| """Implement various linear algebra algorithms for low rank matrices.""" |
| |
| __all__ = ["svd_lowrank", "pca_lowrank"] |
| |
| from typing import Optional, Tuple |
| |
| import torch |
| from torch import _linalg_utils as _utils, Tensor |
| from torch.overrides import handle_torch_function, has_torch_function |
| |
| |
| def get_approximate_basis( |
| A: Tensor, |
| q: int, |
| niter: Optional[int] = 2, |
| M: Optional[Tensor] = None, |
| ) -> Tensor: |
| """Return tensor :math:`Q` with :math:`q` orthonormal columns such |
| that :math:`Q Q^H A` approximates :math:`A`. If :math:`M` is |
| specified, then :math:`Q` is such that :math:`Q Q^H (A - M)` |
| approximates :math:`A - M`. without instantiating any tensors |
| of the size of :math:`A` or :math:`M`. |
| |
| .. note:: The implementation is based on the Algorithm 4.4 from |
| Halko et al., 2009. |
| |
| .. note:: For an adequate approximation of a k-rank matrix |
| :math:`A`, where k is not known in advance but could be |
| estimated, the number of :math:`Q` columns, q, can be |
| choosen according to the following criteria: in general, |
| :math:`k <= q <= min(2*k, m, n)`. For large low-rank |
| matrices, take :math:`q = k + 5..10`. If k is |
| relatively small compared to :math:`min(m, n)`, choosing |
| :math:`q = k + 0..2` may be sufficient. |
| |
| .. note:: To obtain repeatable results, reset the seed for the |
| pseudorandom number generator |
| |
| Args:: |
| A (Tensor): the input tensor of size :math:`(*, m, n)` |
| |
| q (int): the dimension of subspace spanned by :math:`Q` |
| columns. |
| |
| niter (int, optional): the number of subspace iterations to |
| conduct; ``niter`` must be a |
| nonnegative integer. In most cases, the |
| default value 2 is more than enough. |
| |
| M (Tensor, optional): the input tensor's mean of size |
| :math:`(*, m, n)`. |
| |
| References:: |
| - Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding |
| structure with randomness: probabilistic algorithms for |
| constructing approximate matrix decompositions, |
| arXiv:0909.4061 [math.NA; math.PR], 2009 (available at |
| `arXiv <http://arxiv.org/abs/0909.4061>`_). |
| """ |
| |
| niter = 2 if niter is None else niter |
| dtype = _utils.get_floating_dtype(A) if not A.is_complex() else A.dtype |
| matmul = _utils.matmul |
| |
| R = torch.randn(A.shape[-1], q, dtype=dtype, device=A.device) |
| |
| # The following code could be made faster using torch.geqrf + torch.ormqr |
| # but geqrf is not differentiable |
| |
| X = matmul(A, R) |
| if M is not None: |
| X = X - matmul(M, R) |
| Q = torch.linalg.qr(X).Q |
| for i in range(niter): |
| X = matmul(A.mH, Q) |
| if M is not None: |
| X = X - matmul(M.mH, Q) |
| Q = torch.linalg.qr(X).Q |
| X = matmul(A, Q) |
| if M is not None: |
| X = X - matmul(M, Q) |
| Q = torch.linalg.qr(X).Q |
| return Q |
| |
| |
| def svd_lowrank( |
| A: Tensor, |
| q: Optional[int] = 6, |
| niter: Optional[int] = 2, |
| M: Optional[Tensor] = None, |
| ) -> Tuple[Tensor, Tensor, Tensor]: |
| r"""Return the singular value decomposition ``(U, S, V)`` of a matrix, |
| batches of matrices, or a sparse matrix :math:`A` such that |
| :math:`A \approx U \operatorname{diag}(S) V^{\text{H}}`. In case :math:`M` is given, then |
| SVD is computed for the matrix :math:`A - M`. |
| |
| .. note:: The implementation is based on the Algorithm 5.1 from |
| Halko et al., 2009. |
| |
| .. note:: For an adequate approximation of a k-rank matrix |
| :math:`A`, where k is not known in advance but could be |
| estimated, the number of :math:`Q` columns, q, can be |
| choosen according to the following criteria: in general, |
| :math:`k <= q <= min(2*k, m, n)`. For large low-rank |
| matrices, take :math:`q = k + 5..10`. If k is |
| relatively small compared to :math:`min(m, n)`, choosing |
| :math:`q = k + 0..2` may be sufficient. |
| |
| .. note:: This is a randomized method. To obtain repeatable results, |
| set the seed for the pseudorandom number generator |
| |
| .. note:: In general, use the full-rank SVD implementation |
| :func:`torch.linalg.svd` for dense matrices due to its 10x |
| higher performance characteristics. The low-rank SVD |
| will be useful for huge sparse matrices that |
| :func:`torch.linalg.svd` cannot handle. |
| |
| Args:: |
| A (Tensor): the input tensor of size :math:`(*, m, n)` |
| |
| q (int, optional): a slightly overestimated rank of A. |
| |
| niter (int, optional): the number of subspace iterations to |
| conduct; niter must be a nonnegative |
| integer, and defaults to 2 |
| |
| M (Tensor, optional): the input tensor's mean of size |
| :math:`(*, m, n)`, which will be broadcasted |
| to the size of A in this function. |
| |
| References:: |
| - Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding |
