| # Owner(s): ["module: inductor"] |
| import functools |
| import pickle |
| import tempfile |
| import unittest |
| from unittest.mock import patch |
| |
| import torch |
| from torch._dynamo.test_case import run_tests, TestCase |
| from torch._dynamo.utils import counters |
| from torch._inductor import config |
| from torch._inductor.codecache import ( |
| AsyncCompile, |
| FxGraphCachePickler, |
| FxGraphHashDetails, |
| TensorMetadata, |
| TensorMetadataAndValues, |
| ) |
| from torch.testing._internal.common_cuda import SM80OrLater |
| from torch.testing._internal.common_device_type import largeTensorTest |
| from torch.testing._internal.common_utils import ( |
| instantiate_parametrized_tests, |
| parametrize, |
| ) |
| from torch.testing._internal.inductor_utils import HAS_CUDA |
| from torch.utils._triton import has_triton |
| |
| HAS_TRITON = has_triton() |
| |
| requires_cuda = functools.partial(unittest.skipIf, not HAS_CUDA, "requires cuda") |
| requires_triton = functools.partial(unittest.skipIf, not HAS_TRITON, "requires triton") |
| |
| |
| class MyModel(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.fc1 = torch.nn.Linear(10, 10) |
| |
| def forward(self, inp): |
| return self.fc1(inp) |
| |
| |
| def _run_codecache_test(start_method): |
| torch._inductor.config.worker_start_method = start_method |
| torch._inductor.config.compile_threads = 16 |
| AsyncCompile.warm_pool() |
| |
| model = MyModel().cuda() |
| model = torch.compile(model) |
| inp = torch.rand(10, 10).cuda() |
| model(inp).sum().backward() |
| |
| |
| @requires_cuda() |
| def test_codecache_spawn(): |
| _run_codecache_test("spawn") |
| |
| |
| @requires_cuda() |
| def test_codecache_fork(): |
| _run_codecache_test("fork") |
| |
| |
| class MyModelConv2d(torch.nn.Module): |
| def __init__(self, dim=512): |
| super().__init__() |
| self.conv1 = torch.nn.Conv2d(3, dim, kernel_size=3, stride=2, bias=False) |
| self.conv2 = torch.nn.Conv2d(dim, dim, kernel_size=3, stride=2, bias=False) |
| |
| def forward(self, x): |
| x = self.conv1(x) |
| torch._dynamo.graph_break() |
| x = self.conv2(x) |
| return x |
| |
| |
| @instantiate_parametrized_tests |
| class TestFxGraphCache(TestCase): |
| @classmethod |
| def setUpClass(cls): |
| # Reroute all cache disk activity to a clean temporary directory to |
| # ensure isolation (and initial cache misses). Deliberately create the |
| # temp dir in setUpClass, however, so that individual test runs reuse |
| # the same location. We don't expect different tests to reuse cache |
| # entries, so preserving the temp dir provides that additional testing. |
| cls.tmpdir = tempfile.TemporaryDirectory() |
| cls.cache_dir_patch = patch("torch._inductor.codecache.cache_dir") |
| cls.cache_dir_patch.start().return_value = cls.tmpdir.name |
| |
| @classmethod |
| def tearDownClass(cls): |
| cls.cache_dir_patch.stop() |
| cls.tmpdir.cleanup() |
| |
| def setUp(self): |
| counters.clear() |
| |
| @requires_triton() |
| @config.patch({"fx_graph_cache": True}) |
| @parametrize("device", ("cuda", "cpu")) |
| @parametrize("dtype", (torch.float32, torch.bfloat16)) |
| @parametrize("dynamic", (False, True)) |
| def test_cache_load_function(self, device, dtype, dynamic): |
| """ |
| Verify that we can populate and load functions from the cache. |
| """ |
| if device == "cuda" and not HAS_CUDA: |
| raise unittest.SkipTest("requires CUDA") |
| if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater: |
| raise unittest.SkipTest("requires SM80 or later") |
| |
| def fn(x, y): |
| return (x * 2, y @ y) |
| |
| a = torch.rand(25, dtype=dtype, device=device) |
| b = torch.rand(5, 5, dtype=dtype, device=device) |
| c = a.view(5, 5) |
| |
| compiled_fn = torch.compile(fn, dynamic=dynamic) |
| |
| # A first call shold miss in the cache. |
| self.assertEqual(fn(a, b), compiled_fn(a, b)) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0) |
| |
| # A second call should hit. (First reset so in-memory guards |
| # don't prevent compilation). |
| torch._dynamo.reset() |
