| # mypy: allow-untyped-defs |
| import copyreg |
| import enum |
| import functools |
| import warnings |
| from collections import OrderedDict |
| from copy import deepcopy |
| from numbers import Number |
| from typing import Any, Dict, Optional, Tuple, Union |
| |
| import torch |
| import torch._C as _C |
| from torch._namedtensor_internals import ( |
| check_serializing_named_tensor, |
| is_ellipsis, |
| resolve_ellipsis, |
| single_ellipsis_index, |
| unzip_namedshape, |
| update_names, |
| ) |
| from torch.overrides import ( |
| get_default_nowrap_functions, |
| handle_torch_function, |
| has_torch_function, |
| has_torch_function_unary, |
| has_torch_function_variadic, |
| ) |
| |
| |
| def _handle_torch_function_and_wrap_type_error_to_not_implemented(f): |
| assigned = functools.WRAPPER_ASSIGNMENTS |
| |
| @functools.wraps(f, assigned=assigned) |
| def wrapped(*args, **kwargs): |
| try: |
| # See https://github.com/pytorch/pytorch/issues/75462 |
| if has_torch_function(args): |
| return handle_torch_function(wrapped, args, *args, **kwargs) |
| return f(*args, **kwargs) |
| except TypeError: |
| return NotImplemented |
| |
| return wrapped |
| |
| |
| # Should not be used, this is kept only for BC of loading old serialized Tensor subclasses |
| def _rebuild_from_type(func, type, args, dict): |
| if type is Tensor: |
| return func(*args) |
| |
| ret = func(*args).as_subclass(type) |
| ret.__dict__ = dict |
| return ret |
| |
| |
| def _rebuild_from_type_v2(func, new_type, args, state): |
| ret = func(*args) |
| if type(ret) is not new_type: |
| ret = ret.as_subclass(new_type) |
| # Tensor does define __setstate__ even though it doesn't define |
| # __getstate__. So only use __setstate__ if it is NOT the one defined |
| # on Tensor |
| if ( |
| getattr(ret.__class__, "__setstate__", Tensor.__setstate__) |
| is not Tensor.__setstate__ |
| ): |
| ret.__setstate__(state) |
| else: |
| ret = torch._utils._set_obj_state(ret, state) |
| return ret |
| |
| |
| # NB: If you subclass Tensor, and want to share the subclassed class |
| # across processes, you must also update torch/multiprocessing/reductions.py |
| # to define a ForkingPickler serialization mode for the class. |
| # |
| # NB: If you add a new method to Tensor, you must update |
| # torch/_C/__init__.pyi.in to add a type annotation for your method; |
| # otherwise, it will not show up in autocomplete. |
| class Tensor(torch._C.TensorBase): |
| def __deepcopy__(self, memo): |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.__deepcopy__, (self,), self, memo) |
| if not self.is_leaf: |
| raise RuntimeError( |
| "Only Tensors created explicitly by the user " |
| "(graph leaves) support the deepcopy protocol at the moment. " |
| "If you were attempting to deepcopy a module, this may be because " |
| "of a torch.nn.utils.weight_norm usage, " |
| "see https://github.com/pytorch/pytorch/pull/103001" |
| ) |
| if id(self) in memo: |
| return memo[id(self)] |
| with torch.no_grad(): |
| # TODO: skipping storage copy is wrong for meta, as meta |
| # does accurate alias tracking; however, the code below |
| # doesn't work because of |
| # https://github.com/pytorch/pytorch/issues/47442 |
| # Update the test in test_serialization if you remove 'meta' from here |
| if ( |
| self.is_sparse |
| or self.device.type |
| in ["lazy", "xla", "mtia", "mps", "maia", "meta", "ipu"] |
| or ( |
| not torch._C._has_storage(self) |
| and self.device.type == torch._C._get_privateuse1_backend_name() |
| ) |
| or (type(self) is not Tensor and self.data_ptr() == 0) |
| ): |
| new_tensor = self.clone() |
| if type(new_tensor) is not type(self): |
| raise RuntimeError( |
| "The default implementation of __deepcopy__() for wrapper subclasses " |
| "only works for subclass types that implement clone() and for which " |
| "cloning returns another instance of the same subclass. You should either " |
| "properly implement clone() for your subclass or override __deepcopy__() " |
| "if it is intended behavior for clone() to return an instance of a " |
| "different type." |
