| # mypy: ignore-errors |
| |
| """ |
| Utility function to facilitate testing. |
| |
| """ |
| import contextlib |
| import gc |
| import operator |
| import os |
| import platform |
| import pprint |
| import re |
| import shutil |
| import sys |
| import warnings |
| from functools import wraps |
| from io import StringIO |
| from tempfile import mkdtemp, mkstemp |
| from warnings import WarningMessage |
| |
| import torch._numpy as np |
| from torch._numpy import arange, asarray as asanyarray, empty, float32, intp, ndarray |
| |
| |
| __all__ = [ |
| "assert_equal", |
| "assert_almost_equal", |
| "assert_approx_equal", |
| "assert_array_equal", |
| "assert_array_less", |
| "assert_string_equal", |
| "assert_", |
| "assert_array_almost_equal", |
| "build_err_msg", |
| "decorate_methods", |
| "print_assert_equal", |
| "verbose", |
| "assert_", |
| "assert_array_almost_equal_nulp", |
| "assert_raises_regex", |
| "assert_array_max_ulp", |
| "assert_warns", |
| "assert_no_warnings", |
| "assert_allclose", |
| "IgnoreException", |
| "clear_and_catch_warnings", |
| "temppath", |
| "tempdir", |
| "IS_PYPY", |
| "HAS_REFCOUNT", |
| "IS_WASM", |
| "suppress_warnings", |
| "assert_array_compare", |
| "assert_no_gc_cycles", |
| "break_cycles", |
| "IS_PYSTON", |
| ] |
| |
| |
| verbose = 0 |
| |
| IS_WASM = platform.machine() in ["wasm32", "wasm64"] |
| IS_PYPY = sys.implementation.name == "pypy" |
| IS_PYSTON = hasattr(sys, "pyston_version_info") |
| HAS_REFCOUNT = getattr(sys, "getrefcount", None) is not None and not IS_PYSTON |
| |
| |
| def assert_(val, msg=""): |
| """ |
| Assert that works in release mode. |
| Accepts callable msg to allow deferring evaluation until failure. |
| |
| The Python built-in ``assert`` does not work when executing code in |
| optimized mode (the ``-O`` flag) - no byte-code is generated for it. |
| |
| For documentation on usage, refer to the Python documentation. |
| |
| """ |
| __tracebackhide__ = True # Hide traceback for py.test |
| if not val: |
| try: |
| smsg = msg() |
| except TypeError: |
| smsg = msg |
| raise AssertionError(smsg) |
| |
| |
| def gisnan(x): |
| return np.isnan(x) |
| |
| |
| def gisfinite(x): |
| return np.isfinite(x) |
| |
| |
| def gisinf(x): |
| return np.isinf(x) |
| |
| |
| def build_err_msg( |
| arrays, |
| err_msg, |
| header="Items are not equal:", |
| verbose=True, |
| names=("ACTUAL", "DESIRED"), |
| precision=8, |
| ): |
| msg = ["\n" + header] |
| if err_msg: |
| if err_msg.find("\n") == -1 and len(err_msg) < 79 - len(header): |
| msg = [msg[0] + " " + err_msg] |
| else: |
| msg.append(err_msg) |
| if verbose: |
| for i, a in enumerate(arrays): |
| if isinstance(a, ndarray): |
| # precision argument is only needed if the objects are ndarrays |
| # r_func = partial(array_repr, precision=precision) |
| r_func = ndarray.__repr__ |
| else: |
| r_func = repr |
| |
| try: |
| r = r_func(a) |
| except Exception as exc: |
| r = f"[repr failed for <{type(a).__name__}>: {exc}]" |
| if r.count("\n") > 3: |
| r = "\n".join(r.splitlines()[:3]) |
| r += "..." |
| msg.append(f" {names[i]}: {r}") |
| return "\n".join(msg) |
| |
| |
| def assert_equal(actual, desired, err_msg="", verbose=True): |
| """ |
| Raises an AssertionError if two objects are not equal. |
| |
| Given two objects (scalars, lists, tuples, dictionaries or numpy arrays), |
| check that all elements of these objects are equal. An exception is raised |
| at the first conflicting values. |
| |
| When one of `actual` and `desired` is a scalar and the other is array_like, |
| the function checks that each element of the array_like object is equal to |
| the scalar. |
| |
| This function handles NaN comparisons as if NaN was a "normal" number. |
| That is, AssertionError is not raised if both objects have NaNs in the same |
| positions. This is in contrast to the IEEE standard on NaNs, which says |
| that NaN compared to anything must return False. |
| |
| Parameters |
| ---------- |
| actual : array_like |
| The object to check. |
| desired : array_like |
| The expected object. |
| err_msg : str, optional |
| The error message to be printed in case of failure. |
| verbose : bool, optional |
| If True, the conflicting values are appended to the error message. |
| |
| Raises |
| ------ |
| AssertionError |
| If actual and desired are not equal. |
| |
| Examples |
| -------- |
| >>> np.testing.assert_equal([4,5], [4,6]) |
| Traceback (most recent call last): |
| ... |
| AssertionError: |
| Items are not equal: |
| item=1 |
| ACTUAL: 5 |
| DESIRED: 6 |
| |
| The following comparison does not raise an exception. There are NaNs |
| in the inputs, but they are in the same positions. |
| |
| >>> np.testing.assert_equal(np.array([1.0, 2.0, np.nan]), [1, 2, np.nan]) |
| |
| """ |
| __tracebackhide__ = True # Hide traceback for py.test |
| |
| num_nones = sum([actual is None, desired is None]) |
| if num_nones == 1: |
| raise AssertionError(f"Not equal: {actual} != {desired}") |
| elif num_nones == 2: |
| return True |
| # else, carry on |
| |
| if isinstance(actual, np.DType) or isinstance(desired, np.DType): |
| result = actual == desired |
| if not result: |
| raise AssertionError(f"Not equal: {actual} != {desired}") |
| else: |
| return True |
| |
| if isinstance(desired, str) and isinstance(actual, str): |
| assert actual == desired |
| return |
| |
| if isinstance(desired, dict): |
| if not isinstance(actual, dict): |
| raise AssertionError(repr(type(actual))) |
| assert_equal(len(actual), len(desired), err_msg, verbose) |
| for k in desired.keys(): |
| if k not in actual: |
| raise AssertionError(repr(k)) |
| assert_equal(actual[k], desired[k], f"key={k!r}\n{err_msg}", verbose) |
| return |
| if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): |
| assert_equal(len(actual), len(desired), err_msg, verbose) |
| for k in range(len(desired)): |
| assert_equal(actual[k], desired[k], f"item={k!r}\n{err_msg}", verbose) |
| return |
| |
| from torch._numpy import imag, iscomplexobj, isscalar, ndarray, real, signbit |
| |
| if isinstance(actual, ndarray) or isinstance(desired, ndarray): |
| return assert_array_equal(actual, desired, err_msg, verbose) |
| msg = build_err_msg([actual, desired], err_msg, verbose=verbose) |
| |
| # Handle complex numbers: separate into real/imag to handle |
| # nan/inf/negative zero correctly |
| # XXX: catch ValueError for subclasses of ndarray where iscomplex fail |
| try: |
| usecomplex = iscomplexobj(actual) or iscomplexobj(desired) |
| except (ValueError, TypeError): |
| usecomplex = False |
| |
| if usecomplex: |
| if iscomplexobj(actual): |
| actualr = real(actual) |
| actuali = imag(actual) |
| else: |
| actualr = actual |
| actuali = 0 |
| if iscomplexobj(desired): |
| desiredr = real(desired) |
| desiredi = imag(desired) |
| else: |
| desiredr = desired |
| desiredi = 0 |
| try: |
| assert_equal(actualr, desiredr) |
| assert_equal(actuali, desiredi) |
| except AssertionError: |
| raise AssertionError(msg) # noqa: B904 |
| |
| # isscalar test to check cases such as [np.nan] != np.nan |
| if isscalar(desired) != isscalar(actual): |
| raise AssertionError(msg) |
| |
| # Inf/nan/negative zero handling |
| try: |
| isdesnan = gisnan(desired) |
| isactnan = gisnan(actual) |
| if isdesnan and isactnan: |
| return # both nan, so equal |
| |
| # handle signed zero specially for floats |
| array_actual = np.asarray(actual) |
| array_desired = np.asarray(desired) |
| |
| if desired == 0 and actual == 0: |
| if not signbit(desired) == signbit(actual): |
| raise AssertionError(msg) |
| |
| except (TypeError, ValueError, NotImplementedError): |
| pass |
| |
| try: |
| # Explicitly use __eq__ for comparison, gh-2552 |
| if not (desired == actual): |
| raise AssertionError(msg) |
| |
| except (DeprecationWarning, FutureWarning) as e: |
| # this handles the case when the two types are not even comparable |
| if "elementwise == comparison" in e.args[0]: |
| raise AssertionError(msg) # noqa: B904 |
| else: |
| raise |
| |
| |
| def print_assert_equal(test_string, actual, desired): |
| """ |
| Test if two objects are equal, and print an error message if test fails. |
| |
| The test is performed with ``actual == desired``. |
| |
| Parameters |
| ---------- |
| test_string : str |
| The message supplied to AssertionError. |
| actual : object |
| The object to test for equality against `desired`. |
| desired : object |
| The expected result. |
| |
| Examples |
| -------- |
| >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 1]) # doctest: +SKIP |
| >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 2]) # doctest: +SKIP |
| Traceback (most recent call last): |
| ... |
| AssertionError: Test XYZ of func xyz failed |
| ACTUAL: |
| [0, 1] |
| DESIRED: |
| [0, 2] |
| |
| """ |
