| from __future__ import annotations |
| |
| import ast |
| import builtins |
| import collections |
| import dataclasses |
| import enum |
| import functools |
| import importlib |
| import inspect |
| import itertools |
| import logging |
| import math |
| import os |
| import re |
| import sys |
| import textwrap |
| import types |
| import weakref |
| from inspect import currentframe, getframeinfo |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union |
| from weakref import ReferenceType |
| |
| |
| try: |
| import numpy as np |
| except ModuleNotFoundError: |
| np = None # type: ignore[assignment] |
| |
| import torch |
| import torch.utils._device |
| from torch._dynamo.source import ( |
| is_from_local_source, |
| TensorProperty, |
| TensorPropertySource, |
| ) |
| |
| from torch._guards import ( |
| DuplicateInputs, |
| Guard, |
| GuardBuilderBase, |
| GuardEnvExpr, |
| GuardSource, |
| Source, |
| ) |
| from torch.fx.experimental.symbolic_shapes import ( |
| EqualityConstraint, |
| is_symbolic, |
| SYMPY_INTERP, |
| ) |
| |
| from torch.utils._traceback import format_frame, report_compile_source_on_error |
| from torch.utils.weak import TensorWeakRef |
| |
| from . import config, convert_frame, exc, mutation_guard |
| from .eval_frame import set_guard_error_hook |
| from .source import DefaultsSource, LocalSource, TypeSource |
| from .types import CacheEntry, ExtraState, GuardedCode, GuardFail, GuardFn # noqa: F401 |
| from .utils import ( |
| common_constant_types, |
| dict_keys_repr, |
| guard_failures, |
| istype, |
| key_is_id, |
| key_to_id, |
| orig_code_map, |
| tensor_always_has_static_shape, |
| tuple_iterator_getitem, |
| tuple_iterator_len, |
| ) |
| |
| log = logging.getLogger(__name__) |
| guards_log = torch._logging.getArtifactLogger(__name__, "guards") |
| recompiles_log = torch._logging.getArtifactLogger(__name__, "recompiles") |
| recompiles_verbose_log = torch._logging.getArtifactLogger( |
| __name__, "recompiles_verbose" |
| ) |
| verbose_guards_log = torch._logging.getArtifactLogger(__name__, "verbose_guards") |
| |
| TensorGuards = torch._C._dynamo.guards.TensorGuards |
| check_obj_id = torch._C._dynamo.guards.check_obj_id |
| check_type_id = torch._C._dynamo.guards.check_type_id |
| dict_version = torch._C._dynamo.guards.dict_version |
| |
| |
| # For user stack printing |
| @functools.lru_cache(None) |
| def uninteresting_files(): |
| import torch._dynamo.external_utils |
| |
| mods = [ |
| torch._dynamo.external_utils, |
| ] |
| return {inspect.getfile(m) for m in mods} |
| |
| |
| CLOSURE_VARS = { |
| "___check_type_id": check_type_id, |
| "___check_obj_id": check_obj_id, |
| "___odict_getitem": collections.OrderedDict.__getitem__, |
| "___key_to_id": key_to_id, |
| "___dict_version": dict_version, |
| "___dict_contains": lambda a, b: a in b, |
| "___tuple_iterator_len": tuple_iterator_len, |
| "___tuple_iterator_getitem": tuple_iterator_getitem, |
| "__math_isnan": math.isnan, |
| "__numpy_isnan": np.isnan, |
| "inf": float("inf"), |
| "__load_module": importlib.import_module, |
| "utils_device": torch.utils._device, |
| "device": torch.device, |
| "___from_numpy": |
| # If not numpy array, piggy back on e.g. tensor guards to check type |
| (lambda a: torch.as_tensor(a) if isinstance(a, (np.generic, np.ndarray)) else a), |
| "torch": torch, |
| } |
| |
| if sys.version_info[:2] <= (3, 8): |
| # [Note: Python Version <= 3.8] |
| # This branch should be dropped when we drop support for Python 3.8. |
| # Reason: 'ast.unparse' function was introduced in Python 3.9. |
| |
| try: |
| import astunparse # type: ignore[import] |
| |
| def _ast_unparse(node: ast.AST) -> str: |
| return astunparse.unparse(node).replace("\n", "") |
| |
| HAS_UNPARSE_FUNCTIONS = True |
| except ImportError: |
| HAS_UNPARSE_FUNCTIONS = False |
| pass |
| else: |
| HAS_UNPARSE_FUNCTIONS = True |
| |
| def _ast_unparse(node: ast.AST) -> str: |
| return ast.unparse(node).replace("\n", "") |
| |
| |
| def strip_function_call(name): |
| """ |
| "___odict_getitem(a, 1)" => "a" |
| "a.layers[slice(2)][0]._xyz" ==> "a" |
| "getattr(a.layers[slice(2)][0]._abc, '0')" ==> "a" |
| "getattr(getattr(a.x[3], '0'), '3')" ==> "a" |
| "a.layers[slice(None, -1, None)][0]._xyz" ==> "a" |
| """ |
| # recursively find valid object name in function |
| valid_name = re.compile("[A-Za-z_].*") |
| curr = "" |
| for char in name: |
| if char in " (": |
| curr = "" |
| elif char in "),[]": |
| if curr and curr != "None" and valid_name.match(curr): |
| return strip_function_call(curr) |
| else: |
| curr += char |
| |
| return strip_getattr_getitem(name) |
| |
| |
| def strip_getattr_getitem(name): |
| """ |
| "a[1]" => "a" |
| "a.foo" => "a" |
| """ |
| return re.split(r"[.\[]", name)[0] |
| |
| |
| # The ready to eval generated code (possibly multiple parts) for a guard, plus |
| # the original guard object that created it for provenance |
| @dataclasses.dataclass |
| class GuardCodeList: |
| code_list: List[str] |
| guard: Guard |
| |
| |
| class GuardBuilder(GuardBuilderBase): |
| def __init__( |
| self, |
| id_ref: Callable[[Any], str], |
| source_ref: Callable[[Source], str], |
| lookup_weakrefs: Callable[[object], ReferenceType[object]], |
| local_scope: Dict[str, object], |
| global_scope: Dict[str, object], |
| check_fn_manager: CheckFunctionManager, |
| ): |
| self.id_ref = id_ref |
| self.source_ref = source_ref |
| self.lookup_weakrefs = lookup_weakrefs |
| self.scope: Dict[str, Dict[str, object]] = {"L": local_scope, "G": global_scope} |
| self.scope["__builtins__"] = builtins.__dict__.copy() |
| for ( |
| name, |
| package_module, |
| ) in torch.package.package_importer._package_imported_modules.items(): |
| name = name.replace(">", "_").replace("<", "_").replace(".", "_dot_") |
| # Write the package module into the scope so that we can import it |
| self.scope["__builtins__"][name] = package_module |
| # Write the demangled name to the scope so that we can use it |
| self.scope[name] = package_module |
| |
| self.argnames: List[str] = [] |
| # Code is python expression strings generated for each guard |
| self.code: List[GuardCodeList] = [] |
| # shape_env_code is only used by builder and is used for |
| # shape env code. This exists only because we need to make sure |
| # shape env guards get run after tensor match guards (since the |
| # tensor match guards make sure we actually have tensors) |
| self.shape_env_code: List[GuardCodeList] = [] |
| |