| ) |
| else: |
| new_storage = self._typed_storage()._deepcopy(memo) |
| if self.is_quantized: |
| # quantizer_params can be different type based on torch attribute |
| quantizer_params: Union[ |
| Tuple[torch.qscheme, float, int], |
| Tuple[torch.qscheme, Tensor, Tensor, int], |
| ] |
| if self.qscheme() == torch.per_tensor_affine: |
| quantizer_params = ( |
| self.qscheme(), |
| self.q_scale(), |
| self.q_zero_point(), |
| ) |
| elif self.qscheme() in ( |
| torch.per_channel_affine, |
| torch.per_channel_affine_float_qparams, |
| ): |
| quantizer_params = ( |
| self.qscheme(), |
| self.q_per_channel_scales(), |
| self.q_per_channel_zero_points(), |
| self.q_per_channel_axis(), |
| ) |
| else: |
| raise RuntimeError( |
| f"Unsupported qscheme {self.qscheme()} in deepcopy" |
| ) |
| # TODO: Once we decide to break serialization FC, no longer |
| # need to wrap with TypedStorage |
| new_tensor = torch._utils._rebuild_qtensor( |
| torch.storage.TypedStorage( |
| wrap_storage=new_storage._untyped_storage, |
| dtype=self.dtype, |
| _internal=True, |
| ), |
| self.storage_offset(), |
| self.size(), |
| self.stride(), |
| quantizer_params, |
| self.requires_grad, |
| self._backward_hooks, |
| ) |
| if type(new_tensor) is not type(self): |
| raise RuntimeError( |
| "The default implementation of __deepcopy__() for quantized tensors " |
| "expects the tensor returned by torch._utils._rebuild_qtensor() to " |
| "match the type of the instance being copied. If you encounter this, " |
| "please open an issue on PyTorch's GitHub." |
| ) |
| else: |
| new_tensor = self.new_empty([]) |
| if type(new_tensor) is not type(self): |
| raise RuntimeError( |
| "The default implementation of __deepcopy__() for non-wrapper subclasses " |
| "only works for subclass types that implement new_empty() and for which " |
| "that function returns another instance of the same subclass. You should " |
| "either properly implement new_empty() for your subclass or override " |
| "__deepcopy__() if it is intended behavior for new_empty() to return " |
| "an instance of a different type." |
| ) |
| new_tensor.set_( |
| new_storage, self.storage_offset(), self.size(), self.stride() |
| ) |
| if self.is_conj(): |
| new_tensor = new_tensor.conj_physical() |
| if self.is_neg(): |
| new_tensor = new_tensor.neg() |
| if self.requires_grad: |
| new_tensor.requires_grad_() |
| if self.grad is not None: |
| new_tensor.grad = self.grad.__deepcopy__(memo) |
| |
| if type(self) is not Tensor: |
| if type(new_tensor) is not type(self): |
| raise RuntimeError( |
| "Type of deepcopy result does not match the type of the source tensor. " |
| "If you encounter this, please open an issue on PyTorch's GitHub." |
| ) |
| |
| # Plain Tensors don't have slots |
| slots_to_save = copyreg._slotnames(self.__class__) # type: ignore[attr-defined] |
| for slot in slots_to_save: |
| if hasattr(self, slot): |
| setattr(new_tensor, slot, deepcopy(getattr(self, slot), memo)) |
| |
| new_tensor.__dict__ = deepcopy(self.__dict__, memo) |
| |
| memo[id(self)] = new_tensor |
| return new_tensor |
| |
| def __reduce_ex__(self, proto): |
| materialize_fake_tensors = ( |
| torch.serialization._serialization_tls.materialize_fake_tensors |
| ) |
| state = torch._utils._get_obj_state(self) |
| # Ignore all state when using FakeTensor with skip_data(materialize_fake_tensors) because FakeTensor has |
| # some state that cannot be pickled |
| if ( |
| # TODO: remove hasattr, it's a hack to support versions of torch that |
| # don't have _subclasses |
| hasattr(torch, "_subclasses") |
| and type(self) is torch._subclasses.fake_tensor.FakeTensor |
| and materialize_fake_tensors |
| ) or (type(self) is Tensor and not state): |
| # Fast path for regular tensor without Python state. |
| return self._reduce_ex_internal(proto) |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.__reduce_ex__, (self,), self, proto) |
| func, args = self._reduce_ex_internal(proto) |
| return (_rebuild_from_type_v2, (func, type(self), args, state)) |
| |
| def storage(self): |
| r""" |