| __tracebackhide__ = True # Hide traceback for py.test |
| import pprint |
| |
| if not (actual == desired): |
| msg = StringIO() |
| msg.write(test_string) |
| msg.write(" failed\nACTUAL: \n") |
| pprint.pprint(actual, msg) |
| msg.write("DESIRED: \n") |
| pprint.pprint(desired, msg) |
| raise AssertionError(msg.getvalue()) |
| |
| |
| def assert_almost_equal(actual, desired, decimal=7, err_msg="", verbose=True): |
| """ |
| Raises an AssertionError if two items are not equal up to desired |
| precision. |
| |
| .. note:: It is recommended to use one of `assert_allclose`, |
| `assert_array_almost_equal_nulp` or `assert_array_max_ulp` |
| instead of this function for more consistent floating point |
| comparisons. |
| |
| The test verifies that the elements of `actual` and `desired` satisfy. |
| |
| ``abs(desired-actual) < float64(1.5 * 10**(-decimal))`` |
| |
| That is a looser test than originally documented, but agrees with what the |
| actual implementation in `assert_array_almost_equal` did up to rounding |
| vagaries. An exception is raised at conflicting values. For ndarrays this |
| delegates to assert_array_almost_equal |
| |
| Parameters |
| ---------- |
| actual : array_like |
| The object to check. |
| desired : array_like |
| The expected object. |
| decimal : int, optional |
| Desired precision, default is 7. |
| err_msg : str, optional |
| The error message to be printed in case of failure. |
| verbose : bool, optional |
| If True, the conflicting values are appended to the error message. |
| |
| Raises |
| ------ |
| AssertionError |
| If actual and desired are not equal up to specified precision. |
| |
| See Also |
| -------- |
| assert_allclose: Compare two array_like objects for equality with desired |
| relative and/or absolute precision. |
| assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal |
| |
| Examples |
| -------- |
| >>> from torch._numpy.testing import assert_almost_equal |
| >>> assert_almost_equal(2.3333333333333, 2.33333334) |
| >>> assert_almost_equal(2.3333333333333, 2.33333334, decimal=10) |
| Traceback (most recent call last): |
| ... |
| AssertionError: |
| Arrays are not almost equal to 10 decimals |
| ACTUAL: 2.3333333333333 |
| DESIRED: 2.33333334 |
| |
| >>> assert_almost_equal(np.array([1.0,2.3333333333333]), |
| ... np.array([1.0,2.33333334]), decimal=9) |
| Traceback (most recent call last): |
| ... |
| AssertionError: |
| Arrays are not almost equal to 9 decimals |
| <BLANKLINE> |
| Mismatched elements: 1 / 2 (50%) |
| Max absolute difference: 6.666699636781459e-09 |
| Max relative difference: 2.8571569790287484e-09 |
| x: torch.ndarray([1.0000, 2.3333], dtype=float64) |
| y: torch.ndarray([1.0000, 2.3333], dtype=float64) |
| |
| """ |
| __tracebackhide__ = True # Hide traceback for py.test |
| from torch._numpy import imag, iscomplexobj, ndarray, real |
| |
| # Handle complex numbers: separate into real/imag to handle |
| # nan/inf/negative zero correctly |
| # XXX: catch ValueError for subclasses of ndarray where iscomplex fail |
| try: |
| usecomplex = iscomplexobj(actual) or iscomplexobj(desired) |
| except ValueError: |
| usecomplex = False |
| |
| def _build_err_msg(): |
| header = "Arrays are not almost equal to %d decimals" % decimal |
| return build_err_msg([actual, desired], err_msg, verbose=verbose, header=header) |
| |
| if usecomplex: |
| if iscomplexobj(actual): |
| actualr = real(actual) |
| actuali = imag(actual) |
| else: |
| actualr = actual |
| actuali = 0 |
| if iscomplexobj(desired): |
| desiredr = real(desired) |
| desiredi = imag(desired) |
| else: |
| desiredr = desired |
| desiredi = 0 |
| try: |
| assert_almost_equal(actualr, desiredr, decimal=decimal) |
| assert_almost_equal(actuali, desiredi, decimal=decimal) |
| except AssertionError: |
| raise AssertionError(_build_err_msg()) # noqa: B904 |
| |
| if isinstance(actual, (ndarray, tuple, list)) or isinstance( |
| desired, (ndarray, tuple, list) |
| ): |
| return assert_array_almost_equal(actual, desired, decimal, err_msg) |
| try: |
| # If one of desired/actual is not finite, handle it specially here: |
| # check that both are nan if any is a nan, and test for equality |
| # otherwise |
| if not (gisfinite(desired) and gisfinite(actual)): |
| if gisnan(desired) or gisnan(actual): |
| if not (gisnan(desired) and gisnan(actual)): |
| raise AssertionError(_build_err_msg()) |
| else: |
| if not desired == actual: |
| raise AssertionError(_build_err_msg()) |
| return |
| except (NotImplementedError, TypeError): |
| pass |
| if abs(desired - actual) >= np.float64(1.5 * 10.0 ** (-decimal)): |
| raise AssertionError(_build_err_msg()) |
| |
| |
| def assert_approx_equal(actual, desired, significant=7, err_msg="", verbose=True): |
| """ |
| Raises an AssertionError if two items are not equal up to significant |
| digits. |
| |
| .. note:: It is recommended to use one of `assert_allclose`, |
| `assert_array_almost_equal_nulp` or `assert_array_max_ulp` |
| instead of this function for more consistent floating point |
| comparisons. |
| |
| Given two numbers, check that they are approximately equal. |
| Approximately equal is defined as the number of significant digits |
| that agree. |
| |
| Parameters |
| ---------- |
| actual : scalar |
| The object to check. |
| desired : scalar |
| The expected object. |
| significant : int, optional |
| Desired precision, default is 7. |
| err_msg : str, optional |
| The error message to be printed in case of failure. |
| verbose : bool, optional |
| If True, the conflicting values are appended to the error message. |
| |
| Raises |
| ------ |
| AssertionError |
| If actual and desired are not equal up to specified precision. |
| |
| See Also |
| -------- |
| assert_allclose: Compare two array_like objects for equality with desired |
| relative and/or absolute precision. |
| assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal |
| |
| Examples |
| -------- |
| >>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20) # doctest: +SKIP |
| >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20, # doctest: +SKIP |
| ... significant=8) |
| >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20, # doctest: +SKIP |
| ... significant=8) |
| Traceback (most recent call last): |
| ... |
| AssertionError: |
| Items are not equal to 8 significant digits: |
| ACTUAL: 1.234567e-21 |
| DESIRED: 1.2345672e-21 |
| |
| the evaluated condition that raises the exception is |
| |
| >>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1) |
| True |
| |
| """ |
| __tracebackhide__ = True # Hide traceback for py.test |
| import numpy as np |
| |
| (actual, desired) = map(float, (actual, desired)) |
| if desired == actual: |
| return |
| # Normalized the numbers to be in range (-10.0,10.0) |
| # scale = float(pow(10,math.floor(math.log10(0.5*(abs(desired)+abs(actual)))))) |
| scale = 0.5 * (np.abs(desired) + np.abs(actual)) |
| scale = np.power(10, np.floor(np.log10(scale))) |
| try: |
| sc_desired = desired / scale |
| except ZeroDivisionError: |
| sc_desired = 0.0 |
| try: |
| sc_actual = actual / scale |
| except ZeroDivisionError: |
| sc_actual = 0.0 |
| msg = build_err_msg( |
| [actual, desired], |
| err_msg, |
| header="Items are not equal to %d significant digits:" % significant, |
| verbose=verbose, |
| ) |
| try: |
| # If one of desired/actual is not finite, handle it specially here: |
| # check that both are nan if any is a nan, and test for equality |
| # otherwise |
| if not (gisfinite(desired) and gisfinite(actual)): |
| if gisnan(desired) or gisnan(actual): |
| if not (gisnan(desired) and gisnan(actual)): |
| raise AssertionError(msg) |
| else: |
| if not desired == actual: |
| raise AssertionError(msg) |
| return |
| except (TypeError, NotImplementedError): |
| pass |
| if np.abs(sc_desired - sc_actual) >= np.power(10.0, -(significant - 1)): |
| raise AssertionError(msg) |
| |
| |
| def assert_array_compare( |
| comparison, |
| x, |
| y, |
| err_msg="", |
| verbose=True, |
| header="", |
| precision=6, |
| equal_nan=True, |
| equal_inf=True, |
| *, |
| strict=False, |
| ): |
| __tracebackhide__ = True # Hide traceback for py.test |
| from torch._numpy import all, array, asarray, bool_, inf, isnan, max |
| |
| x = asarray(x) |
| y = asarray(y) |
| |
| def array2string(a): |
| return str(a) |
| |
| # original array for output formatting |
| ox, oy = x, y |
| |
| def func_assert_same_pos(x, y, func=isnan, hasval="nan"): |
| """Handling nan/inf. |
| |
| Combine results of running func on x and y, checking that they are True |
| at the same locations. |
| |
| """ |
| __tracebackhide__ = True # Hide traceback for py.test |
| x_id = func(x) |
| y_id = func(y) |
| # We include work-arounds here to handle three types of slightly |
| # pathological ndarray subclasses: |