| # [Note - On Eager Tensor Guards] |
| # Most of the time, we generate Python code in a guard to directly |
| # check various properties. However, tensors are a bit special; |
| # it is too slow to check their properties one-by-one in Python. |
| # Instead, there is a C++ function TensorGuards.check which takes |
| # all of the tensor arguments and checks them all against compile-time |
| # examples entirely in C++. Thus, every time we process a |
| # TENSOR_MATCH guard, we just add another entry to |
| # tensor_check_names/tensor_check_examples, saying "for this local, |
| # check it against this example", and it all ends up getting |
| # swept up into a single call to ___check_tensors. Invariant: |
| # len(tensor_check_names) == len(tensor_check_examples). |
| # TODO: something here |
| self.tensor_check_names: List[str] = [] |
| self.tensor_check_examples: List[torch.Tensor] = [] |
| self.tensor_check_guards: List[Guard] = [] |
| |
| self.check_fn_manager: CheckFunctionManager = check_fn_manager |
| # Keep track of weak references of objects with ID_MATCH guard. This |
| # info is stored alongside optimized_code and check_fn and is used to |
| # limit the number of cache entries with same ID_MATCH'd object. |
| self.id_matched_objs: Dict[str, ReferenceType[object]] = {} |
| |
| # Warning: use this with care! This lets you access what the current |
| # value of the value you are guarding on is. You probably don't want |
| # to actually durably save this value though (because it's specific |
| # to this frame!) Instead, you should be reading out some property |
| # (like its type) which is what you permanently install into the |
| # guard code. |
| def get(self, name: str) -> Any: |
| return eval(name, self.scope, CLOSURE_VARS) |
| |
| # Registers the usage of the source name referenced by the |
| # string (or stored in the Guard) as being guarded upon. It's important |
| # to call this before generating some code that makes use of 'guard', |
| # because without this call, we won't actually bind the variable |
| # you reference in the actual guard closure (oops!) |
| def arg_ref(self, guard: Union[str, Guard]) -> str: |
| name: str |
| if isinstance(guard, str): |
| name = guard |
| else: |
| name = guard.name |
| base = strip_getattr_getitem(strip_function_call(name)) |
| if base not in self.argnames: |
| if re.match(r"[a-zA-Z0-9_]+", base): |
| if re.match(r"^\d+$", base): |
| log.warning("invalid var name: %s", guard) |
| self.argnames.append(base) |
| |
| return name |
| |
| def TYPE_MATCH(self, guard: Guard) -> None: |
| # ___check_type_id is same as `id(type(x)) == y` |
| t = type(self.get(guard.name)) |
| obj_id = self.id_ref(t) |
| code = f"___check_type_id({self.arg_ref(guard)}, {obj_id})" |
| self._produce_guard_code(guard, [code]) |
| |
| def DICT_VERSION(self, guard: Guard): |
| # ___check_dict_version is same as `dict_version(x) == y` |
| ref = self.arg_ref(guard) |
| version = dict_version(self.get(guard.name)) |
| code = f"___dict_version({ref}) == {version}" |
| self._produce_guard_code(guard, [code]) |
| |
| def DICT_CONTAINS(self, guard: Guard, key: str, invert: bool): |
| dict_ref = self.arg_ref(guard) |
| |
| maybe_not = "not " if invert else "" |
| code = f"{maybe_not}___dict_contains({key!r}, {dict_ref})" |
| return self._produce_guard_code(guard, [code]) |
| |
| def BOOL_FALSE(self, guard: Guard): |
| # Guard on the runtime value being 'False', |
| # can be faster than seemingly equivalent checks like DICT_KEYS for empty dict |
| # |
| # WARNING: this guard is not safe to use generally. It only works if the runtime |
| # value is of a type that supports bool(), and some types e.g. Tensor do not. |
| # Only use this guard in cases you can guarantee the runtime type will be friendly. |
| # (e.g. Specialized NNModule with mutation protection via setattr) |
| # |
| # Why not simply check the runtime type inside this guard? It's slow enough to defeat |
| # the purpose of using this guard, which itself is supposed to be a faster alternative |
| # to DICT_KEYS. |
| ref = self.arg_ref(guard) |
| code = f"not {ref}" |
| self._produce_guard_code(guard, [code]) |
| |
| def ID_MATCH(self, guard: Guard): |
| # ___check_obj_id is same as `id(x) == y` |
| if isinstance(guard.originating_source, TypeSource): |
| # optional optimization to produce cleaner/faster guard code |
| return self.TYPE_MATCH( |
| Guard(guard.originating_source.base, GuardBuilder.TYPE_MATCH) # type: ignore[arg-type] |
| ) |
| |
| ref = self.arg_ref(guard) |
| val = self.get(guard.name) |
| code = f"___check_obj_id({ref}, {self.id_ref(val)})" |
| self._produce_guard_code(guard, [code]) |
| |
| # Keep track of ID_MATCH'd objects. This will be used to modify the |
| # cache size logic |
| if isinstance(guard.originating_source, LocalSource): |
| # TODO(janimesh) - This is currently restricted to nn.Module objects |
| # because many other ID_MATCH'd objects fail - like DeviceMesh. |
| # Increase the scope of ID_MATCH'd objects. |
| if isinstance(val, torch.nn.Module): |
| local_name = guard.originating_source.local_name |
| weak_id = self.lookup_weakrefs(val) |
| if weak_id is not None: |
| self.id_matched_objs[local_name] = weak_id |
| |
| def NAME_MATCH(self, guard: Guard): |
| obj = self.get(guard.name) |
| code = f"{self.arg_ref(guard)}.__name__ == '{obj.__name__}'" |
| self._produce_guard_code(guard, [code]) |
| |
| def DATA_PTR_MATCH(self, guard: Guard): |
| obj = self.get(guard.name) |
| code = f"{self.arg_ref(guard)}.data_ptr() == {obj.data_ptr()}" |
| self._produce_guard_code(guard, [code]) |
| |
| def HASATTR(self, guard: Guard): |
| m = re.match(r"^(.*)[.]([a-zA-Z0-9_]+)$", guard.name) |
| assert m, f"invalid hasattr check {guard.name}" |
| base, attr = m.group(1, 2) |
| ref = self.arg_ref(base) |
| val = hasattr(self.get(base), attr) |
| code = None |
| if val: |
| code = f"hasattr({ref}, {attr!r})" |
| else: |
| code = f"not hasattr({ref}, {attr!r})" |
| |
| self._produce_guard_code(guard, [code], provided_guarded_object=self.get(base)) |
| |
| def FUNCTORCH_STACK_MATCH(self, guard: Guard): |
| # Invalidate functorch code if current level is different than |
| # the one when FX graph was generated |
| # if torch._C._functorch.peek_interpreter_stack() is not None: |
| cis = torch._functorch.pyfunctorch.retrieve_all_functorch_interpreters() |
| states = [ci.get_state() for ci in cis] |
| code = [f"torch._functorch.pyfunctorch.compare_functorch_state({states})"] |
