test5", |
| ], |
| ), |
| ] |
| self.assert_shards_equal( |
| expected_shards, calculate_shards(1, self.tests, self.test_times) |
| ) |
| |
| def test_calculate_5_shards_with_complete_test_times(self) -> None: |
| expected_shards = [ |
| (55.0, ["super_long_test"]), |
| ( |
| 22.0, |
| [ |
| "long_test1", |
| ], |
| ), |
| ( |
| 18.0, |
| [ |
| "long_test2", |
| ], |
| ), |
| ( |
| 11.31, |
| [ |
| "normal_test1", |
| "short_test1", |
| "short_test2", |
| "short_test3", |
| "short_test4", |
| "short_test5", |
| ], |
| ), |
| (12.0, ["normal_test2", "normal_test3"]), |
| ] |
| self.assert_shards_equal( |
| expected_shards, calculate_shards(5, self.tests, self.test_times) |
| ) |
| |
| def test_calculate_2_shards_with_incomplete_test_times(self) -> None: |
| incomplete_test_times = { |
| k: v for k, v in self.test_times.items() if "test1" in k |
| } |
| expected_shards = [ |
| ( |
| 22.0, |
| [ |
| "long_test1", |
| "long_test2", |
| "normal_test3", |
| "short_test3", |
| "short_test5", |
| ], |
| ), |
| ( |
| 10.0, |
| [ |
| "normal_test1", |
| "short_test1", |
| "super_long_test", |
| "normal_test2", |
| "short_test2", |
| "short_test4", |
| ], |
| ), |
| ] |
| self.assert_shards_equal( |
| expected_shards, calculate_shards(2, self.tests, incomplete_test_times) |
| ) |
| |
| def test_calculate_5_shards_with_incomplete_test_times(self) -> None: |
| incomplete_test_times = { |
| k: v for k, v in self.test_times.items() if "test1" in k |
| } |
| expected_shards = [ |
| (22.0, ["long_test1", "normal_test2", "short_test5"]), |
| (9.0, ["normal_test1", "normal_test3"]), |
| (1.0, ["short_test1", "short_test2"]), |
| (0.0, ["super_long_test", "short_test3"]), |
| (0.0, ["long_test2", "short_test4"]), |
| ] |
| self.assert_shards_equal( |
| expected_shards, calculate_shards(5, self.tests, incomplete_test_times) |
| ) |
| |
| def test_calculate_2_shards_against_optimal_shards(self) -> None: |
| for _ in range(100): |
| random.seed(120) |
| random_times = {k: random.random() * 10 for k in self.tests} |
| # all test times except first two |
| rest_of_tests = [ |
| i |
| for k, i in random_times.items() |
| if k != "super_long_test" and k != "long_test1" |
| ] |
| sum_of_rest = sum(rest_of_tests) |
| random_times["super_long_test"] = max(sum_of_rest / 2, max(rest_of_tests)) |
| random_times["long_test1"] = sum_of_rest - random_times["super_long_test"] |
| # An optimal sharding would look like the below, but we don't need to compute this for the test: |
| # optimal_shards = [ |
| # (sum_of_rest, ['super_long_test', 'long_test1']), |
| # (sum_of_rest, [i for i in self.tests if i != 'super_long_test' and i != 'long_test1']), |
| # ] |
| calculated_shards = calculate_shards(2, self.tests, random_times) |
| max_shard_time = max(calculated_shards[0][0], calculated_shards[1][0]) |
| if sum_of_rest != 0: |
| # The calculated shard should not have a ratio worse than 7/6 for num_shards = 2 |
| self.assertGreaterEqual(7.0 / 6.0, max_shard_time / sum_of_rest) |
| sorted_tests = sorted(self.tests) |
| sorted_shard_tests = sorted( |
| calculated_shards[0][1] + calculated_shards[1][1] |
| ) |
| # All the tests should be represented by some shard |
| self.assertEqual(sorted_tests, sorted_shard_tests) |
| |
| |
| if __name__ == "__main__": |
| unittest.main() |