| storage() -> torch.TypedStorage |
| |
| Returns the underlying :class:`TypedStorage`. |
| |
| .. warning:: |
| |
| :class:`TypedStorage` is deprecated. It will be removed in the future, and |
| :class:`UntypedStorage` will be the only storage class. To access the |
| :class:`UntypedStorage` directly, use :attr:`Tensor.untyped_storage()`. |
| """ |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.storage, (self,), self) |
| |
| torch.storage._warn_typed_storage_removal(stacklevel=2) |
| return self._typed_storage() |
| |
| # For internal use only, to avoid raising deprecation warning |
| def _typed_storage(self): |
| untyped_storage = self.untyped_storage() |
| return torch.TypedStorage( |
| wrap_storage=untyped_storage, dtype=self.dtype, _internal=True |
| ) |
| |
| def _reduce_ex_internal(self, proto): |
| check_serializing_named_tensor(self) |
| |
| from torch.utils.hooks import warn_if_has_hooks |
| |
| # See Note [Don't serialize hooks] |
| warn_if_has_hooks(self) |
| backward_hooks: Dict[Any, Any] = OrderedDict() |
| |
| skip_data = torch.serialization._serialization_tls.skip_data |
| materialize_fake_tensors = ( |
| torch.serialization._serialization_tls.materialize_fake_tensors |
| ) |
| |
| # Note: Numpy array is chosen to be the rebuild component for XLA, MTIA, MAIA Tensors. |
| # We considered a few options: |
| # 1. CPU tensor can't be used here. |
| # Otherwise in torch.load CPU storage is reconstructed with randomly |
| # initialized data, moved onto backend device, and then storage is updated |
| # to the serialized content. This works perfectly for CPU/CUDA but not these backends; |
| # their tensors are disconnected with storage so they don't get the update. |
| # 2. Python list is not a good fit due to performance reason. |
| # `tolist()` converts every single element in the tensor into python objects |
| # and serialize them one by one. |
| if self.device.type in ["xla", "mtia", "maia"] or ( |
| not torch._C._has_storage(self) |
| and self.device.type == torch._C._get_privateuse1_backend_name() |
| ): |
| # Convert BFloat16 tesors to Float32 before conversion to numpy, as numpy doesn't |
| # support BFloat16. The rebuild tensor from numpy takes in the original self.dtype, |
| # this would reconstruct the BFloat16 tensor from numpy. |
| if skip_data: |
| raise RuntimeError( |
| "Cannot serialize tensors on backends with no storage under skip_data context manager" |
| ) |
| numpy_tensor = ( |
| self.cpu().numpy() |
| if self.dtype != torch.bfloat16 |
| else self.cpu().to(torch.float32).numpy() |
| ) |
| return ( |
| torch._utils._rebuild_device_tensor_from_numpy, |
| (numpy_tensor, self.dtype, str(self.device), self.requires_grad), |
| ) |
| if self.device.type == "meta": |
| # NB: This implementation BREAKS storage sharing. Current |
| # hypothesis is that no one cares for meta tensors. |
| if skip_data: |
| warnings.warn( |
| "Serializing tensors on the meta device under skip_data context manager is a no-op" |
| ) |
| arg_meta = ( |
| self.dtype, |
| tuple(self.size()), |
| self.stride(), |
| self.requires_grad, |
| ) |
| return (torch._utils._rebuild_meta_tensor_no_storage, arg_meta) |
| if self.is_quantized: |
| if skip_data: |
| raise RuntimeError( |
| "Cannot serialize qtensor under skip_data context manager, file an issue if you need this feature" |
| ) |
| # quantizer_params can be different type based on torch attribute |
| quantizer_params: Union[ |
| Tuple[torch.qscheme, float, int], Tuple[Any, Tensor, Tensor, int] |
| ] |
| if self.qscheme() == torch.per_tensor_affine: |
| quantizer_params = ( |
| torch.per_tensor_affine, |
| self.q_scale(), |
| self.q_zero_point(), |
| ) |
| elif self.qscheme() in ( |
| torch.per_channel_affine, |
| torch.per_channel_affine_float_qparams, |
| ): |
| # convert scales and zero points to tuple to avoid recursive calls |
| # when/if we get multi-axis quantized tensors in the future, the shape |
| # is recoverable from the main tensor shape |
| quantizer_params = ( |
| torch.per_channel_affine, |
| self.q_per_channel_scales(), |
| self.q_per_channel_zero_points(), |