| self._produce_guard_code(guard, code) |
| |
| def EQUALS_MATCH(self, guard: Guard): |
| ref = self.arg_ref(guard) |
| val = self.get(guard.name) |
| t = type(val) |
| if np: |
| np_types: Tuple[Type[Any], ...] = ( |
| np.int8, |
| np.int16, |
| np.int32, |
| np.int64, |
| np.uint8, |
| np.uint16, |
| np.uint32, |
| np.uint64, |
| np.float16, |
| np.float32, |
| np.float64, |
| ) |
| else: |
| np_types = () |
| ok_types = tuple( |
| common_constant_types |
| | { |
| type, |
| list, |
| tuple, |
| set, |
| frozenset, |
| slice, |
| range, |
| torch.Size, |
| *np_types, |
| } |
| ) |
| if istype(val, dict): |
| assert all( |
| istype(x, ok_types) for x in itertools.chain(val.keys(), val.values()) |
| ) |
| else: |
| assert istype( |
| val, |
| ok_types, |
| ), f"Unexpected type {type(val)}, not in {ok_types}" |
| |
| # Special case for nan because float("nan") == float("nan") evaluates to False |
| if istype(val, float) and math.isnan(val): |
| code = list() |
| code.append(f"___check_type_id({ref}, {self.id_ref(t)})") |
| code.append(f"__math_isnan({ref})") |
| self._produce_guard_code(guard, code) |
| return |
| # Python math library doesn't support complex nan, so we need to use numpy |
| elif istype(val, complex) and np.isnan(val): |
| code = list() |
| code.append(f"___check_type_id({ref}, {self.id_ref(t)})") |
| code.append(f"__numpy_isnan({ref})") |
| self._produce_guard_code(guard, code) |
| return |
| |
| code = list() |
| |
| # If matching equality against list/tuple, we must also check that |
| # the internal types match. (TODO: what about nested lists?) |
| if istype(val, (list, tuple)): |
| # NB: LIST_LENGTH takes care of the outer __check_type_id test |
| self.LIST_LENGTH(guard) |
| |
| for idx, elem in enumerate(val): |
| code.append( |
| f"___check_type_id({ref}[{idx}], {self.id_ref(type(elem))})" |
| ) |
| else: |
| # Add type check to prevent equality check between tensor and non-tensor. |
| code.append(f"___check_type_id({ref}, {self.id_ref(t)})") |
| |
| if istype(val, torch.Size): |
| val = tuple(val) |
| |
| # TODO: It feels like it would be better to just implement our own |
| # equality test in C that handles all of the necessary type checking |
| # and NaN tests |
| code.append(f"{ref} == {val!r}") |
| self._produce_guard_code(guard, code) |
| |
| def CONSTANT_MATCH(self, guard: Guard): |
| val = self.get(guard.name) |
| if istype(val, (bool, type(None))): |
| self.ID_MATCH(guard) |
| else: |
| self.EQUALS_MATCH(guard) |
| |
| def NN_MODULE(self, guard: Guard): |
| self.ID_MATCH(guard) |
| ref = self.arg_ref(guard) |
| val = self.get(guard.name) |
| |
| def setup_guard(): |
| assert istype(val.training, bool) |
| # TODO: Why doesn't this use produce_guard_code? |
| self.code.append( |
| GuardCodeList([f"{ref}.training == {val.training}"], guard) |
| ) |
| |
| if hasattr(val, "training"): |
| # There are cases where a monkeypatched object has a guard made between __new__ and __init__ |
| setup_guard() |
| else: |
| exc.unimplemented(f"Guard setup for uninitialized class {type(val)}") |
| |
| def FUNCTION_MATCH(self, guard: Guard): |
| """things like torch.add and user defined functions""" |
| if guard.is_local(): |
| return self.ID_MATCH(guard) |
| |
| def CLOSURE_MATCH(self, guard: Guard): |
| """matches a closure by __code__ id.""" |
| if guard.is_local(): |
| val = self.get(guard.name) |
| # Strictly only want user-defined functions |
| if type(val) == types.FunctionType and hasattr(val, "__code__"): |
| ref = self.arg_ref(guard) |
| code = [ |
| f"___check_obj_id(getattr({ref}, '__code__', None), {self.id_ref(val.__code__)})", |
| ] |
| self._produce_guard_code(guard, code) |
| else: |
| self.FUNCTION_MATCH(guard) |
| |
| def BUILTIN_MATCH(self, guard: Guard): |
| return self.FUNCTION_MATCH(guard) |
| |
| def PYMODULE_MATCH(self, guard: Guard): |
| return self.FUNCTION_MATCH(guard) |
| |
| def LIST_LENGTH(self, guard): |
| ref = self.arg_ref(guard) |
| value = self.get(guard.name) |
| t = type(value) |
| |
| code = list() |
| code.append(f"___check_type_id({ref}, {self.id_ref(t)})") |
| if len(value) == 0: |
| code.append(f"not {ref}") |
| else: |
| code.append(f"len({ref}) == {len(value)}") |
| |
| self._produce_guard_code(guard, code) |
| |
| def TUPLE_ITERATOR_LEN(self, guard): |
| ref = self.arg_ref(guard) |
| value = self.get(guard.name) |
| t = type(value) |
| |
| code = list() |
| code.append(f"___check_type_id({ref}, {self.id_ref(t)})") |
| code.append(f"___tuple_iterator_len({ref}) == {tuple_iterator_len(value)}") |
| |
| self._produce_guard_code(guard, code) |
| |
| # TODO(voz): Deduplicate w/ AOTAutograd dupe input guards |
| def DUPLICATE_INPUT(self, guard, source_b): |
| ref_a = self.arg_ref(guard) |
| ref_b = self.arg_ref(source_b.name()) |
| |
| code = [f"{ref_b} is {ref_a}"] |
| self._produce_guard_code(guard, code) |
| |
| def DICT_KEYS(self, guard): |
| # Guard on the keys and their order |
| ref = self.arg_ref(guard) |
| value = self.get(guard.name) |
| t = type(value) |
| |
| code = list() |
| code.append(f"___check_type_id({ref}, {self.id_ref(t)})") |
| any_key_is_id = any(key_is_id(k) for k in value.keys()) |
| const_keys_repr = dict_keys_repr( |
| key_to_id(value), |
| local=is_from_local_source(guard.originating_source), |
| ) |
| if any_key_is_id: |
| code.append(f"___key_to_id({ref}) == {const_keys_repr}") |
| else: |
| code.append(f"list({ref}.keys()) == {const_keys_repr}") |
| |
| self._produce_guard_code(guard, code) |
| |
| def WEAKREF_ALIVE(self, guard): |
| self._produce_guard_code(guard, [f"{self.arg_ref(guard)} is not None"]) |
| |
| def NN_MODULE_PARAM_NAMES(self, guard): |
| ref = self.arg_ref(guard) |
| value = self.get(guard.name) |
| t = type(value) |
| keys = {k for k, v in value.named_parameters()} |
| |
| code = list() |
| code.append(f"___check_type_id({ref}, {self.id_ref(t)})") |
| code.append(f"{{k for k, v in {ref}.named_parameters()}} == {keys!r}") |
| |
| self._produce_guard_code(guard, code) |
| |
| def DICT_CONST_KEYS(self, guard): |
| """Constant keys match""" |
| ref = self.arg_ref(guard) |
| value = self.get(guard.name) |
| t = type(value) |
| |
| code = list() |
| code.append(f"___check_type_id({ref}, {self.id_ref(t)})") |
| code.append(f"list({ref}.keys()) == {list(value.keys())!r}") |
| |
| self._produce_guard_code(guard, code) |
| |
| def OBJECT_MUTATION(self, guard: Guard): |
| mutation_guard.watch(self.get(guard.name), self.check_fn_manager) |
| |
| def GRAD_MODE(self, guard: Guard): |