| self.assertEqual(fn(a, b), compiled_fn(a, b)) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1) |
| |
| # But we expect different code if the tensors are aliased. |
| torch._dynamo.reset() |
| self.assertEqual(fn(a, c), compiled_fn(a, c)) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 2) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1) |
| |
| @requires_triton() |
| @config.patch({"fx_graph_cache": True}) |
| @parametrize("device", ("cuda", "cpu")) |
| @parametrize("dtype", (torch.float32, torch.float64)) |
| @parametrize("dynamic", (False, True)) |
| def test_cache_load_model(self, device, dtype, dynamic): |
| """ |
| Verify that we can populate and load models from the cache. |
| """ |
| if device == "cuda" and not HAS_CUDA: |
| raise unittest.SkipTest("requires CUDA") |
| |
| def fn(mod, x): |
| mod.zero_grad() |
| mod(x).sum().backward() |
| return [p.grad for p in mod.parameters()] |
| |
| compiled_fn = torch.compile(fn, dynamic=dynamic) |
| |
| mod = MyModelConv2d().to(device=device, dtype=dtype) |
| inp = torch.randn(2, 3, 16, 16, device=device, dtype=dtype) |
| |
| # The first call should see all cache misses. |
| counters.clear() |
| grads1 = compiled_fn(mod, inp) |
| self.assertGreater(counters["inductor"]["fxgraph_cache_miss"], 0) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0) |
| |
| # The second should see all hits. (First reset so in-memory guards |
| # don't prevent compilation). |
| counters.clear() |
| torch._dynamo.reset() |
| grads2 = compiled_fn(mod, inp) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0) |
| self.assertGreater(counters["inductor"]["fxgraph_cache_hit"], 0) |
| |
| # And the results should be the same. |
| self.assertEqual(grads1, grads2) |
| |
| @largeTensorTest("64GB", device="cuda") |
| @config.patch({"fx_graph_cache": True}) |
| @parametrize("device", ("cuda",)) |
| @parametrize("dtype", (torch.float16, torch.bfloat16)) |
| def test_cache_load_with_guards_int32_bounds(self, device, dtype): |
| """ |
| Test caching the same graph, but under conditions that introduce guards |
| for tensor sizes < int32. |
| """ |
| if device == "cuda" and not HAS_CUDA: |
| raise unittest.SkipTest("requires CUDA") |
| if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater: |
| raise unittest.SkipTest("requires SM80 or later") |
| |
| def fn(x, y): |
| return (x + x, y + y) |
| |
| compiled_fn = torch.compile(fn, dynamic=True) |
| |
| # Iterate over different shapes, varying whether the total |
| # size is below or above int32. For each combination, we expect |
| # different guards around whether the symbolic sizes do or do |
| # not exceed int32. |
| shapes = ( |
| ((5, 6), (7, 8)), |
| ((5, 6), (47000, 47001)), |
| ((47000, 47001), (5, 6)), |
| ) |
| for a_shape, b_shape in shapes: |
| a = torch.rand(a_shape, device=device, dtype=dtype) |
| b = torch.rand(b_shape, device=device, dtype=dtype) |
| |
| # AVOID a dynamo reset here. We expect guards to have been |
| # added that will be violated with the new shape. We should |
| # see a recompilation (along with a cache miss). |
| counters.clear() |
| res1 = compiled_fn(a, b) |
| self.assertGreater(counters["inductor"]["fxgraph_cache_miss"], 0) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0) |
| |
| # A second call should hit. (Reset here to force compilation). |
| counters.clear() |
| torch._dynamo.reset() |
| res2 = compiled_fn(a, b) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0) |
| self.assertGreater(counters["inductor"]["fxgraph_cache_hit"], 0) |
| |
| self.assertEqual(res1, res2) |
| |
| @config.patch({"fx_graph_cache": True}) |
| @parametrize("device", ("cuda", "cpu")) |
| @parametrize("dtype", (torch.float32, torch.bfloat16)) |
| def test_cache_load_with_guards_static_bounds(self, device, dtype): |
| """ |
| Test caching the same graph, but under conditions that introduce guards |
| for static bounds. |
| """ |
| if device == "cuda" and not HAS_CUDA: |
| raise unittest.SkipTest("requires CUDA") |
| if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater: |