| self.q_per_channel_axis(), |
| ) |
| else: |
| raise RuntimeError( |
| f"Serialization is not supported for tensors of type {self.qscheme()}" |
| ) |
| # TODO: Once we decide to break serialization FC, no longer |
| # need to wrap with TypedStorage |
| args_qtensor = ( |
| torch.storage.TypedStorage( |
| wrap_storage=self._typed_storage()._untyped_storage, |
| dtype=self.dtype, |
| _internal=True, |
| ), |
| self.storage_offset(), |
| tuple(self.size()), |
| self.stride(), |
| quantizer_params, |
| self.requires_grad, |
| backward_hooks, |
| ) |
| return (torch._utils._rebuild_qtensor, args_qtensor) |
| elif self.is_sparse: |
| if self.layout == torch.sparse_coo: |
| args_sparse = ( |
| self.layout, |
| (self._indices(), self._values(), self.size(), self.is_coalesced()), |
| ) |
| else: |
| raise NotImplementedError( |
| f"sparse tensor __reduce_ex__ for layout `{self.layout}`" |
| ) |
| return (torch._utils._rebuild_sparse_tensor, args_sparse) |
| elif self.layout in { |
| torch.sparse_csr, |
| torch.sparse_csc, |
| torch.sparse_bsr, |
| torch.sparse_bsc, |
| }: |
| if self.layout in {torch.sparse_csr, torch.sparse_bsr}: |
| compressed_indices, plain_indices = ( |
| self.crow_indices(), |
| self.col_indices(), |
| ) |
| else: |
| compressed_indices, plain_indices = ( |
| self.ccol_indices(), |
| self.row_indices(), |
| ) |
| args_sparse_compressed = ( |
| self.layout, |
| ( |
| compressed_indices, |
| plain_indices, |
| self.values(), |
| self.size(), |
| ), |
| ) |
| return (torch._utils._rebuild_sparse_tensor, args_sparse_compressed) |
| elif self.is_nested: |
| if skip_data: |
| raise RuntimeError( |
| "Cannot serialize nested tensor under skip_data context manager, file an issue if you need this feature" |
| ) |
| args_nested = ( |
| # NB: values() currently returns the storage as a buffer in an unsafe way. |
| # Ideally, we'd use a private API for this instead. TODO: Switch to this if |
| # we ever get around to adding it. |
| self.values(), |
| self._nested_tensor_size(), |
| self._nested_tensor_strides(), |
| self._nested_tensor_storage_offsets(), |
| ) |
| return (torch._utils._rebuild_nested_tensor, args_nested) |
| elif ( |
| type(self) is not torch.Tensor |
| and type(self).__torch_dispatch__ is not torch.Tensor.__torch_dispatch__ |
| and ( |
| isinstance(self, torch._subclasses.functional_tensor.FunctionalTensor) |
| or ( |
| not isinstance(self, torch._subclasses.fake_tensor.FakeTensor) |
| and self.data_ptr() == 0 |
| ) |
| ) |
| ): |
| arg_wrapper_subclass = ( |
| type(self), |
| self.dtype, |
| tuple(self.size()), |
| self.stride(), |
| self.storage_offset(), |
| self.layout, |
| self.device, |
| self.requires_grad, |
| ) |
| return (torch._utils._rebuild_wrapper_subclass, arg_wrapper_subclass) |
| elif ( |
| type(self) is not torch.Tensor |
| and type(self).__torch_dispatch__ is not torch.Tensor.__torch_dispatch__ |
| and ( |
| isinstance(self, torch._subclasses.fake_tensor.FakeTensor) |
| and not (skip_data and materialize_fake_tensors) |
| ) |
| ): |
| arg_wrapper_subclass = ( |
| type(self), |
| self.dtype, |
| tuple(self.size()), |
| self.stride(), |
| self.storage_offset(), |
| self.layout, |
| self.device, |
| self.requires_grad, |
| ) |
| return (torch._utils._rebuild_wrapper_subclass, arg_wrapper_subclass) |
| else: |
| v3_dtypes = torch.storage._new_dtypes() |
| if self.dtype in v3_dtypes: |
| rebuild_func = torch._utils._rebuild_tensor_v3 |
| storage = self.untyped_storage() |
| else: |
| # TODO: Once we decide to break serialization FC, no longer |
| # need to wrap with TypedStorage |
| rebuild_func = torch._utils._rebuild_tensor_v2 # type: ignore[assignment] |
| storage = torch.storage.TypedStorage( |
| wrap_storage=self._typed_storage()._untyped_storage, |
| dtype=self.dtype, |
| _internal=True, |
| ) # type: ignore[assignment] |
| |
| # TODO: remove hasattr, it's a hack to support versions of torch that |
| # don't have _subclasses |
| if ( |
| hasattr(torch, "_subclasses") |
| and isinstance(self, torch._subclasses.fake_tensor.FakeTensor) |