| pass # we always guard on this via GlobalStateGuard() |
| |
| def DETERMINISTIC_ALGORITHMS(self, guard: Guard): |
| pass # we always guard on this via GlobalStateGuard() |
| |
| def TORCH_FUNCTION_STATE(self, guard: Guard): |
| pass # we always guard on this via GlobalStateGuard() |
| |
| def DEFAULT_DEVICE(self, guard: Guard): |
| """Guard on CURRENT_DEVICE per torch.utils._device""" |
| assert guard.source is GuardSource.GLOBAL |
| import torch.utils._device as m |
| |
| self._produce_guard_code( |
| guard, [f"utils_device.CURRENT_DEVICE == {m.CURRENT_DEVICE!r}"] |
| ) |
| |
| def BACKEND_MATCH(self, guard: Guard): |
| """Guard on backend matching based on id of current_backend""" |
| assert guard.source is GuardSource.GLOBAL |
| backend_id = ( |
| f"{id(torch._dynamo.eval_frame.guarded_backend_cache.current_backend)}" |
| ) |
| code = [f"___check_current_backend({backend_id})"] |
| self._produce_guard_code(guard, code) |
| |
| def SHAPE_ENV(self, guard: Guard): |
| # Let's handle ShapeEnv guards. To do this, we will resolve |
| # shape variables to sources from tracked_fakes. This must happen after |
| # tensor checks. |
| assert guard.name == "" |
| output_graph = self.check_fn_manager.output_graph |
| # NB: self.output_graph can be None in the debug_nops tests |
| fs = output_graph.tracked_fakes |
| input_contexts = [a.symbolic_context for a in fs] |
| |
| def get_sources(t_id, dim): |
| # Looks up base sources mapped to a tensor id and uses them to create |
| # sources for the corresponding tensor dimension. |
| return [ |
| TensorPropertySource(source, TensorProperty.SIZE, dim) |
| for source in output_graph.tracked_fakes_id_to_source[t_id] |
| ] |
| |
| if output_graph.export_constraints: |
| source_pairs: List[Tuple[Source, Source]] = [] |
| for constraint in output_graph.export_constraints: |
| if constraint.t_id in output_graph.tracked_fakes_id_to_source: |
| source, *other_sources = get_sources( |
| constraint.t_id, constraint.dim |
| ) |
| # When t.size()[dim] maps to src0, src1, ..., srcN, we add |
| # constraints that make src0 "equal" to src1, ..., srcN. |
| source_pairs.extend( |
| (source, other_source) for other_source in other_sources |
| ) |
| if constraint.shared is not None: |
| # Moreover, when t.size()[dim] is specified equal to t'.size()[dim'] |
| # and t'.size()[dim'] maps to src1', ..., srcN', we add |
| # constraints that also make src0 "equal" to src1', ..., srcN'. |
| other_sources = get_sources( |
| constraint.shared.t_id, constraint.shared.dim |
| ) |
| source_pairs.extend( |
| (source, other_source) for other_source in other_sources |
| ) |
| else: |
| log.warning("Untracked tensor used in export constraints") |
| equalities_inputs = EqualityConstraint( |
| source_pairs=source_pairs, |
| warn_only=False, |
| ) |
| else: |
| equalities_inputs = None |
| guards = output_graph.shape_env.produce_guards( |
| [a.fake for a in fs], |
| [a.source for a in fs], |
| input_contexts=input_contexts, |
| equalities_inputs=equalities_inputs, |
| source_ref=self.source_ref, |
| # Export keeps static. |
| ignore_static=(not self.check_fn_manager.output_graph.export), |
| ) |
| # When exporting, we may work with the shape constraints some more in |
| # postprocessing, so don't freeze yet |
| if not self.check_fn_manager.output_graph.export: |
| output_graph.shape_env.freeze() |
| for shape_guard in guards: |
| self._produce_guard_code(guard, [shape_guard], shape_env=True) |
| |
| def TENSOR_MATCH(self, guard: Guard, value=None): |
| if guard.is_nn_module() or guard.originating_source.is_dict_key(): |
| self.ID_MATCH(guard) |
| else: |
| if isinstance(value, TensorWeakRef): |
| value = value() |
| |
| value = value if value is not None else self.get(guard.name) |
| assert isinstance(value, torch.Tensor) |
| |
| tensor_name = self.arg_ref(guard) |
| # [Note - On Export Tensor Guards] |
| # |
| # In eager mode, tensor guards are evaluated through C++, in guards.cpp |
| # see [Note - On Eager Tensor Guards] for more info. |
| # |
| # In export mode, we instead maintain parallel logic between C++ and python |
| # here, with an exception of checking the dispatch key - with the idea that a dispatch key |
| # is an entirely runtime notion that would make no sense to keep in an exported graph. |
| # |
| # Now, this idea is okay, but to paraphrase @ezyang, this mental model is sufficient for now, although |
| # not entirely true. |
| # For example, suppose one of the input tensors had the negative dispatch key. |
| # You should end up with a graph that is specialized for tensors that have a negative dispatch key. |
| # If you allow a Tensor that does NOT have this bit set, you will accidentally run it "as if" it were negated. |
| # Now, negative key only shows up for complex numbers, and most likely, the exported to target doesn't |
| # support this feature at all, but the point stands that :some: tensor state only shows up on dispatch key. |
| # TODO(voz): Either populate a dispatch_key check into the guards, or error on users passing in an unsupported |
| # subset of keys during export. |
| # |
| # The list of tensor fields and calls we care about can be found in `terms` below. |
| # TODO(voz): We are missing storage offset in all our tensor guards? |
| code: List[str] = list() |
| if self.check_fn_manager.output_graph.export: |
| self.TYPE_MATCH(guard) |
| terms = [ |
| "dtype", |
| "device", |
| "requires_grad", |
| "ndimension()", |
| ] |
| |
| for term in terms: |
| real_value = self.get(tensor_name + "." + term) |
| if istype(real_value, (torch.device, torch.dtype)): |
| # copy pasted from EQUALS_MATCH |
| code.append(f"str({tensor_name}.{term}) == {str(real_value)!r}") |
| else: |
| code.append(f"{tensor_name}.{term} == {real_value}") |
| else: |
| self.tensor_check_names.append(tensor_name) |
| self.tensor_check_examples.append(value) |
| self.tensor_check_guards.append(guard) |
| |
| # A frame is valid for reuse with dynamic dimensions if the new dynamic dimensions are a |
| # strict subset of the old. |
| # |
| # The logic here is as follows: |
| # |
| # Every mark_dynamic directive is a user-knows-best command, which can incur a raise at tracing |
| # time if we find guards that run counter to the user directive. |
| # If compiling a frame with explicit dynamic dims X could cause an exception, we MUST NOT skip compiling. |
| # |
| # If the frame is compiled with any marked dynamic indices, let's call that set of indices X. |