| raise unittest.SkipTest("requires SM80 or later") |
| |
| # See lowering; for all of the pooling operators, we always guard and |
| # make the height/width static. |
| def fn(x): |
| return torch.nn.functional.adaptive_avg_pool2d(x, [5, 7]) |
| |
| compiled_fn = torch.compile(fn, dynamic=True) |
| |
| # Iterate over different input shapes. Each new shape should cause |
| # a cache miss. |
| shapes = ((1, 64, 8, 9), (1, 64, 9, 10), (1, 64, 10, 11)) |
| for shape in shapes: |
| x = torch.rand(shape, device=device, dtype=dtype) |
| |
| # AVOID a dynamo reset here. For each cache hit, we expect guards |
| # to have been added that will be violated with each new shape. |
| # We should see a recompilation (along with a cache miss). |
| counters.clear() |
| res1 = compiled_fn(x) |
| self.assertGreater(counters["inductor"]["fxgraph_cache_miss"], 0) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0) |
| |
| # A second call should hit. |
| counters.clear() |
| torch._dynamo.reset() |
| res2 = compiled_fn(x) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0) |
| self.assertGreater(counters["inductor"]["fxgraph_cache_hit"], 0) |
| |
| self.assertEqual(res1, res2) |
| |
| @config.patch({"fx_graph_cache": True}) |
| def test_cache_clear(self): |
| """ |
| Test clearing the cache. |
| """ |
| |
| def fn(x, y): |
| return (x * y,) |
| |
| a = torch.rand(5, 5) |
| b = torch.rand(5, 5) |
| |
| compiled_fn = torch.compile(fn) |
| |
| # A first call shold miss in the cache. |
| self.assertEqual(fn(a, b), compiled_fn(a, b)) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0) |
| |
| # A second call should hit. |
| counters.clear() |
| torch._dynamo.reset() |
| self.assertEqual(fn(a, b), compiled_fn(a, b)) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1) |
| |
| # Clear the cache; now we should miss. |
| counters.clear() |
| torch._dynamo.reset() |
| torch._inductor.codecache.FxGraphCache.clear() |
| self.assertEqual(fn(a, b), compiled_fn(a, b)) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1) |
| self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0) |
| |
| |
| class TestFxGraphCacheHashing(TestCase): |
| def test_tensor_constants(self): |
| """ |
| Test the handling of small vs. large tensor constants. |
| """ |
| data = FxGraphCachePickler.dumps(torch.tensor(list(range(9)))) |
| self.assertIsInstance(pickle.loads(data), TensorMetadata) |
| |
| data = FxGraphCachePickler.dumps(torch.tensor(list(range(8)))) |
| self.assertIsInstance(pickle.loads(data), TensorMetadataAndValues) |
| |
| def test_hash_fake_tensors(self): |
| """ |
| Test hashing (pickling) FakeTensors with various characteristics. |
| """ |
| with torch._subclasses.FakeTensorMode(): |
| # Verify that FakeTensors get pickled into a TensorMetadata: |
| data = FxGraphCachePickler.dumps(torch.randn(1)) |
| self.assertIsInstance(pickle.loads(data), TensorMetadata) |
| |
| # Different shapes: |
| self.assertEqual( |
| FxGraphCachePickler.dumps(torch.randn(3)), |
| FxGraphCachePickler.dumps(torch.randn(3)), |
| ) |
| self.assertNotEqual( |
| FxGraphCachePickler.dumps(torch.randn(3)), |
| FxGraphCachePickler.dumps(torch.randn(4)), |
| ) |
| self.assertNotEqual( |
| FxGraphCachePickler.dumps(torch.randn(3)), |
| FxGraphCachePickler.dumps(torch.randn(3, 3)), |
| ) |
| |
| self.assertEqual( |
| FxGraphCachePickler.dumps(torch.randn(3, 3)), |
| FxGraphCachePickler.dumps(torch.randn(3, 3)), |
| ) |
| self.assertNotEqual( |
| FxGraphCachePickler.dumps(torch.randn(3, 3)), |
| FxGraphCachePickler.dumps(torch.randn(3, 4)), |
| ) |
| self.assertNotEqual( |
| FxGraphCachePickler.dumps(torch.randn(3, 3)), |
| FxGraphCachePickler.dumps(torch.randn(4, 3)), |
| ) |
| |
| # Different strides: |
| self.assertEqual( |
| FxGraphCachePickler.dumps(torch.randn(3, 3)), |
| FxGraphCachePickler.dumps( |
| torch.randn(3, 3).transpose(0, 1).transpose(0, 1) |
| ), |
| ) |
| self.assertNotEqual( |
| FxGraphCachePickler.dumps(torch.randn(3, 3)), |
| FxGraphCachePickler.dumps(torch.randn(3, 3).transpose(0, 1)), |
| ) |
| |
| # Different storage offsets: |