| and skip_data |
| ): |
| storage._fake_device = self.device |
| |
| args = ( |
| storage, |
| self.storage_offset(), |
| tuple(self.size()), |
| self.stride(), |
| self.requires_grad, |
| backward_hooks, |
| ) # previously was self._backward_hooks |
| |
| if isinstance(storage, torch.storage.UntypedStorage): |
| args = args + (self.dtype,) # type: ignore[assignment] |
| |
| metadata = torch._utils.get_tensor_metadata(self) |
| if metadata: |
| args = args + (metadata,) # type: ignore[assignment] |
| |
| return (rebuild_func, args) |
| |
| def __setstate__(self, state): |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.__setstate__, (self,), self, state) |
| # Warning: this method is NOT called when you torch.load() a tensor; |
| # that is managed by _rebuild_tensor_v2 |
| if not self.is_leaf: |
| raise RuntimeError("__setstate__ can be only called on leaf Tensors") |
| if len(state) == 4: |
| # legacy serialization of Tensor |
| self.set_(*state) |
| return |
| elif len(state) == 5: |
| # legacy serialization of Variable |
| self.data = state[0] |
| state = (state[3], state[4], state[2]) |
| # The setting of _backward_hooks is expected to be a no-op. |
| # See Note [Don't serialize hooks] |
| self.requires_grad, _, self._backward_hooks = state |
| |
| def __repr__(self, *, tensor_contents=None): |
| if has_torch_function_unary(self): |
| return handle_torch_function( |
| Tensor.__repr__, (self,), self, tensor_contents=tensor_contents |
| ) |
| # All strings are unicode in Python 3. |
| return torch._tensor_str._str(self, tensor_contents=tensor_contents) |
| |
| def backward( |
| self, gradient=None, retain_graph=None, create_graph=False, inputs=None |
| ): |
| r"""Computes the gradient of current tensor wrt graph leaves. |
| |
| The graph is differentiated using the chain rule. If the tensor is |
| non-scalar (i.e. its data has more than one element) and requires |
| gradient, the function additionally requires specifying a ``gradient``. |
| It should be a tensor of matching type and shape, that represents |
| the gradient of the differentiated function w.r.t. ``self``. |
| |
| This function accumulates gradients in the leaves - you might need to zero |
| ``.grad`` attributes or set them to ``None`` before calling it. |
| See :ref:`Default gradient layouts<default-grad-layouts>` |
| for details on the memory layout of accumulated gradients. |
| |
| .. note:: |
| |
| If you run any forward ops, create ``gradient``, and/or call ``backward`` |
| in a user-specified CUDA stream context, see |
| :ref:`Stream semantics of backward passes<bwd-cuda-stream-semantics>`. |
| |
| .. note:: |
| |
| When ``inputs`` are provided and a given input is not a leaf, |
| the current implementation will call its grad_fn (though it is not strictly needed to get this gradients). |
| It is an implementation detail on which the user should not rely. |
| See https://github.com/pytorch/pytorch/pull/60521#issuecomment-867061780 for more details. |
| |
| Args: |
| gradient (Tensor, optional): The gradient of the function |
| being differentiated w.r.t. ``self``. |
| This argument can be omitted if ``self`` is a scalar. |
| retain_graph (bool, optional): If ``False``, the graph used to compute |
| the grads will be freed. Note that in nearly all cases setting |
| this option to True is not needed and often can be worked around |
| in a much more efficient way. Defaults to the value of |
| ``create_graph``. |
| create_graph (bool, optional): If ``True``, graph of the derivative will |
| be constructed, allowing to compute higher order derivative |
| products. Defaults to ``False``. |
| inputs (sequence of Tensor, optional): Inputs w.r.t. which the gradient will be |
| accumulated into ``.grad``. All other tensors will be ignored. If not |
| provided, the gradient is accumulated into all the leaf Tensors that were |
| used to compute the :attr:`tensors`. |
| """ |
| if has_torch_function_unary(self): |
| return handle_torch_function( |
| Tensor.backward, |
| (self,), |
| self, |
| gradient=gradient, |
| retain_graph=retain_graph, |