| # (1) all() on `masked` array scalars can return masked arrays, so we |
| # use != True |
| # (2) __eq__ on some ndarray subclasses returns Python booleans |
| # instead of element-wise comparisons, so we cast to bool_() and |
| # use isinstance(..., bool) checks |
| # (3) subclasses with bare-bones __array_function__ implementations may |
| # not implement np.all(), so favor using the .all() method |
| # We are not committed to supporting such subclasses, but it's nice to |
| # support them if possible. |
| if (x_id == y_id).all().item() is not True: |
| msg = build_err_msg( |
| [x, y], |
| err_msg + f"\nx and y {hasval} location mismatch:", |
| verbose=verbose, |
| header=header, |
| names=("x", "y"), |
| precision=precision, |
| ) |
| raise AssertionError(msg) |
| # If there is a scalar, then here we know the array has the same |
| # flag as it everywhere, so we should return the scalar flag. |
| if isinstance(x_id, bool) or x_id.ndim == 0: |
| return bool_(x_id) |
| elif isinstance(y_id, bool) or y_id.ndim == 0: |
| return bool_(y_id) |
| else: |
| return y_id |
| |
| try: |
| if strict: |
| cond = x.shape == y.shape and x.dtype == y.dtype |
| else: |
| cond = (x.shape == () or y.shape == ()) or x.shape == y.shape |
| if not cond: |
| if x.shape != y.shape: |
| reason = f"\n(shapes {x.shape}, {y.shape} mismatch)" |
| else: |
| reason = f"\n(dtypes {x.dtype}, {y.dtype} mismatch)" |
| msg = build_err_msg( |
| [x, y], |
| err_msg + reason, |
| verbose=verbose, |
| header=header, |
| names=("x", "y"), |
| precision=precision, |
| ) |
| raise AssertionError(msg) |
| |
| flagged = bool_(False) |
| |
| if equal_nan: |
| flagged = func_assert_same_pos(x, y, func=isnan, hasval="nan") |
| |
| if equal_inf: |
| flagged |= func_assert_same_pos( |
| x, y, func=lambda xy: xy == +inf, hasval="+inf" |
| ) |
| flagged |= func_assert_same_pos( |
| x, y, func=lambda xy: xy == -inf, hasval="-inf" |
| ) |
| |
| if flagged.ndim > 0: |
| x, y = x[~flagged], y[~flagged] |
| # Only do the comparison if actual values are left |
| if x.size == 0: |
| return |
| elif flagged: |
| # no sense doing comparison if everything is flagged. |
| return |
| |
| val = comparison(x, y) |
| |
| if isinstance(val, bool): |
| cond = val |
| reduced = array([val]) |
| else: |
| reduced = val.ravel() |
| cond = reduced.all() |
| |
| # The below comparison is a hack to ensure that fully masked |
| # results, for which val.ravel().all() returns np.ma.masked, |
| # do not trigger a failure (np.ma.masked != True evaluates as |
| # np.ma.masked, which is falsy). |
| if not cond: |
| n_mismatch = reduced.size - int(reduced.sum(dtype=intp)) |
| n_elements = flagged.size if flagged.ndim != 0 else reduced.size |
| percent_mismatch = 100 * n_mismatch / n_elements |
| remarks = [ |
| f"Mismatched elements: {n_mismatch} / {n_elements} ({percent_mismatch:.3g}%)" |
| ] |
| |
| # with errstate(all='ignore'): |
| # ignore errors for non-numeric types |
| with contextlib.suppress(TypeError, RuntimeError): |
| error = abs(x - y) |
| if np.issubdtype(x.dtype, np.unsignedinteger): |
| error2 = abs(y - x) |
| np.minimum(error, error2, out=error) |
| max_abs_error = max(error) |
| remarks.append( |
| "Max absolute difference: " + array2string(max_abs_error.item()) |
| ) |
| |
| # note: this definition of relative error matches that one |
| # used by assert_allclose (found in np.isclose) |
| # Filter values where the divisor would be zero |
| nonzero = bool_(y != 0) |
| if all(~nonzero): |
| max_rel_error = array(inf) |
| else: |
| max_rel_error = max(error[nonzero] / abs(y[nonzero])) |
| remarks.append( |
| "Max relative difference: " + array2string(max_rel_error.item()) |
| ) |
| |
| err_msg += "\n" + "\n".join(remarks) |
| msg = build_err_msg( |
| [ox, oy], |
| err_msg, |
| verbose=verbose, |
| header=header, |
| names=("x", "y"), |
| precision=precision, |
| ) |
| raise AssertionError(msg) |
| except ValueError: |
| import traceback |
| |
| efmt = traceback.format_exc() |
| header = f"error during assertion:\n\n{efmt}\n\n{header}" |
| |
| msg = build_err_msg( |
| [x, y], |
| err_msg, |
| verbose=verbose, |
| header=header, |
| names=("x", "y"), |
| precision=precision, |
| ) |
| raise ValueError(msg) # noqa: B904 |
| |
| |
| def assert_array_equal(x, y, err_msg="", verbose=True, *, strict=False): |
| """ |
| Raises an AssertionError if two array_like objects are not equal. |
| |
| Given two array_like objects, check that the shape is equal and all |
| elements of these objects are equal (but see the Notes for the special |
| handling of a scalar). An exception is raised at shape mismatch or |
| conflicting values. In contrast to the standard usage in numpy, NaNs |
| are compared like numbers, no assertion is raised if both objects have |
| NaNs in the same positions. |
| |
| The usual caution for verifying equality with floating point numbers is |
| advised. |
| |
| Parameters |
| ---------- |
| x : array_like |
| The actual object to check. |
| y : array_like |
| The desired, expected object. |
| err_msg : str, optional |
| The error message to be printed in case of failure. |
| verbose : bool, optional |
| If True, the conflicting values are appended to the error message. |
| strict : bool, optional |
| If True, raise an AssertionError when either the shape or the data |
| type of the array_like objects does not match. The special |
| handling for scalars mentioned in the Notes section is disabled. |
| |
| Raises |
| ------ |
| AssertionError |
| If actual and desired objects are not equal. |
| |
| See Also |
| -------- |
| assert_allclose: Compare two array_like objects for equality with desired |
| relative and/or absolute precision. |
| assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal |
| |
| Notes |
| ----- |
| When one of `x` and `y` is a scalar and the other is array_like, the |
| function checks that each element of the array_like object is equal to |
| the scalar. This behaviour can be disabled with the `strict` parameter. |
| |
| Examples |
| -------- |
| The first assert does not raise an exception: |
| |
| >>> np.testing.assert_array_equal([1.0,2.33333,np.nan], |
| ... [np.exp(0),2.33333, np.nan]) |
| |
| Use `assert_allclose` or one of the nulp (number of floating point values) |
| functions for these cases instead: |
| |
| >>> np.testing.assert_allclose([1.0,np.pi,np.nan], |
| ... [1, np.sqrt(np.pi)**2, np.nan], |
| ... rtol=1e-10, atol=0) |
| |
| As mentioned in the Notes section, `assert_array_equal` has special |
| handling for scalars. Here the test checks that each value in `x` is 3: |
| |
| >>> x = np.full((2, 5), fill_value=3) |
| >>> np.testing.assert_array_equal(x, 3) |
| |
| Use `strict` to raise an AssertionError when comparing a scalar with an |
| array: |
| |
| >>> np.testing.assert_array_equal(x, 3, strict=True) |
| Traceback (most recent call last): |
| ... |
| AssertionError: |
| Arrays are not equal |
| <BLANKLINE> |
| (shapes (2, 5), () mismatch) |
| x: torch.ndarray([[3, 3, 3, 3, 3], |
| [3, 3, 3, 3, 3]]) |
| y: torch.ndarray(3) |
| |
| The `strict` parameter also ensures that the array data types match: |
| |
| >>> x = np.array([2, 2, 2]) |
| >>> y = np.array([2., 2., 2.], dtype=np.float32) |
| >>> np.testing.assert_array_equal(x, y, strict=True) |
| Traceback (most recent call last): |
| ... |
| AssertionError: |
| Arrays are not equal |
| <BLANKLINE> |
| (dtypes dtype("int64"), dtype("float32") mismatch) |
| x: torch.ndarray([2, 2, 2]) |
| y: torch.ndarray([2., 2., 2.]) |
| """ |
| __tracebackhide__ = True # Hide traceback for py.test |
| assert_array_compare( |
| operator.__eq__, |
| x, |
| y, |
| err_msg=err_msg, |
| verbose=verbose, |
| header="Arrays are not equal", |
| strict=strict, |
| ) |
| |
| |
| def assert_array_almost_equal(x, y, decimal=6, err_msg="", verbose=True): |
| """ |
| Raises an AssertionError if two objects are not equal up to desired |
| precision. |
| |
| .. note:: It is recommended to use one of `assert_allclose`, |
| `assert_array_almost_equal_nulp` or `assert_array_max_ulp` |
| instead of this function for more consistent floating point |
| comparisons. |
| |
| The test verifies identical shapes and that the elements of ``actual`` and |
| ``desired`` satisfy. |
| |
| ``abs(desired-actual) < 1.5 * 10**(-decimal)`` |
| |
| That is a looser test than originally documented, but agrees with what the |
| actual implementation did up to rounding vagaries. An exception is raised |
| at shape mismatch or conflicting values. In contrast to the standard usage |
| in numpy, NaNs are compared like numbers, no assertion is raised if both |
| objects have NaNs in the same positions. |
| |
| Parameters |
| ---------- |
| x : array_like |
| The actual object to check. |
| y : array_like |