| structure with randomness: probabilistic algorithms for |
| constructing approximate matrix decompositions, |
| arXiv:0909.4061 [math.NA; math.PR], 2009 (available at |
| `arXiv <https://arxiv.org/abs/0909.4061>`_). |
| |
| """ |
| if not torch.jit.is_scripting(): |
| tensor_ops = (A, M) |
| if not set(map(type, tensor_ops)).issubset( |
| (torch.Tensor, type(None)) |
| ) and has_torch_function(tensor_ops): |
| return handle_torch_function( |
| svd_lowrank, tensor_ops, A, q=q, niter=niter, M=M |
| ) |
| return _svd_lowrank(A, q=q, niter=niter, M=M) |
| |
| |
| def _svd_lowrank( |
| A: Tensor, |
| q: Optional[int] = 6, |
| niter: Optional[int] = 2, |
| M: Optional[Tensor] = None, |
| ) -> Tuple[Tensor, Tensor, Tensor]: |
| # Algorithm 5.1 in Halko et al., 2009 |
| |
| q = 6 if q is None else q |
| m, n = A.shape[-2:] |
| matmul = _utils.matmul |
| if M is not None: |
| M = M.broadcast_to(A.size()) |
| |
| # Assume that A is tall |
| if m < n: |
| A = A.mH |
| if M is not None: |
| M = M.mH |
| |
| Q = get_approximate_basis(A, q, niter=niter, M=M) |
| B = matmul(Q.mH, A) |
| if M is not None: |
| B = B - matmul(Q.mH, M) |
| U, S, Vh = torch.linalg.svd(B, full_matrices=False) |
| V = Vh.mH |
| U = Q.matmul(U) |
| |
| if m < n: |
| U, V = V, U |
| |
| return U, S, V |
| |
| |
| def pca_lowrank( |
| A: Tensor, |
| q: Optional[int] = None, |
| center: bool = True, |
| niter: int = 2, |
| ) -> Tuple[Tensor, Tensor, Tensor]: |
| r"""Performs linear Principal Component Analysis (PCA) on a low-rank |
| matrix, batches of such matrices, or sparse matrix. |
| |
| This function returns a namedtuple ``(U, S, V)`` which is the |
| nearly optimal approximation of a singular value decomposition of |
| a centered matrix :math:`A` such that :math:`A \approx U \operatorname{diag}(S) V^{\text{H}}` |
| |
| .. note:: The relation of ``(U, S, V)`` to PCA is as follows: |
| |
| - :math:`A` is a data matrix with ``m`` samples and |
| ``n`` features |
| |
| - the :math:`V` columns represent the principal directions |
| |
| - :math:`S ** 2 / (m - 1)` contains the eigenvalues of |
| :math:`A^T A / (m - 1)` which is the covariance of |
| ``A`` when ``center=True`` is provided. |
| |
| - ``matmul(A, V[:, :k])`` projects data to the first k |
| principal components |
| |
| .. note:: Different from the standard SVD, the size of returned |
| matrices depend on the specified rank and q |
| values as follows: |
| |
| - :math:`U` is m x q matrix |
| |
| - :math:`S` is q-vector |
| |
| - :math:`V` is n x q matrix |
| |
| .. note:: To obtain repeatable results, reset the seed for the |
| pseudorandom number generator |
| |
| Args: |
| |
| A (Tensor): the input tensor of size :math:`(*, m, n)` |
| |
| q (int, optional): a slightly overestimated rank of |
| :math:`A`. By default, ``q = min(6, m, |
| n)``. |
| |
| center (bool, optional): if True, center the input tensor, |
| otherwise, assume that the input is |
| centered. |
| |
| niter (int, optional): the number of subspace iterations to |
| conduct; niter must be a nonnegative |
| integer, and defaults to 2. |
| |
| References:: |
| |
| - Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding |
| structure with randomness: probabilistic algorithms for |
| constructing approximate matrix decompositions, |
| arXiv:0909.4061 [math.NA; math.PR], 2009 (available at |
| `arXiv <http://arxiv.org/abs/0909.4061>`_). |
| |
| """ |
| |
| if not torch.jit.is_scripting(): |
| if type(A) is not torch.Tensor and has_torch_function((A,)): |
| return handle_torch_function( |
| pca_lowrank, (A,), A, q=q, center=center, niter=niter |
| ) |
| |
| (m, n) = A.shape[-2:] |
| |
| if q is None: |
| q = min(6, m, n) |
| elif not (q >= 0 and q <= min(m, n)): |
| raise ValueError( |
| f"q(={q}) must be non-negative integer and not greater than min(m, n)={min(m, n)}" |
| ) |
| if not (niter >= 0): |
| raise ValueError(f"niter(={niter}) must be non-negative integer") |
| |
| dtype = _utils.get_floating_dtype(A) |
| |
| if not center: |
| return _svd_lowrank(A, q, niter=niter, M=None) |
| |
| if _utils.is_sparse(A): |
| if len(A.shape) != 2: |
| raise ValueError("pca_lowrank input is expected to be 2-dimensional tensor") |
| c = torch.sparse.sum(A, dim=(-2,)) / m |
| # reshape c |
| column_indices = c.indices()[0] |
| indices = torch.zeros( |
| 2, |
| len(column_indices), |
| dtype=column_indices.dtype, |
| device=column_indices.device, |
| ) |
| indices[0] = column_indices |
| C_t = torch.sparse_coo_tensor( |
| indices, c.values(), (n, 1), dtype=dtype, device=A.device |
| ) |
| |
| ones_m1_t = torch.ones(A.shape[:-2] + (1, m), dtype=dtype, device=A.device) |
| M = torch.sparse.mm(C_t, ones_m1_t).mT |
| return _svd_lowrank(A, q, niter=niter, M=M) |
| else: |
| C = A.mean(dim=(-2,), keepdim=True) |
| return _svd_lowrank(A - C, q, niter=niter, M=None) |