| create_graph=create_graph, |
| inputs=inputs, |
| ) |
| torch.autograd.backward( |
| self, gradient, retain_graph, create_graph, inputs=inputs |
| ) |
| |
| def register_hook(self, hook): |
| r"""Registers a backward hook. |
| |
| The hook will be called every time a gradient with respect to the |
| Tensor is computed. The hook should have the following signature:: |
| |
| hook(grad) -> Tensor or None |
| |
| |
| The hook should not modify its argument, but it can optionally return |
| a new gradient which will be used in place of :attr:`grad`. |
| |
| This function returns a handle with a method ``handle.remove()`` |
| that removes the hook from the module. |
| |
| .. note:: |
| See :ref:`backward-hooks-execution` for more information on how when this hook |
| is executed, and how its execution is ordered relative to other hooks. |
| |
| Example:: |
| |
| >>> v = torch.tensor([0., 0., 0.], requires_grad=True) |
| >>> h = v.register_hook(lambda grad: grad * 2) # double the gradient |
| >>> v.backward(torch.tensor([1., 2., 3.])) |
| >>> v.grad |
| |
| 2 |
| 4 |
| 6 |
| [torch.FloatTensor of size (3,)] |
| |
| >>> h.remove() # removes the hook |
| """ |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.register_hook, (self,), self, hook) |
| if not self.requires_grad: |
| raise RuntimeError( |
| "cannot register a hook on a tensor that doesn't require gradient" |
| ) |
| if self._backward_hooks is None: |
| self._backward_hooks = OrderedDict() |
| if self.grad_fn is not None: |
| self.grad_fn._register_hook_dict(self) |
| |
| from torch.utils.hooks import RemovableHandle |
| |
| handle = RemovableHandle(self._backward_hooks) |
| self._backward_hooks[handle.id] = hook |
| return handle |
| |
| def register_post_accumulate_grad_hook(self, hook): |
| r"""Registers a backward hook that runs after grad accumulation. |
| |
| The hook will be called after all gradients for a tensor have been accumulated, |
| meaning that the .grad field has been updated on that tensor. The post |
| accumulate grad hook is ONLY applicable for leaf tensors (tensors without a |
| .grad_fn field). Registering this hook on a non-leaf tensor will error! |
| |
| The hook should have the following signature:: |
| |
| hook(param: Tensor) -> None |
| |
| Note that, unlike other autograd hooks, this hook operates on the tensor |
| that requires grad and not the grad itself. The hook can in-place modify |
| and access its Tensor argument, including its .grad field. |
| |
| This function returns a handle with a method ``handle.remove()`` |
| that removes the hook from the module. |
| |
| .. note:: |
| See :ref:`backward-hooks-execution` for more information on how when this hook |
| is executed, and how its execution is ordered relative to other hooks. Since |
| this hook runs during the backward pass, it will run in no_grad mode (unless |
| create_graph is True). You can use torch.enable_grad() to re-enable autograd |
| within the hook if you need it. |
| |
| Example:: |
| |
| >>> v = torch.tensor([0., 0., 0.], requires_grad=True) |
| >>> lr = 0.01 |
| >>> # simulate a simple SGD update |
| >>> h = v.register_post_accumulate_grad_hook(lambda p: p.add_(p.grad, alpha=-lr)) |
| >>> v.backward(torch.tensor([1., 2., 3.])) |
| >>> v |
| tensor([-0.0100, -0.0200, -0.0300], requires_grad=True) |
| |
| >>> h.remove() # removes the hook |
| """ |
| if has_torch_function_unary(self): |
| return handle_torch_function( |
| Tensor.register_post_accumulate_grad_hook, (self,), self, hook |
| ) |
| if not self.requires_grad: |
| raise RuntimeError( |
| "cannot register a hook on a tensor that doesn't require gradient" |
| ) |
| if self.grad_fn is not None: |
| raise RuntimeError( |
| "post accumulate grad hooks cannot be registered on non-leaf tensors" |
| ) |
| if self._post_accumulate_grad_hooks is None: |
| self._post_accumulate_grad_hooks: Dict[Any, Any] = OrderedDict() |
| |
| from torch.utils.hooks import RemovableHandle |
| |
| handle = RemovableHandle(self._post_accumulate_grad_hooks) |
| self._post_accumulate_grad_hooks[handle.id] = hook |