| The desired, expected object. |
| decimal : int, optional |
| Desired precision, default is 6. |
| err_msg : str, optional |
| The error message to be printed in case of failure. |
| verbose : bool, optional |
| If True, the conflicting values are appended to the error message. |
| |
| Raises |
| ------ |
| AssertionError |
| If actual and desired are not equal up to specified precision. |
| |
| See Also |
| -------- |
| assert_allclose: Compare two array_like objects for equality with desired |
| relative and/or absolute precision. |
| assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal |
| |
| Examples |
| -------- |
| the first assert does not raise an exception |
| |
| >>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan], |
| ... [1.0,2.333,np.nan]) |
| |
| >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], |
| ... [1.0,2.33339,np.nan], decimal=5) |
| Traceback (most recent call last): |
| ... |
| AssertionError: |
| Arrays are not almost equal to 5 decimals |
| <BLANKLINE> |
| Mismatched elements: 1 / 3 (33.3%) |
| Max absolute difference: 5.999999999994898e-05 |
| Max relative difference: 2.5713661239633743e-05 |
| x: torch.ndarray([1.0000, 2.3333, nan], dtype=float64) |
| y: torch.ndarray([1.0000, 2.3334, nan], dtype=float64) |
| |
| >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], |
| ... [1.0,2.33333, 5], decimal=5) |
| Traceback (most recent call last): |
| ... |
| AssertionError: |
| Arrays are not almost equal to 5 decimals |
| <BLANKLINE> |
| x and y nan location mismatch: |
| x: torch.ndarray([1.0000, 2.3333, nan], dtype=float64) |
| y: torch.ndarray([1.0000, 2.3333, 5.0000], dtype=float64) |
| |
| """ |
| __tracebackhide__ = True # Hide traceback for py.test |
| from torch._numpy import any as npany, float_, issubdtype, number, result_type |
| |
| def compare(x, y): |
| try: |
| if npany(gisinf(x)) or npany(gisinf(y)): |
| xinfid = gisinf(x) |
| yinfid = gisinf(y) |
| if not (xinfid == yinfid).all(): |
| return False |
| # if one item, x and y is +- inf |
| if x.size == y.size == 1: |
| return x == y |
| x = x[~xinfid] |
| y = y[~yinfid] |
| except (TypeError, NotImplementedError): |
| pass |
| |
| # make sure y is an inexact type to avoid abs(MIN_INT); will cause |
| # casting of x later. |
| dtype = result_type(y, 1.0) |
| y = asanyarray(y, dtype) |
| z = abs(x - y) |
| |
| if not issubdtype(z.dtype, number): |
| z = z.astype(float_) # handle object arrays |
| |
| return z < 1.5 * 10.0 ** (-decimal) |
| |
| assert_array_compare( |
| compare, |
| x, |
| y, |
| err_msg=err_msg, |
| verbose=verbose, |
| header=("Arrays are not almost equal to %d decimals" % decimal), |
| precision=decimal, |
| ) |
| |
| |
| def assert_array_less(x, y, err_msg="", verbose=True): |
| """ |
| Raises an AssertionError if two array_like objects are not ordered by less |
| than. |
| |
| Given two array_like objects, check that the shape is equal and all |
| elements of the first object are strictly smaller than those of the |
| second object. An exception is raised at shape mismatch or incorrectly |
| ordered values. Shape mismatch does not raise if an object has zero |
| dimension. In contrast to the standard usage in numpy, NaNs are |
| compared, no assertion is raised if both objects have NaNs in the same |
| positions. |
| |
| |
| |
| Parameters |
| ---------- |
| x : array_like |
| The smaller object to check. |
| y : array_like |
| The larger object to compare. |
| err_msg : string |
| The error message to be printed in case of failure. |
| verbose : bool |
| If True, the conflicting values are appended to the error message. |
| |
| Raises |
| ------ |
| AssertionError |
| If actual and desired objects are not equal. |
| |
| See Also |
| -------- |
| assert_array_equal: tests objects for equality |
| assert_array_almost_equal: test objects for equality up to precision |
| |
| |
| |
| Examples |
| -------- |
| >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1.1, 2.0, np.nan]) |
| >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1, 2.0, np.nan]) |
| Traceback (most recent call last): |
| ... |
| AssertionError: |
| Arrays are not less-ordered |
| <BLANKLINE> |
| Mismatched elements: 1 / 3 (33.3%) |
| Max absolute difference: 1.0 |
| Max relative difference: 0.5 |
| x: torch.ndarray([1., 1., nan], dtype=float64) |
| y: torch.ndarray([1., 2., nan], dtype=float64) |
| |
| >>> np.testing.assert_array_less([1.0, 4.0], 3) |
| Traceback (most recent call last): |
| ... |
| AssertionError: |
| Arrays are not less-ordered |
| <BLANKLINE> |
| Mismatched elements: 1 / 2 (50%) |
| Max absolute difference: 2.0 |
| Max relative difference: 0.6666666666666666 |
| x: torch.ndarray([1., 4.], dtype=float64) |
| y: torch.ndarray(3) |
| |
| >>> np.testing.assert_array_less([1.0, 2.0, 3.0], [4]) |
| Traceback (most recent call last): |
| ... |
| AssertionError: |
| Arrays are not less-ordered |
| <BLANKLINE> |
| (shapes (3,), (1,) mismatch) |
| x: torch.ndarray([1., 2., 3.], dtype=float64) |
| y: torch.ndarray([4]) |
| |
| """ |
| __tracebackhide__ = True # Hide traceback for py.test |
| assert_array_compare( |
| operator.__lt__, |
| x, |
| y, |
| err_msg=err_msg, |
| verbose=verbose, |
| header="Arrays are not less-ordered", |
| equal_inf=False, |
| ) |
| |
| |
| def assert_string_equal(actual, desired): |
| """ |
| Test if two strings are equal. |
| |
| If the given strings are equal, `assert_string_equal` does nothing. |
| If they are not equal, an AssertionError is raised, and the diff |
| between the strings is shown. |
| |
| Parameters |
| ---------- |
| actual : str |
| The string to test for equality against the expected string. |
| desired : str |
| The expected string. |
| |
| Examples |
| -------- |
| >>> np.testing.assert_string_equal('abc', 'abc') # doctest: +SKIP |
| >>> np.testing.assert_string_equal('abc', 'abcd') # doctest: +SKIP |
| Traceback (most recent call last): |
| File "<stdin>", line 1, in <module> |
| ... |
| AssertionError: Differences in strings: |
| - abc+ abcd? + |
| |
| """ |
| # delay import of difflib to reduce startup time |
| __tracebackhide__ = True # Hide traceback for py.test |
| import difflib |
| |
| if not isinstance(actual, str): |
| raise AssertionError(repr(type(actual))) |
| if not isinstance(desired, str): |
| raise AssertionError(repr(type(desired))) |
| if desired == actual: |
| return |
| |
| diff = list( |
| difflib.Differ().compare(actual.splitlines(True), desired.splitlines(True)) |
| ) |
| diff_list = [] |
| while diff: |
| d1 = diff.pop(0) |
| if d1.startswith(" "): |
| continue |
| if d1.startswith("- "): |
| l = [d1] |
| d2 = diff.pop(0) |
| if d2.startswith("? "): |
| l.append(d2) |
| d2 = diff.pop(0) |
| if not d2.startswith("+ "): |
| raise AssertionError(repr(d2)) |
| l.append(d2) |
| if diff: |
| d3 = diff.pop(0) |
| if d3.startswith("? "): |
| l.append(d3) |
| else: |
| diff.insert(0, d3) |
| if d2[2:] == d1[2:]: |
| continue |
| diff_list.extend(l) |
| continue |
| raise AssertionError(repr(d1)) |
| if not diff_list: |
| return |
| msg = f"Differences in strings:\n{''.join(diff_list).rstrip()}" |
| if actual != desired: |
| raise AssertionError(msg) |
| |
| |
| import unittest |
| |
| |
| class _Dummy(unittest.TestCase): |
| def nop(self): |
| pass |
| |
| |
| _d = _Dummy("nop") |
| |
| |
| def assert_raises_regex(exception_class, expected_regexp, *args, **kwargs): |
| """ |
| assert_raises_regex(exception_class, expected_regexp, callable, *args, |
| **kwargs) |
| assert_raises_regex(exception_class, expected_regexp) |
| |
| Fail unless an exception of class exception_class and with message that |
| matches expected_regexp is thrown by callable when invoked with arguments |
| args and keyword arguments kwargs. |
| |
| Alternatively, can be used as a context manager like `assert_raises`. |
| |
| Notes |
| ----- |
| .. versionadded:: 1.9.0 |
| |
| """ |
| __tracebackhide__ = True # Hide traceback for py.test |
| return _d.assertRaisesRegex(exception_class, expected_regexp, *args, **kwargs) |
| |
| |
| def decorate_methods(cls, decorator, testmatch=None): |
| """ |
| Apply a decorator to all methods in a class matching a regular expression. |
| |
| The given decorator is applied to all public methods of `cls` that are |
| matched by the regular expression `testmatch` |
| (``testmatch.search(methodname)``). Methods that are private, i.e. start |
| with an underscore, are ignored. |
| |
| Parameters |
| ---------- |
| cls : class |
| Class whose methods to decorate. |
| decorator : function |
| Decorator to apply to methods |
| testmatch : compiled regexp or str, optional |
| The regular expression. Default value is None, in which case the |
| nose default (``re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)``) |
| is used. |