| # When we evaluated inputs against the guards, given the same tensor with potentially new dynamic indices, |
| # let's call that set Y. |
| # |
| # When X is a strict subset of Y, the potential new raises introduced during compilation are a strict subset |
| # of the raises we |
| # could have encountered. The frame compiled under Y is safe to reuse with X. |
| # When X is not a strict subset of Y, the non-overlapping new elements of X may cause new raises, and the |
| # frame is no longer fit for reuse. |
| # |
| # This is the case because any newly introduced mark_dynamic directives have a chance of |
| # raising, failing compilation. Any existing mark_dynamic indices that we lost are safe to lose |
| # as all it means is that we have gotten rid of a user directive which could incur a raise at compile time. |
| # In the case of when there is no Y, that is, there are no dynamic indices marked at all, the frame is safe |
| # to reuse |
| # as an empty set is a safe degeneration - that is, a strictly static tensor is always valid for a frame |
| # compiled with that same |
| # tensor + more onerous user directives. |
| assert guard.source is not None |
| static, reason = tensor_always_has_static_shape( |
| value, is_tensor=True, guard_source=guard.source |
| ) |
| if not static: |
| if hasattr(value, "_dynamo_dynamic_indices"): |
| code.append( |
| f"(({tensor_name}._dynamo_dynamic_indices.issubset({value._dynamo_dynamic_indices})) if hasattr({tensor_name}, '_dynamo_dynamic_indices') else True)" # noqa: B950 |
| ) |
| # In the case of us not having any dynamic dimension indices, we compiled the frame with no chance of |
| # raising for this specific tensor - and any inputs with more dynamic user directives specified must be recompiled. |
| else: |
| code.append( |
| f"hasattr({tensor_name}, '_dynamo_dynamic_indices') == False" |
| ) |
| if len(code) > 0: |
| self._produce_guard_code(guard, code) |
| |
| # A util that appends guarded code, or, in the case of export, adds data onto guards |
| def _produce_guard_code( |
| self, guard, code_list, provided_guarded_object=None, shape_env=False |
| ): |
| # WARNING: It is important that cur_frame/caller do NOT stay in |
| # the current frame, because they will keep things live longer |
| # than they should. See TestMisc.test_release_module_memory |
| cur_frame = currentframe() |
| assert cur_frame is not None |
| caller = cur_frame.f_back |
| del cur_frame |
| assert caller is not None |
| func_name = getframeinfo(caller)[2] |
| del caller |
| # We use func_name for export, so might as well get a nice defensive check out of it |
| assert func_name in dir( |
| self.__class__ |
| ), f"_produce_guard_code must be called from inside GuardedCode. Called from {func_name}" |
| |
| if shape_env: |
| self.shape_env_code.append(GuardCodeList(code_list, guard)) |
| else: |
| self.code.append(GuardCodeList(code_list, guard)) |
| |
| # Not all guards have names, some can be installed globally (see asserts on HAS_GRAD) |
| if provided_guarded_object is None: |
| name_valid = guard.name is not None and guard.name != "" |
| |
| guarded_object = self.get(guard.name) if name_valid else None |
| else: |
| guarded_object = provided_guarded_object |
| |
| guarded_object_type = ( |
| weakref.ref(type(guarded_object)) if guarded_object is not None else None |
| ) |
| obj_ref = None |
| # Not necessary to have weakref for Enum type, but there is a bug that |
| # makes hasattr(guarded_object.__class__, "__weakref__") return True. |
| if hasattr(guarded_object.__class__, "__weakref__") and not isinstance( |
| guarded_object, enum.Enum |
| ): |
| obj_ref = weakref.ref(guarded_object) |
| |
| guard.set_export_info( |
| func_name, |
| guarded_object_type, |
| code_list, |
| obj_ref, |
| ) |
| |
| |
| # Common Sub-Expression Elimination for Python expressions. |
| # |
| # There are 2 steps to this pass: |
| # 1. Count the frequency of each sub-expression (i.e. inner |
| # node in the AST tree) |
| # |
| # 2. Replace those that occur more than once by a fresh variable 'v'. |
| # 'v' will be defined in the 'preface' list (output argument to |
| # 'NodeTransformer') |
| # |
| # NB: the use of 'ast.unparse' while visiting the nodes makes this pass |
| # quadratic on the depth of the tree. |
| # |
| # NB: this pass creates a new variable for each AST node that is repeated |
| # more than 'USE_THRESHOLD'. e.g. if 'a.b.c.d' is used 10 times, 'a.b.c' |
| # and 'a.b' are also used 10 times. So, there will be a new variable for |
| # each of them. |
| class PyExprCSEPass: |
| # Maximum number of times a given expression can be used without being |
| # replaced by a fresh variable. |
| USE_THRESHOLD = 1 |
| |
| # Ad-Hoc: AST nodes this pass focuses on. |
| ALLOWED_NODE_TYPES = (ast.Attribute, ast.Call, ast.Subscript) |
| |
| @dataclasses.dataclass |
| class Config: |
| expr_count: Dict[str, int] |
| expr_to_name: Dict[str, str] |
| |
| class ExprCounter(ast.NodeVisitor): |
| def __init__(self, config: PyExprCSEPass.Config) -> None: |
| self._config = config |
| |
| def visit(self, node: ast.AST) -> Any: |
| if isinstance(node, PyExprCSEPass.ALLOWED_NODE_TYPES): |
| self._config.expr_count[_ast_unparse(node)] += 1 |
| super().visit(node) |
| |
| class Replacer(ast.NodeTransformer): |
| def __init__( |
| self, |
| config: PyExprCSEPass.Config, |
| gen_name: Callable[[], str], |
| ) -> None: |
| super().__init__() |
| self._config = config |
| self._gen_name = gen_name |
| self.preface: List[str] = [] |
| |
| def visit(self, node: ast.AST) -> Any: |
| if isinstance(node, PyExprCSEPass.ALLOWED_NODE_TYPES): |
| expr = _ast_unparse(node) |
| |
| # Replacement only occurs if a given expression is used more |
| # than once. |
| if self._config.expr_count[expr] > PyExprCSEPass.USE_THRESHOLD: |
| if expr not in self._config.expr_to_name: |
| # Parent 'visit' is called so that we CSE the inner expressions first. |
| # |
| # The resulting expression is used as right-hand-side of the variable |
| # assignment. i.e. we are CSE-ing the children before the parents. |
| # |
| # Indexing still uses the old 'node', since that's what was counted |
| # by the 'NodeVisitor'. |
| node_ = super().visit(node) |
| expr_ = _ast_unparse(node_) |
| var_name = self._gen_name() |
| self.preface.append(f"{var_name} = {expr_}") |
| self._config.expr_to_name[expr] = var_name |
| else: |
| var_name = self._config.expr_to_name[expr] |
| return ast.Name(var_name, ast.Load()) |
| |
| return super().visit(node) |