| return handle |
| |
| def reinforce(self, reward): |
| def trim(str): |
| return "\n".join([line.strip() for line in str.split("\n")]) |
| |
| raise RuntimeError( |
| trim( |
| r"""reinforce() was removed. |
| Use torch.distributions instead. |
| See https://pytorch.org/docs/main/distributions.html |
| |
| Instead of: |
| |
| probs = policy_network(state) |
| action = probs.multinomial() |
| next_state, reward = env.step(action) |
| action.reinforce(reward) |
| action.backward() |
| |
| Use: |
| |
| probs = policy_network(state) |
| # NOTE: categorical is equivalent to what used to be called multinomial |
| m = torch.distributions.Categorical(probs) |
| action = m.sample() |
| next_state, reward = env.step(action) |
| loss = -m.log_prob(action) * reward |
| loss.backward() |
| """ |
| ) |
| ) |
| |
| detach = _C._add_docstr( |
| _C.TensorBase.detach, |
| r""" |
| Returns a new Tensor, detached from the current graph. |
| |
| The result will never require gradient. |
| |
| This method also affects forward mode AD gradients and the result will never |
| have forward mode AD gradients. |
| |
| .. note:: |
| |
| Returned Tensor shares the same storage with the original one. |
| In-place modifications on either of them will be seen, and may trigger |
| errors in correctness checks. |
| """, |
| ) |
| |
| detach_ = _C._add_docstr( |
| _C.TensorBase.detach_, |
| r""" |
| Detaches the Tensor from the graph that created it, making it a leaf. |
| Views cannot be detached in-place. |
| |
| This method also affects forward mode AD gradients and the result will never |
| have forward mode AD gradients. |
| """, |
| ) |
| |
| def is_shared(self): |
| r"""Checks if tensor is in shared memory. |
| |
| This is always ``True`` for CUDA tensors. |
| """ |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.is_shared, (self,), self) |
| return self._typed_storage()._is_shared() |
| |
| def share_memory_(self): |
| r"""Moves the underlying storage to shared memory. |
| |
| This is a no-op if the underlying storage is already in shared memory |
| and for CUDA tensors. Tensors in shared memory cannot be resized. |
| |
| See :meth:`torch.UntypedStorage.share_memory_` for more details. |
| """ |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.share_memory_, (self,), self) |
| self._typed_storage()._share_memory_() |
| return self |
| |
| def module_load(self, other, assign=False): |
| r"""Defines how to transform ``other`` when loading it into ``self`` in :meth:`~nn.Module.load_state_dict`. |
| |
| Used when :func:`~torch.__future__.get_swap_module_params_on_conversion` is ``True``. |
| |
| It is expected that ``self`` is a parameter or buffer in an ``nn.Module`` and ``other`` is the |
| value in the state dictionary with the corresponding key, this method defines |
| how ``other`` is remapped before being swapped with ``self`` via |
| :func:`~torch.utils.swap_tensors` in :meth:`~nn.Module.load_state_dict`. |
| |
| .. note:: |
| This method should always return a new object that is not ``self`` or ``other``. |
| For example, the default implementation returns ``self.copy_(other).detach()`` |
| if ``assign`` is ``False`` or ``other.detach()`` if ``assign`` is ``True``. |
| |
| Args: |
| other (Tensor): value in state dict with key corresponding to ``self`` |
| assign (bool): the assign argument passed to :meth:`nn.Module.load_state_dict` |
| |
| """ |
| if has_torch_function_variadic(self, other): |
| return handle_torch_function( |
| Tensor.module_load, (self, other), self, other, assign=assign |
| ) |
| |
| if assign: |
| return other.detach() |
| else: |
| return self.copy_(other).detach() |
| |
| def __reversed__(self): |
| r"""Reverses the tensor along dimension 0.""" |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.__reversed__, (self,), self) |
| if self.dim() == 0: |
| return self |
| else: |
| return self.flip(0) |
| |
| def norm( |
| self, |
| p: Optional[Union[float, str]] = "fro", |
| dim=None, |
| keepdim=False, |
| dtype=None, |
| ): |
| r"""See :func:`torch.norm`""" |
| if has_torch_function_unary(self): |