| If `testmatch` is a string, it is compiled to a regular expression |
| first. |
| |
| """ |
| if testmatch is None: |
| testmatch = re.compile(rf"(?:^|[\\b_\\.{os.sep}-])[Tt]est") |
| else: |
| testmatch = re.compile(testmatch) |
| cls_attr = cls.__dict__ |
| |
| # delayed import to reduce startup time |
| from inspect import isfunction |
| |
| methods = [_m for _m in cls_attr.values() if isfunction(_m)] |
| for function in methods: |
| try: |
| if hasattr(function, "compat_func_name"): |
| funcname = function.compat_func_name |
| else: |
| funcname = function.__name__ |
| except AttributeError: |
| # not a function |
| continue |
| if testmatch.search(funcname) and not funcname.startswith("_"): |
| setattr(cls, funcname, decorator(function)) |
| return |
| |
| |
| def _assert_valid_refcount(op): |
| """ |
| Check that ufuncs don't mishandle refcount of object `1`. |
| Used in a few regression tests. |
| """ |
| if not HAS_REFCOUNT: |
| return True |
| |
| import gc |
| |
| import numpy as np |
| |
| b = np.arange(100 * 100).reshape(100, 100) |
| c = b |
| i = 1 |
| |
| gc.disable() |
| try: |
| rc = sys.getrefcount(i) |
| for j in range(15): |
| d = op(b, c) |
| assert_(sys.getrefcount(i) >= rc) |
| finally: |
| gc.enable() |
| del d # for pyflakes |
| |
| |
| def assert_allclose( |
| actual, |
| desired, |
| rtol=1e-7, |
| atol=0, |
| equal_nan=True, |
| err_msg="", |
| verbose=True, |
| check_dtype=False, |
| ): |
| """ |
| Raises an AssertionError if two objects are not equal up to desired |
| tolerance. |
| |
| Given two array_like objects, check that their shapes and all elements |
| are equal (but see the Notes for the special handling of a scalar). An |
| exception is raised if the shapes mismatch or any values conflict. In |
| contrast to the standard usage in numpy, NaNs are compared like numbers, |
| no assertion is raised if both objects have NaNs in the same positions. |
| |
| The test is equivalent to ``allclose(actual, desired, rtol, atol)`` (note |
| that ``allclose`` has different default values). It compares the difference |
| between `actual` and `desired` to ``atol + rtol * abs(desired)``. |
| |
| .. versionadded:: 1.5.0 |
| |
| Parameters |
| ---------- |
| actual : array_like |
| Array obtained. |
| desired : array_like |
| Array desired. |
| rtol : float, optional |
| Relative tolerance. |
| atol : float, optional |
| Absolute tolerance. |
| equal_nan : bool, optional. |
| If True, NaNs will compare equal. |
| err_msg : str, optional |
| The error message to be printed in case of failure. |
| verbose : bool, optional |
| If True, the conflicting values are appended to the error message. |
| |
| Raises |
| ------ |
| AssertionError |
| If actual and desired are not equal up to specified precision. |
| |
| See Also |
| -------- |
| assert_array_almost_equal_nulp, assert_array_max_ulp |
| |
| Notes |
| ----- |
| When one of `actual` and `desired` is a scalar and the other is |
| array_like, the function checks that each element of the array_like |
| object is equal to the scalar. |
| |
| Examples |
| -------- |
| >>> x = [1e-5, 1e-3, 1e-1] |
| >>> y = np.arccos(np.cos(x)) |
| >>> np.testing.assert_allclose(x, y, rtol=1e-5, atol=0) |
| |
| """ |
| __tracebackhide__ = True # Hide traceback for py.test |
| |
| def compare(x, y): |
| return np.isclose(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan) |
| |
| actual, desired = asanyarray(actual), asanyarray(desired) |
| header = f"Not equal to tolerance rtol={rtol:g}, atol={atol:g}" |
| |
| if check_dtype: |
| assert actual.dtype == desired.dtype |
| |
| assert_array_compare( |
| compare, |
| actual, |
| desired, |
| err_msg=str(err_msg), |
| verbose=verbose, |
| header=header, |
| equal_nan=equal_nan, |
| ) |
| |
| |
| def assert_array_almost_equal_nulp(x, y, nulp=1): |
| """ |
| Compare two arrays relatively to their spacing. |
| |
| This is a relatively robust method to compare two arrays whose amplitude |
| is variable. |
| |
| Parameters |
| ---------- |
| x, y : array_like |
| Input arrays. |
| nulp : int, optional |
| The maximum number of unit in the last place for tolerance (see Notes). |
| Default is 1. |
| |
| Returns |
| ------- |
| None |
| |
| Raises |
| ------ |
| AssertionError |
| If the spacing between `x` and `y` for one or more elements is larger |
| than `nulp`. |
| |
| See Also |
| -------- |
| assert_array_max_ulp : Check that all items of arrays differ in at most |
| N Units in the Last Place. |
| spacing : Return the distance between x and the nearest adjacent number. |
| |
| Notes |
| ----- |
| An assertion is raised if the following condition is not met:: |
| |
| abs(x - y) <= nulp * spacing(maximum(abs(x), abs(y))) |
| |
| Examples |
| -------- |
| >>> x = np.array([1., 1e-10, 1e-20]) |
| >>> eps = np.finfo(x.dtype).eps |
| >>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x) # doctest: +SKIP |
| |
| >>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x) # doctest: +SKIP |
| Traceback (most recent call last): |
| ... |
| AssertionError: X and Y are not equal to 1 ULP (max is 2) |
| |
| """ |
| __tracebackhide__ = True # Hide traceback for py.test |
| import numpy as np |
| |
| ax = np.abs(x) |
| ay = np.abs(y) |
| ref = nulp * np.spacing(np.where(ax > ay, ax, ay)) |
| if not np.all(np.abs(x - y) <= ref): |
| if np.iscomplexobj(x) or np.iscomplexobj(y): |
| msg = "X and Y are not equal to %d ULP" % nulp |
| else: |
| max_nulp = np.max(nulp_diff(x, y)) |
| msg = "X and Y are not equal to %d ULP (max is %g)" % (nulp, max_nulp) |
| raise AssertionError(msg) |
| |
| |
| def assert_array_max_ulp(a, b, maxulp=1, dtype=None): |
| """ |
| Check that all items of arrays differ in at most N Units in the Last Place. |
| |
| Parameters |
| ---------- |
| a, b : array_like |
| Input arrays to be compared. |
| maxulp : int, optional |
| The maximum number of units in the last place that elements of `a` and |
| `b` can differ. Default is 1. |
| dtype : dtype, optional |
| Data-type to convert `a` and `b` to if given. Default is None. |
| |
| Returns |
| ------- |
| ret : ndarray |
| Array containing number of representable floating point numbers between |
| items in `a` and `b`. |
| |
| Raises |
| ------ |
| AssertionError |
| If one or more elements differ by more than `maxulp`. |
| |
| Notes |
| ----- |
| For computing the ULP difference, this API does not differentiate between |
| various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000 |
| is zero). |
| |
| See Also |
| -------- |
| assert_array_almost_equal_nulp : Compare two arrays relatively to their |
| spacing. |
| |
| Examples |
| -------- |
| >>> a = np.linspace(0., 1., 100) |
| >>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a))) # doctest: +SKIP |
| |
| """ |
| __tracebackhide__ = True # Hide traceback for py.test |
| import numpy as np |
| |
| ret = nulp_diff(a, b, dtype) |
| if not np.all(ret <= maxulp): |
| raise AssertionError( |
| f"Arrays are not almost equal up to {maxulp:g} " |
| f"ULP (max difference is {np.max(ret):g} ULP)" |
| ) |
| return ret |
| |
| |
| def nulp_diff(x, y, dtype=None): |
| """For each item in x and y, return the number of representable floating |
| points between them. |
| |
| Parameters |
| ---------- |
| x : array_like |
| first input array |
| y : array_like |
| second input array |
| dtype : dtype, optional |
| Data-type to convert `x` and `y` to if given. Default is None. |
| |
| Returns |
| ------- |
| nulp : array_like |
| number of representable floating point numbers between each item in x |
| and y. |
| |
| Notes |
| ----- |
| For computing the ULP difference, this API does not differentiate between |
| various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000 |
| is zero). |
| |
| Examples |
| -------- |
| # By definition, epsilon is the smallest number such as 1 + eps != 1, so |
| # there should be exactly one ULP between 1 and 1 + eps |
| >>> nulp_diff(1, 1 + np.finfo(x.dtype).eps) # doctest: +SKIP |
| 1.0 |
| """ |
| import numpy as np |
| |
| if dtype: |
| x = np.asarray(x, dtype=dtype) |
| y = np.asarray(y, dtype=dtype) |
| else: |
| x = np.asarray(x) |
| y = np.asarray(y) |
| |
| t = np.common_type(x, y) |
| if np.iscomplexobj(x) or np.iscomplexobj(y): |
| raise NotImplementedError("_nulp not implemented for complex array") |
| |
| x = np.array([x], dtype=t) |
| y = np.array([y], dtype=t) |
| |
| x[np.isnan(x)] = np.nan |
| y[np.isnan(y)] = np.nan |
| |
| if not x.shape == y.shape: |
| raise ValueError(f"x and y do not have the same shape: {x.shape} - {y.shape}") |
| |
| def _diff(rx, ry, vdt): |
| diff = np.asarray(rx - ry, dtype=vdt) |
| return np.abs(diff) |
| |
| rx = integer_repr(x) |
| ry = integer_repr(y) |
| return _diff(rx, ry, t) |
| |
| |
| def _integer_repr(x, vdt, comp): |