| |
| def __init__(self) -> None: |
| self._counter = 0 |
| self._config = self.Config( |
| expr_count=collections.defaultdict(lambda: 0), expr_to_name={} |
| ) |
| |
| def _new_var(self, prefix: str = "_var") -> str: |
| name = f"{prefix}{self._counter}" |
| self._counter += 1 |
| return name |
| |
| def count(self, exprs: List[str]) -> None: |
| counter = self.ExprCounter(self._config) |
| for e in exprs: |
| try: |
| counter.visit(ast.parse(e)) |
| except SyntaxError as ex: |
| log.exception("Failed to visit expr at line %s.\n%s", ex.lineno, e) |
| raise |
| |
| def replace(self, expr: str) -> Tuple[List[str], str]: |
| replacer = self.Replacer(self._config, self._new_var) |
| new_node = replacer.visit(ast.parse(expr)) |
| return replacer.preface, _ast_unparse(new_node) |
| |
| |
| def must_add_nn_module_guards(guard): |
| # For config.guard_nn_modules=False, we can skip all the guards that |
| # originate from inside of nn module except for a few categories. |
| return ( |
| # Guard for defaults |
| isinstance(guard.originating_source, DefaultsSource) |
| # Guard using dict tags if the config flag is set |
| or ( |
| config.guard_nn_modules_using_dict_tags |
| and guard.create_fn is GuardBuilder.NN_MODULE |
| ) |
| ) |
| |
| |
| class DeletedGuardFn: |
| pass |
| |
| |
| # NB: Naively, you'd expect this to only be a function that produces |
| # the callable that constitutes the guard. However, there is some |
| # delicate handling for invalidating this check function when the |
| # locals/globals get invalidated, so there's some extra state |
| # we have to hold in this manager class. |
| class CheckFunctionManager: |
| def __init__( |
| self, |
| output_graph=None, |
| guard_fail_fn: Optional[Callable[[GuardFail], None]] = None, |
| ): |
| guards = output_graph.guards if output_graph else None |
| self._weakrefs: Dict[int, ReferenceType[object]] = {} |
| self.output_graph = output_graph |
| |
| # Note: right overrides left |
| def combine_scopes(left, right): |
| if left is None: |
| return right |
| |
| if right is None: |
| return left |
| |
| return {**left, **right} |
| |
| w_builder = None |
| |
| def source_ref(source): |
| guard_source = source.guard_source() |
| if guard_source is GuardSource.CONSTANT: |
| # No need to track constants |
| return source.name() |
| assert w_builder |
| r_builder = w_builder() |
| assert r_builder is not None |
| return r_builder.arg_ref(source.name()) |
| |
| builder = GuardBuilder( |
| self.id_ref, |
| source_ref, |
| self.lookup_weakrefs, |
| output_graph.local_scope, |
| output_graph.global_scope, |
| self, |
| ) |
| |
| # Break retain cycle. See test_release_scope_memory |
| def cleanup_builder(weak_b): |
| b = weak_b() |
| if b: |
| b.scope = None |
| |
| # Break retain cycle. See test_release_input_memory |
| w_builder = weakref.ref(builder, cleanup_builder) |
| |
| for guard in sorted(guards or [], key=Guard.sort_key): |
| if ( |
| not config.guard_nn_modules |
| and guard.is_nn_module() |
| # Default func args must be guarded on. |
| # TODO: we could make use of 'DefaultsSource' and offer a .guard.is_defaults() API |
| and "__defaults__" not in guard.name |
| and "__kwdefaults__" not in guard.name |
| and (config.skip_nnmodule_hook_guards or "hooks" not in guard.name) |
| ): |
| continue |
| |
| guard.create(builder) |
| self.check_fn = self.compile_check_fn(builder, guards, guard_fail_fn) |
| self._weakrefs.clear() |
| # Keep track of weak references of objects with ID_MATCH guard. This |
| # info is stored alongside optimized_code and check_fn and is used to |
| # limit the number of cache entries with same ID_MATCH'd object. |
| # TODO(janimesh) - Currently this information is stored as an attr on |
| # the check_fn itself to avoid changing CacehEntry datastructure in |
| # eval_frame.c. In future, we should probably replace check_fn with a |
| # queryable data structure such that this information is already present |
| # in some form. |
| self.check_fn.id_matched_objs = builder.id_matched_objs |
| |
| def compile_check_fn(self, builder, guards_out, guard_fail_fn): |
| # see parallel handling of ".0" / "___implicit0" in _eval_frame.c |
| largs = builder.argnames |
| largs += ["**___kwargs_ignored"] |
| |
| guards_log.debug("GUARDS:") |
| |
| # Don't report this guard, it's always the same, useless! |
| code_parts = ["___check_global_state()"] |
| verbose_code_parts = code_parts[:] |
| |
| def add_code_part(code, guard, log_only=False): |
| extra = "" |
| if guard.user_stack: |
| for fs in reversed(guard.user_stack): |
| if fs.filename not in uninteresting_files(): |
| extra = f" # {format_frame(fs, line=True)}" |
| break |
| elif guard.stack: |
| extra = f" # {format_frame(guard.stack.summary()[-1])}" |
| |
| guards_log.debug("%s", f"{code:<60}{extra}") |
| |
| if verbose_guards_log.isEnabledFor(logging.DEBUG): |
| maybe_stack = "" |
| maybe_user_stack = "" |
| if guard is not None: |
| if guard.stack: |
| maybe_stack = f"\nStack:\n{''.join(guard.stack.format())}" |
| if guard.user_stack: |
| maybe_user_stack = ( |
| f"\nUser stack:\n{''.join(guard.user_stack.format())}" |
| ) |
| verbose_guards_log.debug( |
| "Guard: %s%s%s", |
| code, |
| maybe_stack, |
| maybe_user_stack, |
| ) |
| |
| if not log_only: |
| code_parts.append(code) |
| verbose_code_parts.append(f"{code:<60}{extra}") |
| |
| seen = set() |
| for gcl in builder.code: |
| for code in gcl.code_list: |
| if code not in seen: |
| add_code_part(code, gcl.guard) |
| seen.add(code) |
| |
| tensor_check_names = builder.tensor_check_names |
| check_tensors_fn = None |
| check_tensors_verbose_fn = None |
| if tensor_check_names: |
| assert ( |
| not self.output_graph.export |
| ), "Illegal to set tensor_check_names in export." |
| tensor_check_examples = builder.tensor_check_examples |
| |
| def convert(size_or_stride): |
| converted: List[Optional[int]] = [] |
| for dim in size_or_stride: |
| if not is_symbolic(dim): |
| converted.append(dim) |
| else: |
| assert isinstance(dim, torch.SymInt) |
| converted.append(dim.node.maybe_as_int()) |
| return converted |
| |
| dynamic_dims_sizes = [ |
| convert(self.output_graph.tensor_weakref_to_sizes_strides[t]["size"]) |
| for t in tensor_check_examples |
| ] |
| |
| dynamic_dims_strides = [ |
| convert(self.output_graph.tensor_weakref_to_sizes_strides[t]["stride"]) |
| for t in tensor_check_examples |
| ] |
| |
| tensor_guards = TensorGuards( |
| *tensor_check_examples, |
| dynamic_dims_sizes=dynamic_dims_sizes, |