| self.assertEqual( |
| FxGraphCachePickler.dumps(torch.randn(3)[1:]), |
| FxGraphCachePickler.dumps(torch.randn(3)[1:]), |
| ) |
| self.assertNotEqual( |
| FxGraphCachePickler.dumps(torch.randn(3)[1:]), |
| FxGraphCachePickler.dumps(torch.randn(2)), |
| ) |
| |
| # Different dtypes: |
| self.assertEqual( |
| FxGraphCachePickler.dumps(torch.randn(3, dtype=torch.float32)), |
| FxGraphCachePickler.dumps(torch.randn(3, dtype=torch.float32)), |
| ) |
| self.assertNotEqual( |
| FxGraphCachePickler.dumps(torch.randn(3, dtype=torch.float32)), |
| FxGraphCachePickler.dumps(torch.randn(3, dtype=torch.float64)), |
| ) |
| |
| # Different 'requires_grad': |
| self.assertEqual( |
| FxGraphCachePickler.dumps(torch.randn(3, requires_grad=True)), |
| FxGraphCachePickler.dumps(torch.randn(3, requires_grad=True)), |
| ) |
| self.assertNotEqual( |
| FxGraphCachePickler.dumps(torch.randn(3, requires_grad=True)), |
| FxGraphCachePickler.dumps(torch.randn(3, requires_grad=False)), |
| ) |
| |
| # Different memory formats: |
| self.assertNotEqual( |
| FxGraphCachePickler.dumps(torch.randn(1, 2, 3, 4)), |
| FxGraphCachePickler.dumps( |
| torch.randn(1, 2, 3, 4).to(memory_format=torch.channels_last) |
| ), |
| ) |
| |
| # Different devices: |
| self.assertEqual( |
| FxGraphCachePickler.dumps(torch.randn(3, device="meta")), |
| FxGraphCachePickler.dumps(torch.randn(3, device="meta")), |
| ) |
| self.assertNotEqual( |
| FxGraphCachePickler.dumps(torch.randn(3, device="meta")), |
| FxGraphCachePickler.dumps(torch.randn(3, device="cpu")), |
| ) |
| |
| if HAS_CUDA and torch.cuda.device_count() >= 2: |
| self.assertEqual( |
| FxGraphCachePickler.dumps(torch.randn(3, device="cuda:1")), |
| FxGraphCachePickler.dumps(torch.randn(3, device="cuda:1")), |
| ) |
| self.assertNotEqual( |
| FxGraphCachePickler.dumps(torch.randn(3, device="cuda:0")), |
| FxGraphCachePickler.dumps(torch.randn(3, device="cuda:1")), |
| ) |
| |
| def test_hash_kwargs(self): |
| """ |
| Test the special handling of the kwargs when hashing, i.e., |
| ordering of the kwargs dict and any set arguments. |
| """ |
| # Dict order of the kwargs should not affect hashes. |
| details1 = FxGraphHashDetails(None, [], {"a": 0, "z": 1}) |
| details2 = FxGraphHashDetails(None, [], {"z": 1, "a": 0}) |
| self.assertEqual( |
| FxGraphCachePickler.dumps(details1), |
| FxGraphCachePickler.dumps(details2), |
| ) |
| |
| # Different kwarg values should affect hashes. |
| details1 = FxGraphHashDetails(None, [], {"a": 0}) |
| details2 = FxGraphHashDetails(None, [], {"a": 1}) |
| self.assertNotEqual( |
| FxGraphCachePickler.dumps(details1), |
| FxGraphCachePickler.dumps(details2), |
| ) |
| |
| # Set order should not affect hashes. Sets are unordered, but |
| # sorting and creating a new set seems to change the order. |
| set1 = {"a", "b", "c", "d", "e", "f", "g"} |
| set2 = set(sorted(set1)) # noqa: C414 |
| details1 = FxGraphHashDetails(None, [], {"a": set1}) |
| details2 = FxGraphHashDetails(None, [], {"a": set2}) |
| self.assertEqual( |
| FxGraphCachePickler.dumps(details1), |
| FxGraphCachePickler.dumps(details2), |
| ) |
| |
| # But different set contents should affect hashes. |
| details1 = FxGraphHashDetails(None, [], {"a": {1, 2, 3}}) |
| details2 = FxGraphHashDetails(None, [], {"a": {1, 2}}) |
| self.assertNotEqual( |
| FxGraphCachePickler.dumps(details1), |
| FxGraphCachePickler.dumps(details2), |
| ) |
| |
| def test_hash_config_changes(self): |
| """ |
| Test that different config settings affect hashes. |
| """ |
| with config.patch({"max_autotune": False}): |
| details1 = FxGraphHashDetails(None, [], {}) |
| details2 = FxGraphHashDetails(None, [], {}) |
| |
| with config.patch({"max_autotune": True}): |
| details3 = FxGraphHashDetails(None, [], {}) |
| |
| self.assertEqual( |
| FxGraphCachePickler.dumps(details1), |
| FxGraphCachePickler.dumps(details2), |
| ) |
| self.assertNotEqual( |
| FxGraphCachePickler.dumps(details1), |
| FxGraphCachePickler.dumps(details3), |
| ) |
| |
| |
| if __name__ == "__main__": |
| run_tests() |