| # Reinterpret binary representation of the float as sign-magnitude: |
| # take into account two-complement representation |
| # See also |
| # https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ |
| rx = x.view(vdt) |
| if not (rx.size == 1): |
| rx[rx < 0] = comp - rx[rx < 0] |
| else: |
| if rx < 0: |
| rx = comp - rx |
| |
| return rx |
| |
| |
| def integer_repr(x): |
| """Return the signed-magnitude interpretation of the binary representation |
| of x.""" |
| import numpy as np |
| |
| if x.dtype == np.float16: |
| return _integer_repr(x, np.int16, np.int16(-(2**15))) |
| elif x.dtype == np.float32: |
| return _integer_repr(x, np.int32, np.int32(-(2**31))) |
| elif x.dtype == np.float64: |
| return _integer_repr(x, np.int64, np.int64(-(2**63))) |
| else: |
| raise ValueError(f"Unsupported dtype {x.dtype}") |
| |
| |
| @contextlib.contextmanager |
| def _assert_warns_context(warning_class, name=None): |
| __tracebackhide__ = True # Hide traceback for py.test |
| with suppress_warnings() as sup: |
| l = sup.record(warning_class) |
| yield |
| if not len(l) > 0: |
| name_str = f" when calling {name}" if name is not None else "" |
| raise AssertionError("No warning raised" + name_str) |
| |
| |
| def assert_warns(warning_class, *args, **kwargs): |
| """ |
| Fail unless the given callable throws the specified warning. |
| |
| A warning of class warning_class should be thrown by the callable when |
| invoked with arguments args and keyword arguments kwargs. |
| If a different type of warning is thrown, it will not be caught. |
| |
| If called with all arguments other than the warning class omitted, may be |
| used as a context manager: |
| |
| with assert_warns(SomeWarning): |
| do_something() |
| |
| The ability to be used as a context manager is new in NumPy v1.11.0. |
| |
| .. versionadded:: 1.4.0 |
| |
| Parameters |
| ---------- |
| warning_class : class |
| The class defining the warning that `func` is expected to throw. |
| func : callable, optional |
| Callable to test |
| *args : Arguments |
| Arguments for `func`. |
| **kwargs : Kwargs |
| Keyword arguments for `func`. |
| |
| Returns |
| ------- |
| The value returned by `func`. |
| |
| Examples |
| -------- |
| >>> import warnings |
| >>> def deprecated_func(num): |
| ... warnings.warn("Please upgrade", DeprecationWarning) |
| ... return num*num |
| >>> with np.testing.assert_warns(DeprecationWarning): |
| ... assert deprecated_func(4) == 16 |
| >>> # or passing a func |
| >>> ret = np.testing.assert_warns(DeprecationWarning, deprecated_func, 4) |
| >>> assert ret == 16 |
| """ |
| if not args: |
| return _assert_warns_context(warning_class) |
| |
| func = args[0] |
| args = args[1:] |
| with _assert_warns_context(warning_class, name=func.__name__): |
| return func(*args, **kwargs) |
| |
| |
| @contextlib.contextmanager |
| def _assert_no_warnings_context(name=None): |
| __tracebackhide__ = True # Hide traceback for py.test |
| with warnings.catch_warnings(record=True) as l: |
| warnings.simplefilter("always") |
| yield |
| if len(l) > 0: |
| name_str = f" when calling {name}" if name is not None else "" |
| raise AssertionError(f"Got warnings{name_str}: {l}") |
| |
| |
| def assert_no_warnings(*args, **kwargs): |
| """ |
| Fail if the given callable produces any warnings. |
| |
| If called with all arguments omitted, may be used as a context manager: |
| |
| with assert_no_warnings(): |
| do_something() |
| |
| The ability to be used as a context manager is new in NumPy v1.11.0. |
| |
| .. versionadded:: 1.7.0 |
| |
| Parameters |
| ---------- |
| func : callable |
| The callable to test. |
| \\*args : Arguments |
| Arguments passed to `func`. |
| \\*\\*kwargs : Kwargs |
| Keyword arguments passed to `func`. |
| |
| Returns |
| ------- |
| The value returned by `func`. |
| |
| """ |
| if not args: |
| return _assert_no_warnings_context() |
| |
| func = args[0] |
| args = args[1:] |
| with _assert_no_warnings_context(name=func.__name__): |
| return func(*args, **kwargs) |
| |
| |
| def _gen_alignment_data(dtype=float32, type="binary", max_size=24): |
| """ |
| generator producing data with different alignment and offsets |
| to test simd vectorization |
| |
| Parameters |
| ---------- |
| dtype : dtype |
| data type to produce |
| type : string |
| 'unary': create data for unary operations, creates one input |
| and output array |
| 'binary': create data for unary operations, creates two input |
| and output array |
| max_size : integer |
| maximum size of data to produce |
| |
| Returns |
| ------- |
| if type is 'unary' yields one output, one input array and a message |
| containing information on the data |
| if type is 'binary' yields one output array, two input array and a message |
| containing information on the data |
| |
| """ |
| ufmt = "unary offset=(%d, %d), size=%d, dtype=%r, %s" |
| bfmt = "binary offset=(%d, %d, %d), size=%d, dtype=%r, %s" |
| for o in range(3): |
| for s in range(o + 2, max(o + 3, max_size)): |
| if type == "unary": |
| |
| def inp(): |
| return arange(s, dtype=dtype)[o:] |
| |
| out = empty((s,), dtype=dtype)[o:] |
| yield out, inp(), ufmt % (o, o, s, dtype, "out of place") |
| d = inp() |
| yield d, d, ufmt % (o, o, s, dtype, "in place") |
| yield out[1:], inp()[:-1], ufmt % ( |
| o + 1, |
| o, |
| s - 1, |
| dtype, |
| "out of place", |
| ) |
| yield out[:-1], inp()[1:], ufmt % ( |
| o, |
| o + 1, |
| s - 1, |
| dtype, |
| "out of place", |
| ) |
| yield inp()[:-1], inp()[1:], ufmt % (o, o + 1, s - 1, dtype, "aliased") |
| yield inp()[1:], inp()[:-1], ufmt % (o + 1, o, s - 1, dtype, "aliased") |
| if type == "binary": |
| |
| def inp1(): |
| return arange(s, dtype=dtype)[o:] |
| |
| inp2 = inp1 |
| out = empty((s,), dtype=dtype)[o:] |
| yield out, inp1(), inp2(), bfmt % (o, o, o, s, dtype, "out of place") |
| d = inp1() |
| yield d, d, inp2(), bfmt % (o, o, o, s, dtype, "in place1") |
| d = inp2() |
| yield d, inp1(), d, bfmt % (o, o, o, s, dtype, "in place2") |
| yield out[1:], inp1()[:-1], inp2()[:-1], bfmt % ( |
| o + 1, |
| o, |
| o, |
| s - 1, |
| dtype, |
| "out of place", |
| ) |
| yield out[:-1], inp1()[1:], inp2()[:-1], bfmt % ( |
| o, |
| o + 1, |
| o, |
| s - 1, |
| dtype, |
| "out of place", |
| ) |
| yield out[:-1], inp1()[:-1], inp2()[1:], bfmt % ( |
| o, |
| o, |
| o + 1, |
| s - 1, |
| dtype, |
| "out of place", |
| ) |
| yield inp1()[1:], inp1()[:-1], inp2()[:-1], bfmt % ( |
| o + 1, |
| o, |
| o, |
| s - 1, |
| dtype, |
| "aliased", |
| ) |
| yield inp1()[:-1], inp1()[1:], inp2()[:-1], bfmt % ( |
| o, |
| o + 1, |
| o, |
| s - 1, |
| dtype, |
| "aliased", |
| ) |
| yield inp1()[:-1], inp1()[:-1], inp2()[1:], bfmt % ( |
| o, |
| o, |
| o + 1, |
| s - 1, |
| dtype, |
| "aliased", |
| ) |
| |
| |
| class IgnoreException(Exception): |
| "Ignoring this exception due to disabled feature" |
| |
| |
| @contextlib.contextmanager |
| def tempdir(*args, **kwargs): |
| """Context manager to provide a temporary test folder. |
| |
| All arguments are passed as this to the underlying tempfile.mkdtemp |
| function. |
| |
| """ |
| tmpdir = mkdtemp(*args, **kwargs) |
| try: |
| yield tmpdir |
| finally: |
| shutil.rmtree(tmpdir) |
| |
| |
| @contextlib.contextmanager |
| def temppath(*args, **kwargs): |
| """Context manager for temporary files. |
| |
| Context manager that returns the path to a closed temporary file. Its |
| parameters are the same as for tempfile.mkstemp and are passed directly |
| to that function. The underlying file is removed when the context is |
| exited, so it should be closed at that time. |
| |
| Windows does not allow a temporary file to be opened if it is already |
| open, so the underlying file must be closed after opening before it |
| can be opened again. |
| |
| """ |
| fd, path = mkstemp(*args, **kwargs) |
| os.close(fd) |
| try: |
| yield path |
| finally: |
| os.remove(path) |
| |
| |
| class clear_and_catch_warnings(warnings.catch_warnings): |
| """Context manager that resets warning registry for catching warnings |
| |
| Warnings can be slippery, because, whenever a warning is triggered, Python |
| adds a ``__warningregistry__`` member to the *calling* module. This makes |
| it impossible to retrigger the warning in this module, whatever you put in |
| the warnings filters. This context manager accepts a sequence of `modules` |
| as a keyword argument to its constructor and: |
| |
| * stores and removes any ``__warningregistry__`` entries in given `modules` |
| on entry; |
| * resets ``__warningregistry__`` to its previous state on exit. |
| |
| This makes it possible to trigger any warning afresh inside the context |
| manager without disturbing the state of warnings outside. |
| |
| For compatibility with Python 3.0, please consider all arguments to be |