| dynamic_dims_strides=dynamic_dims_strides, |
| ) |
| check_tensors_fn = tensor_guards.check |
| check_tensors_verbose_fn = tensor_guards.check_verbose |
| tensor_check_args = ", ".join( |
| tensor_check_names + ["tensor_check_names=tensor_check_names"] |
| ) |
| # Do this manually, to un-stagger the guards in log message |
| code_parts.append(f"___check_tensors({tensor_check_args})") |
| verbose_code_parts.append(f"___check_tensors({tensor_check_args})") |
| tensor_check_guards = builder.tensor_check_guards |
| |
| for i, name in enumerate(tensor_check_names): |
| # This is a copy of what guards.cpp checks against |
| # Keep this in sync with TensorCheck constructor |
| t = tensor_check_examples[i] |
| pytype = type(t) |
| dispatch_key = ( |
| torch._C._dispatch_keys(t) |
| | torch._C._dispatch_tls_local_include_set() |
| ) - torch._C._dispatch_tls_local_exclude_set() |
| dtype = t.dtype |
| device_index = t.device.index |
| requires_grad = t.requires_grad |
| sizes = dynamic_dims_sizes[i] |
| strides = dynamic_dims_strides[i] |
| add_code_part( |
| f"check_tensor({name}, {pytype.__qualname__}, {dispatch_key}, {dtype}, " |
| f"device={device_index}, requires_grad={requires_grad}, size={sizes}, stride={strides})", |
| tensor_check_guards[i], |
| log_only=True, |
| ) |
| |
| aotautograd_guards: List[GuardEnvExpr] = ( |
| self.output_graph.tracing_context.guards_context.aotautograd_guards |
| if self.output_graph |
| else [] |
| ) |
| for guard in aotautograd_guards: |
| if isinstance(guard, DuplicateInputs): |
| source_a = guard.input_source_a |
| source_b = guard.input_source_b |
| add_code_part(f"{source_a.name()} is {source_b.name()}", None) |
| else: |
| raise RuntimeError(f"Unknown GuardEnvExpr: {guard}") |
| |
| # TODO: the "guard" here is actually just the top level SHAPE_ENV |
| # which is useless. Get ShapeEnv to pass in more provenance. |
| for gcl in builder.shape_env_code: |
| for code in gcl.code_list: |
| add_code_part(code, gcl.guard) |
| |
| global_state = convert_frame.initial_global_state |
| if global_state is None: |
| # we should only hit this case in NopTests() |
| global_state = convert_frame.GlobalStateGuard() |
| closure_vars = { |
| "___check_tensors": check_tensors_fn, |
| "___check_tensors_verbose": check_tensors_verbose_fn, |
| "___check_global_state": global_state.check, |
| "___check_current_backend": torch._dynamo.eval_frame.check_current_backend, |
| "tensor_check_names": tensor_check_names, |
| **SYMPY_INTERP, |
| **CLOSURE_VARS, |
| } |
| |
| unique_code_parts = list(unique(code_parts)) |
| make_guard_fn_args = ", ".join(closure_vars.keys()) |
| guard_body, pycode = build_guard_function(unique_code_parts, make_guard_fn_args) |
| |
| if os.environ.get("TORCHDYNAMO_PRINT_GUARDS", None) == "1": |
| print("GUARDS\n", guard_body) |
| |
| out: Dict[str, Any] = dict() |
| |
| # We don't put builder.scope as the globals in exec call because |
| # guard_fn.__globals__ becomes equal to builder.scope. This causes |
| # guard_fn to hold a referece to f_locals sitting in builder.scope["L"] |
| globals_for_guard_fn = {"G": builder.scope["G"]} |
| try: |
| exec(pycode, globals_for_guard_fn, out) |
| except SyntaxError as ex: |
| log.exception("Failed to exec guard at line %s.\n%s", ex.lineno, pycode) |
| raise |
| guard_fn = out["___make_guard_fn"](*closure_vars.values()) |
| guard_fn.closure_vars = closure_vars |
| # TODO(whc) maybe '.code_parts' was only kept around for the guard callback? so we don't need both |
| guard_fn.args = largs |
| guard_fn.code_parts = code_parts |
| guard_fn.verbose_code_parts = verbose_code_parts |
| # Grab only G, but preserve "G" because guards access it as "G" |
| guard_fn.global_scope = globals_for_guard_fn |
| guard_fn.guard_fail_fn = guard_fail_fn |
| # will be populated by a non-owning reference to CacheEntry/ExtraState |
| # when the CacheEntry is constructed |
| guard_fn.cache_entry = None |
| guard_fn.extra_state = None |
| return guard_fn |
| |
| def invalidate(self): |
| # Some tests reveal that CheckFunctionManager has no attribute |
| # check_fn, but this case should not be of any concern. |
| # This case doesn't seem easy to repro. |
| if ( |
| hasattr(self, "check_fn") |
| and self.check_fn is not DeletedGuardFn |
| and (cache_entry := self.check_fn.cache_entry) is not None |
| and (extra_state := self.check_fn.extra_state) is not None |
| ): |
| assert isinstance(cache_entry, CacheEntry) |
| assert isinstance(extra_state, ExtraState) |
| extra_state.invalidate(cache_entry) |
| self.check_fn.cache_entry = None |
| self.check_fn.extra_state = None |
| self.check_fn = DeletedGuardFn |
| |
| def id_ref(self, obj): |
| """add a weakref, return the id""" |
| try: |
| if id(obj) not in self._weakrefs: |
| # We will clear the _weakrefs dict at the end of __init__ |
| # function, which will delete the callbacks as well. Therefore, |
| # we are using a finalizer which is kept alive. |
| self._weakrefs[id(obj)] = weakref.ref(obj) |
| weakref.finalize(obj, self.invalidate) |
| except TypeError: |
| pass # cannot weakref bool object |
| return id(obj) |
| |
| def lookup_weakrefs(self, obj): |
| """Lookup the _weakrefs created in id_ref function for ID_MATCH'd objects""" |
| if id(obj) in self._weakrefs: |
| return self._weakrefs[id(obj)] |
| return None |
| |
| |
| def build_guard_function(code_parts, closure_args) -> Tuple[str, str]: |
| from torch._inductor.utils import IndentedBuffer |
| |
| if HAS_UNPARSE_FUNCTIONS: |
| csepass = PyExprCSEPass() |
| csepass.count(code_parts) |
| |
| def replace(expr: str) -> Tuple[List[str], str]: |
| return csepass.replace(expr) |
| |
| else: |
| |
| def replace(expr: str) -> Tuple[List[str], str]: |
| return [], expr |
| |
| # Generate the inner body of the guard function. |
| # i.e. if-chain of the guard expressions. |
| guard_body = IndentedBuffer() |
| for expr in code_parts: |
| preface, expr = replace(expr) |
| guard_body.writelines(preface) |
| guard_body.writeline(f"if not ({expr}):") |
| with guard_body.indent(): |
| guard_body.writeline("return False") |
| |
| # Wrap the inner body into the actual guard function. |
| guard = IndentedBuffer() |
| guard.writeline("def guard(L):") |
| with guard.indent(): |
| guard.splice(guard_body) |
| guard.writeline("return True") |
| |
| # Wrap the whole guard function into another function |
| # with the closure variables. |
| make_guard_fn = IndentedBuffer() |
| make_guard_fn.writeline(f"def ___make_guard_fn({closure_args}):") |
| with make_guard_fn.indent(): |
| make_guard_fn.splice(guard) |
| make_guard_fn.writeline("return guard") |
| |
| return guard_body.getvalue(), make_guard_fn.getvalue() |
| |
| |
| def is_recompiles_enabled(): |
| return torch._logging._internal.log_state.is_artifact_enabled("recompiles") |
| |
| |
| def is_recompiles_verbose_enabled(): |
| return torch._logging._internal.log_state.is_artifact_enabled("recompiles_verbose") |
| |
| |
| def get_guard_fail_reason( |
| guard_fn: GuardFn, |
| code: types.CodeType, |
| f_locals: Dict[str, object], |
| ) -> str: |
| """ |
| Return the reason why `guard_fn` failed. |
| Updates `guard_failures` with the generated reason. |
| Only the first failed check of guard_fn is reported. |
| """ |
| scope = {"L": f_locals, "G": guard_fn.global_scope["G"]} |
| scope.update(guard_fn.closure_vars) |
| scope["___check_tensors"] = scope["___check_tensors_verbose"] |
| reasons: List[str] = [] |
| for part in guard_fn.verbose_code_parts: |
| global_scope = dict(guard_fn.global_scope) |
| global_scope["__compile_source__"] = part |
| with report_compile_source_on_error(): |
| try: |
| fail_reason = eval(part, global_scope, scope) |
| except Exception as e: |
| if is_recompiles_verbose_enabled(): |
| continue |
| else: |
| raise |
| # Only ___check_tensors knows how to return a fancy fail reason; |
| # for everything else we just report the code that failed |
| |
| if isinstance(fail_reason, bool) and not fail_reason: |
| fail_reason = part |
| if isinstance(fail_reason, str): |
| reasons.append(fail_reason) |
| if not is_recompiles_verbose_enabled(): |
| break |
| |
| reason_str = "\n".join(reasons) |
| guard_failures[orig_code_map[code]].append(reason_str) |
| |
| try: |
| if guard_fn.guard_fail_fn is not None: |
| guard_fn.guard_fail_fn( |
| GuardFail(reason_str or "unknown reason", orig_code_map[code]) |
| ) |
| except Exception as e: |
| log.exception( |
| "Failure in guard_fail_fn callback - raising here will cause a NULL Error on guard eval", |
| ) |
| |
| return reason_str |
| |
| |
| def get_and_maybe_log_recompilation_reason( |
| cache_entry, frame: types.FrameType |
| ) -> List[str]: |
| """ |
| Return the list of guard failure reasons using cache_entry. |
| Logs the recompilation reason if `recompiles` logging is enabled. |
| Raises a RecompileError if `config.error_on_recompile` is enabled. |
| """ |
| reasons = [] |
| while cache_entry is not None: |
| reason = get_guard_fail_reason( |
| cache_entry.check_fn, cache_entry.code, frame.f_locals |
| ) |
| if reason: |
| reasons.append(reason) |
| cache_entry = cache_entry.next |
| |
| code = frame.f_code |
| |
| # at least one of "recompiles" or "recompiles_verbose" is enabled |
| do_recompiles_log = is_recompiles_enabled() or is_recompiles_verbose_enabled() |
| |
| if do_recompiles_log or config.error_on_recompile: |
| if is_recompiles_verbose_enabled(): |
| failures = "\n\n".join( |
| f"guard {i} failures:\n" + textwrap.indent(reason, "- ") |
| for i, reason in enumerate(reasons) |
| ) |
| else: |
| failures = textwrap.indent("\n".join(reasons), "- ") |
| guard_failure_details = ( |
| f"triggered by the following guard failure(s):\n{failures}" |
| ) |
| message = ( |
| f"Recompiling function {code.co_name} in {code.co_filename}:{code.co_firstlineno}\n" |
| f"{textwrap.indent(guard_failure_details, ' ')}" |
| ) |
| if do_recompiles_log: |
| if is_recompiles_verbose_enabled(): |
| recompiles_verbose_log.debug(message) |
| else: |
| recompiles_log.debug(message) |
| if config.error_on_recompile: |
| raise exc.RecompileError(message) |
| |
| return reasons |
| |
| |
| def guard_error_hook( |
| guard_fn: GuardFn, |
| code: types.CodeType, |
| f_locals: Dict[str, object], |
| index: int, |
| last: bool, |
| ): |
| print( |
| f"ERROR RUNNING GUARDS {code.co_name} {code.co_filename}:{code.co_firstlineno}" |
| ) |
| print("lambda " + ", ".join(guard_fn.args) + ":") |
| print(" ", " and\n ".join(guard_fn.code_parts)) |
| local_scope = {"L": f_locals, **guard_fn.closure_vars} |
| for guard in guard_fn.code_parts: |
| try: |
| eval(guard, guard_fn.global_scope, local_scope) |
| except: # noqa: B001,E722 |
| print(f"Malformed guard:\n{guard}") |
| |
| |
| set_guard_error_hook(guard_error_hook) |
| |
| |
| def unique(seq): |
| seen = set() |
| for x in seq: |
| if x not in seen: |
| yield x |
| seen.add(x) |
| |
| |
| def make_dupe_guard(obj_source, dupe_source): |
| # Note - we may end up in a situation where we invoke something like |
| # def fn(x, y) |
| # with fn(x, x) |
| # Prior to the addition of tracking to all relevant objects, we would handle this just fine by |
| # eagerly re-entering VB and rewrapping inputs, correctly creating graphargs and placeholders. However, |
| # with tracking on inputs, duplicate inputs or aliased relationships may end up getting erased here - |
| # In the fn(x, x) example call above look like a graph with a single input. |
| # In order to ensure that we do not reuse fn(x, x) for fn(x, y), we create a duplicate input guard. |
| |
| # Note - we may not have a source, that is fine, it just means we had an object that is safe to have |
| # leave unsourced - like a local list created and discharged entirely within a local scope. |
| if dupe_source and dupe_source != obj_source: |
| ser_source_is_local = is_from_local_source(dupe_source) |
| source_is_local = is_from_local_source(obj_source) |
| # Note - both must be local, or global, or we will run afoul of a lack of merging in how we currently |
| # reconcile guards builder scopes in compile_check_fn. This technically means we miss a guard here, |
| # so maybe we should do this refactor before we land this... |
| # TODO(voz): Combine local and global guard builders. |
| if ser_source_is_local == source_is_local: |
| # Note - this is a little aggressive - these being duplicate input does not always matter. |
| # However, this should always be a sound guard to add here. |
| return functools.partial(GuardBuilder.DUPLICATE_INPUT, source_b=dupe_source) |
| return None |
| |
| |
| def install_guard(*guards, skip=0): |
| """ |
| Add dynamo guards to the current tracing context. |
| |
| Args: |
| guards: guard(s) to add |
| skip: number of stack frames to ignore for debug stack trace |
| """ |
| from torch._guards import TracingContext |
| |
| add = TracingContext.get().guards_context.dynamo_guards.add |
| for guard in guards: |
| assert isinstance(guard, Guard) |
| add(guard, skip=skip + 1) |