| keyword-only. |
| |
| Parameters |
| ---------- |
| record : bool, optional |
| Specifies whether warnings should be captured by a custom |
| implementation of ``warnings.showwarning()`` and be appended to a list |
| returned by the context manager. Otherwise None is returned by the |
| context manager. The objects appended to the list are arguments whose |
| attributes mirror the arguments to ``showwarning()``. |
| modules : sequence, optional |
| Sequence of modules for which to reset warnings registry on entry and |
| restore on exit. To work correctly, all 'ignore' filters should |
| filter by one of these modules. |
| |
| Examples |
| -------- |
| >>> import warnings |
| >>> with np.testing.clear_and_catch_warnings( # doctest: +SKIP |
| ... modules=[np.core.fromnumeric]): |
| ... warnings.simplefilter('always') |
| ... warnings.filterwarnings('ignore', module='np.core.fromnumeric') |
| ... # do something that raises a warning but ignore those in |
| ... # np.core.fromnumeric |
| """ |
| |
| class_modules = () |
| |
| def __init__(self, record=False, modules=()): |
| self.modules = set(modules).union(self.class_modules) |
| self._warnreg_copies = {} |
| super().__init__(record=record) |
| |
| def __enter__(self): |
| for mod in self.modules: |
| if hasattr(mod, "__warningregistry__"): |
| mod_reg = mod.__warningregistry__ |
| self._warnreg_copies[mod] = mod_reg.copy() |
| mod_reg.clear() |
| return super().__enter__() |
| |
| def __exit__(self, *exc_info): |
| super().__exit__(*exc_info) |
| for mod in self.modules: |
| if hasattr(mod, "__warningregistry__"): |
| mod.__warningregistry__.clear() |
| if mod in self._warnreg_copies: |
| mod.__warningregistry__.update(self._warnreg_copies[mod]) |
| |
| |
| class suppress_warnings: |
| """ |
| Context manager and decorator doing much the same as |
| ``warnings.catch_warnings``. |
| |
| However, it also provides a filter mechanism to work around |
| https://bugs.python.org/issue4180. |
| |
| This bug causes Python before 3.4 to not reliably show warnings again |
| after they have been ignored once (even within catch_warnings). It |
| means that no "ignore" filter can be used easily, since following |
| tests might need to see the warning. Additionally it allows easier |
| specificity for testing warnings and can be nested. |
| |
| Parameters |
| ---------- |
| forwarding_rule : str, optional |
| One of "always", "once", "module", or "location". Analogous to |
| the usual warnings module filter mode, it is useful to reduce |
| noise mostly on the outmost level. Unsuppressed and unrecorded |
| warnings will be forwarded based on this rule. Defaults to "always". |
| "location" is equivalent to the warnings "default", match by exact |
| location the warning warning originated from. |
| |
| Notes |
| ----- |
| Filters added inside the context manager will be discarded again |
| when leaving it. Upon entering all filters defined outside a |
| context will be applied automatically. |
| |
| When a recording filter is added, matching warnings are stored in the |
| ``log`` attribute as well as in the list returned by ``record``. |
| |
| If filters are added and the ``module`` keyword is given, the |
| warning registry of this module will additionally be cleared when |
| applying it, entering the context, or exiting it. This could cause |
| warnings to appear a second time after leaving the context if they |
| were configured to be printed once (default) and were already |
| printed before the context was entered. |
| |
| Nesting this context manager will work as expected when the |
| forwarding rule is "always" (default). Unfiltered and unrecorded |
| warnings will be passed out and be matched by the outer level. |
| On the outmost level they will be printed (or caught by another |
| warnings context). The forwarding rule argument can modify this |
| behaviour. |
| |
| Like ``catch_warnings`` this context manager is not threadsafe. |
| |
| Examples |
| -------- |
| |
| With a context manager:: |
| |
| with np.testing.suppress_warnings() as sup: |
| sup.filter(DeprecationWarning, "Some text") |
| sup.filter(module=np.ma.core) |
| log = sup.record(FutureWarning, "Does this occur?") |
| command_giving_warnings() |
| # The FutureWarning was given once, the filtered warnings were |
| # ignored. All other warnings abide outside settings (may be |
| # printed/error) |
| assert_(len(log) == 1) |
| assert_(len(sup.log) == 1) # also stored in log attribute |
| |
| Or as a decorator:: |
| |
| sup = np.testing.suppress_warnings() |
| sup.filter(module=np.ma.core) # module must match exactly |
| @sup |
| def some_function(): |
| # do something which causes a warning in np.ma.core |
| pass |
| """ |
| |
| def __init__(self, forwarding_rule="always"): |
| self._entered = False |
| |
| # Suppressions are either instance or defined inside one with block: |
| self._suppressions = [] |
| |
| if forwarding_rule not in {"always", "module", "once", "location"}: |
| raise ValueError("unsupported forwarding rule.") |
| self._forwarding_rule = forwarding_rule |
| |
| def _clear_registries(self): |
| if hasattr(warnings, "_filters_mutated"): |
| # clearing the registry should not be necessary on new pythons, |
| # instead the filters should be mutated. |
| warnings._filters_mutated() |
| return |
| # Simply clear the registry, this should normally be harmless, |
| # note that on new pythons it would be invalidated anyway. |
| for module in self._tmp_modules: |
| if hasattr(module, "__warningregistry__"): |
| module.__warningregistry__.clear() |
| |
| def _filter(self, category=Warning, message="", module=None, record=False): |
| if record: |
| record = [] # The log where to store warnings |
| else: |
| record = None |
| if self._entered: |
| if module is None: |
| warnings.filterwarnings("always", category=category, message=message) |
| else: |
| module_regex = module.__name__.replace(".", r"\.") + "$" |
| warnings.filterwarnings( |
| "always", category=category, message=message, module=module_regex |
| ) |
| self._tmp_modules.add(module) |
| self._clear_registries() |
| |
| self._tmp_suppressions.append( |
| (category, message, re.compile(message, re.IGNORECASE), module, record) |
| ) |
| else: |
| self._suppressions.append( |
| (category, message, re.compile(message, re.IGNORECASE), module, record) |
| ) |
| |
| return record |
| |
| def filter(self, category=Warning, message="", module=None): |
| """ |
| Add a new suppressing filter or apply it if the state is entered. |
| |
| Parameters |
| ---------- |
| category : class, optional |
| Warning class to filter |
| message : string, optional |
| Regular expression matching the warning message. |
| module : module, optional |
| Module to filter for. Note that the module (and its file) |
| must match exactly and cannot be a submodule. This may make |
| it unreliable for external modules. |
| |
| Notes |
| ----- |
| When added within a context, filters are only added inside |
| the context and will be forgotten when the context is exited. |
| """ |
| self._filter(category=category, message=message, module=module, record=False) |
| |
| def record(self, category=Warning, message="", module=None): |
| """ |
| Append a new recording filter or apply it if the state is entered. |
| |
| All warnings matching will be appended to the ``log`` attribute. |
| |
| Parameters |
| ---------- |
| category : class, optional |
| Warning class to filter |
| message : string, optional |
| Regular expression matching the warning message. |
| module : module, optional |
| Module to filter for. Note that the module (and its file) |
| must match exactly and cannot be a submodule. This may make |
| it unreliable for external modules. |
| |
| Returns |
| ------- |
| log : list |
| A list which will be filled with all matched warnings. |
| |
| Notes |
| ----- |
| When added within a context, filters are only added inside |
| the context and will be forgotten when the context is exited. |
| """ |
| return self._filter( |
| category=category, message=message, module=module, record=True |
| ) |
| |
| def __enter__(self): |
| if self._entered: |
| raise RuntimeError("cannot enter suppress_warnings twice.") |
| |
| self._orig_show = warnings.showwarning |
| self._filters = warnings.filters |
| warnings.filters = self._filters[:] |
| |
| self._entered = True |
| self._tmp_suppressions = [] |
| self._tmp_modules = set() |
| self._forwarded = set() |
| |
| self.log = [] # reset global log (no need to keep same list) |
| |
| for cat, mess, _, mod, log in self._suppressions: |
| if log is not None: |
| del log[:] # clear the log |
| if mod is None: |
| warnings.filterwarnings("always", category=cat, message=mess) |
| else: |
| module_regex = mod.__name__.replace(".", r"\.") + "$" |
| warnings.filterwarnings( |
| "always", category=cat, message=mess, module=module_regex |
| ) |
| self._tmp_modules.add(mod) |
| warnings.showwarning = self._showwarning |
| self._clear_registries() |
| |
| return self |
| |
| def __exit__(self, *exc_info): |
| warnings.showwarning = self._orig_show |
| warnings.filters = self._filters |
| self._clear_registries() |
| self._entered = False |
| del self._orig_show |
| del self._filters |
| |
| def _showwarning( |
| self, message, category, filename, lineno, *args, use_warnmsg=None, **kwargs |
| ): |
| for cat, _, pattern, mod, rec in (self._suppressions + self._tmp_suppressions)[ |
| ::-1 |
| ]: |
| if issubclass(category, cat) and pattern.match(message.args[0]) is not None: |
| if mod is None: |
| # Message and category match, either recorded or ignored |
| if rec is not None: |
| msg = WarningMessage( |
| message, category, filename, lineno, **kwargs |
| ) |
| self.log.append(msg) |
| rec.append(msg) |
| return |
| # Use startswith, because warnings strips the c or o from |
| # .pyc/.pyo files. |
| elif mod.__file__.startswith(filename): |
| # The message and module (filename) match |
| if rec is not None: |
| msg = WarningMessage( |
| message, category, filename, lineno, **kwargs |
| ) |
| self.log.append(msg) |
| rec.append(msg) |
| return |
| |
| # There is no filter in place, so pass to the outside handler |
| # unless we should only pass it once |
| if self._forwarding_rule == "always": |
| if use_warnmsg is None: |
| self._orig_show(message, category, filename, lineno, *args, **kwargs) |
| else: |
| self._orig_showmsg(use_warnmsg) |
| return |
| |
| if self._forwarding_rule == "once": |
| signature = (message.args, category) |
| elif self._forwarding_rule == "module": |
| signature = (message.args, category, filename) |
| elif self._forwarding_rule == "location": |
| signature = (message.args, category, filename, lineno) |
| |
| if signature in self._forwarded: |
| return |
| self._forwarded.add(signature) |
| if use_warnmsg is None: |
| self._orig_show(message, category, filename, lineno, *args, **kwargs) |
| else: |
| self._orig_showmsg(use_warnmsg) |
| |
| def __call__(self, func): |
| """ |
| Function decorator to apply certain suppressions to a whole |
| function. |
| """ |
| |
| @wraps(func) |
| def new_func(*args, **kwargs): |
| with self: |
| return func(*args, **kwargs) |
| |
| return new_func |
| |
| |
| @contextlib.contextmanager |
| def _assert_no_gc_cycles_context(name=None): |
| __tracebackhide__ = True # Hide traceback for py.test |
| |
| # not meaningful to test if there is no refcounting |
| if not HAS_REFCOUNT: |
| yield |
| return |
| |
| assert_(gc.isenabled()) |
| gc.disable() |
| gc_debug = gc.get_debug() |
| try: |
| for i in range(100): |
| if gc.collect() == 0: |
| break |
| else: |
| raise RuntimeError( |
| "Unable to fully collect garbage - perhaps a __del__ method " |
| "is creating more reference cycles?" |
| ) |
| |
| gc.set_debug(gc.DEBUG_SAVEALL) |
| yield |
| # gc.collect returns the number of unreachable objects in cycles that |
| # were found -- we are checking that no cycles were created in the context |
| n_objects_in_cycles = gc.collect() |
| objects_in_cycles = gc.garbage[:] |
| finally: |
| del gc.garbage[:] |
| gc.set_debug(gc_debug) |
| gc.enable() |
| |
| if n_objects_in_cycles: |
| name_str = f" when calling {name}" if name is not None else "" |
| raise AssertionError( |
| "Reference cycles were found{}: {} objects were collected, " |
| "of which {} are shown below:{}".format( |
| name_str, |
| n_objects_in_cycles, |
| len(objects_in_cycles), |
| "".join( |
| "\n {} object with id={}:\n {}".format( |
| type(o).__name__, |
| id(o), |
| pprint.pformat(o).replace("\n", "\n "), |
| ) |
| for o in objects_in_cycles |
| ), |
| ) |
| ) |
| |
| |
| def assert_no_gc_cycles(*args, **kwargs): |
| """ |
| Fail if the given callable produces any reference cycles. |
| |
| If called with all arguments omitted, may be used as a context manager: |
| |
| with assert_no_gc_cycles(): |
| do_something() |
| |
| .. versionadded:: 1.15.0 |
| |
| Parameters |
| ---------- |
| func : callable |
| The callable to test. |
| \\*args : Arguments |
| Arguments passed to `func`. |
| \\*\\*kwargs : Kwargs |
| Keyword arguments passed to `func`. |
| |
| Returns |
| ------- |
| Nothing. The result is deliberately discarded to ensure that all cycles |
| are found. |
| |
| """ |
| if not args: |
| return _assert_no_gc_cycles_context() |
| |
| func = args[0] |
| args = args[1:] |
| with _assert_no_gc_cycles_context(name=func.__name__): |
| func(*args, **kwargs) |
| |
| |
| def break_cycles(): |
| """ |
| Break reference cycles by calling gc.collect |
| Objects can call other objects' methods (for instance, another object's |
| __del__) inside their own __del__. On PyPy, the interpreter only runs |
| between calls to gc.collect, so multiple calls are needed to completely |
| release all cycles. |
| """ |
| |
| gc.collect() |
| if IS_PYPY: |
| # a few more, just to make sure all the finalizers are called |
| gc.collect() |
| gc.collect() |
| gc.collect() |
| gc.collect() |
| |
| |
| def requires_memory(free_bytes): |
| """Decorator to skip a test if not enough memory is available""" |
| import pytest |
| |
| def decorator(func): |
| @wraps(func) |
| def wrapper(*a, **kw): |
| msg = check_free_memory(free_bytes) |
| if msg is not None: |
| pytest.skip(msg) |
| |
| try: |
| return func(*a, **kw) |
| except MemoryError: |
| # Probably ran out of memory regardless: don't regard as failure |
| pytest.xfail("MemoryError raised") |
| |
| return wrapper |
| |
| return decorator |
| |
| |
| def check_free_memory(free_bytes): |
| """ |
| Check whether `free_bytes` amount of memory is currently free. |
| Returns: None if enough memory available, otherwise error message |
| """ |
| env_var = "NPY_AVAILABLE_MEM" |
| env_value = os.environ.get(env_var) |
| if env_value is not None: |
| try: |
| mem_free = _parse_size(env_value) |
| except ValueError as exc: |
| raise ValueError( # noqa: B904 |
| f"Invalid environment variable {env_var}: {exc}" |
| ) |
| |
| msg = ( |
| f"{free_bytes/1e9} GB memory required, but environment variable " |
| f"NPY_AVAILABLE_MEM={env_value} set" |
| ) |
| else: |
| mem_free = _get_mem_available() |
| |
| if mem_free is None: |
| msg = ( |
| "Could not determine available memory; set NPY_AVAILABLE_MEM " |
| "environment variable (e.g. NPY_AVAILABLE_MEM=16GB) to run " |
| "the test." |
| ) |
| mem_free = -1 |
| else: |
| msg = ( |
| f"{free_bytes/1e9} GB memory required, but {mem_free/1e9} GB available" |
| ) |
| |
| return msg if mem_free < free_bytes else None |
| |
| |
| def _parse_size(size_str): |
| """Convert memory size strings ('12 GB' etc.) to float""" |
| suffixes = { |
| "": 1, |
| "b": 1, |
| "k": 1000, |
| "m": 1000**2, |
| "g": 1000**3, |
| "t": 1000**4, |
| "kb": 1000, |
| "mb": 1000**2, |
| "gb": 1000**3, |
| "tb": 1000**4, |
| "kib": 1024, |
| "mib": 1024**2, |
| "gib": 1024**3, |
| "tib": 1024**4, |
| } |
| |
| size_re = re.compile( |
| r"^\s*(\d+|\d+\.\d+)\s*({})\s*$".format("|".join(suffixes.keys())), |
| re.IGNORECASE, |
| ) |
| |
| m = size_re.match(size_str.lower()) |
| if not m or m.group(2) not in suffixes: |
| raise ValueError(f"value {size_str!r} not a valid size") |
| return int(float(m.group(1)) * suffixes[m.group(2)]) |
| |
| |
| def _get_mem_available(): |
| """Return available memory in bytes, or None if unknown.""" |
| try: |
| import psutil |
| |
| return psutil.virtual_memory().available |
| except (ImportError, AttributeError): |
| pass |
| |
| if sys.platform.startswith("linux"): |
| info = {} |
| with open("/proc/meminfo") as f: |
| for line in f: |
| p = line.split() |
| info[p[0].strip(":").lower()] = int(p[1]) * 1024 |
| |
| if "memavailable" in info: |
| # Linux >= 3.14 |
| return info["memavailable"] |
| else: |
| return info["memfree"] + info["cached"] |
| |
| return None |
| |
| |
| def _no_tracing(func): |
| """ |
| Decorator to temporarily turn off tracing for the duration of a test. |
| Needed in tests that check refcounting, otherwise the tracing itself |
| influences the refcounts |
| """ |
| if not hasattr(sys, "gettrace"): |
| return func |
| else: |
| |
| @wraps(func) |
| def wrapper(*args, **kwargs): |
| original_trace = sys.gettrace() |
| try: |
| sys.settrace(None) |
| return func(*args, **kwargs) |
| finally: |
| sys.settrace(original_trace) |
| |
| return wrapper |
| |
| |
| def _get_glibc_version(): |
| try: |
| ver = os.confstr("CS_GNU_LIBC_VERSION").rsplit(" ")[1] |
| except Exception as inst: |
| ver = "0.0" |
| |
| return ver |
| |
| |
| _glibcver = _get_glibc_version() |
| |
| |
| def _glibc_older_than(x): |
| return _glibcver != "0.0" and _glibcver < x |