| return handle_torch_function( |
| Tensor.norm, (self,), self, p=p, dim=dim, keepdim=keepdim, dtype=dtype |
| ) |
| return torch.norm(self, p, dim, keepdim, dtype=dtype) |
| |
| def solve(self, other): |
| from torch._linalg_utils import solve |
| |
| return solve(self, other) |
| |
| def lstsq(self, other): |
| from torch._linalg_utils import lstsq |
| |
| return lstsq(self, other) |
| |
| def eig(self, eigenvectors=False): |
| from torch._linalg_utils import eig |
| |
| return eig(self, eigenvectors=eigenvectors) |
| |
| def symeig(self, eigenvectors=False): |
| from torch._linalg_utils import _symeig |
| |
| return _symeig(self, eigenvectors=eigenvectors) |
| |
| def lu(self, pivot=True, get_infos=False): |
| r"""See :func:`torch.lu`""" |
| # If get_infos is True, then we don't need to check for errors and vice versa |
| if has_torch_function_unary(self): |
| return handle_torch_function( |
| Tensor.lu, (self,), self, pivot=pivot, get_infos=get_infos |
| ) |
| |
| LU, pivots, infos = torch._lu_with_info( |
| self, pivot=pivot, check_errors=(not get_infos) |
| ) |
| if get_infos: |
| return LU, pivots, infos |
| else: |
| return LU, pivots |
| |
| def stft( |
| self, |
| n_fft: int, |
| hop_length: Optional[int] = None, |
| win_length: Optional[int] = None, |
| window: "Optional[Tensor]" = None, |
| center: bool = True, |
| pad_mode: str = "reflect", |
| normalized: bool = False, |
| onesided: Optional[bool] = None, |
| return_complex: Optional[bool] = None, |
| ): |
| r"""See :func:`torch.stft` |
| |
| .. warning:: |
| This function changed signature at version 0.4.1. Calling with |
| the previous signature may cause error or return incorrect result. |
| """ |
| if has_torch_function_unary(self): |
| return handle_torch_function( |
| Tensor.stft, |
| (self,), |
| self, |
| n_fft, |
| hop_length=hop_length, |
| win_length=win_length, |
| window=window, |
| center=center, |
| pad_mode=pad_mode, |
| normalized=normalized, |
| onesided=onesided, |
| return_complex=return_complex, |
| ) |
| return torch.stft( |
| self, |
| n_fft, |
| hop_length, |
| win_length, |
| window, |
| center, |
| pad_mode, |
| normalized, |
| onesided, |
| return_complex=return_complex, |
| ) |
| |
| def istft( |
| self, |
| n_fft: int, |
| hop_length: Optional[int] = None, |
| win_length: Optional[int] = None, |
| window: "Optional[Tensor]" = None, |
| center: bool = True, |
| normalized: bool = False, |
| onesided: Optional[bool] = None, |
| length: Optional[int] = None, |
| return_complex: bool = False, |
| ): |
| r"""See :func:`torch.istft`""" |
| if has_torch_function_unary(self): |
| return handle_torch_function( |
| Tensor.istft, |
| (self,), |
| self, |
| n_fft, |
| hop_length=hop_length, |
| win_length=win_length, |
| window=window, |
| center=center, |
| normalized=normalized, |
| onesided=onesided, |
| length=length, |
| return_complex=return_complex, |
| ) |
| return torch.istft( |
| self, |
| n_fft, |
| hop_length, |
| win_length, |
| window, |
| center, |
| normalized, |
| onesided, |
| length, |
| return_complex=return_complex, |
| ) |
| |
| def resize(self, *sizes): |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.resize, (self,), self, *sizes) |
| warnings.warn("non-inplace resize is deprecated") |
| from torch.autograd._functions import Resize |
| |
| return Resize.apply(self, sizes) |
| |
| def resize_as(self, tensor): |
| if has_torch_function_variadic(self, tensor): |
| return handle_torch_function(Tensor.resize_as, (self, tensor), self, tensor) |
| warnings.warn("non-inplace resize_as is deprecated") |
| from torch.autograd._functions import Resize |
| |
| return Resize.apply(self, tensor.size()) |
| |
| def split(self, split_size, dim=0): |
| r"""See :func:`torch.split`""" |
| if has_torch_function_unary(self): |
| return handle_torch_function( |
| Tensor.split, (self,), self, split_size, dim=dim |
| ) |
| if isinstance(split_size, Tensor): |
| try: |
| split_size = int(split_size) |
| except ValueError: |
| pass |
| |
| if isinstance(split_size, (int, torch.SymInt)): |
| return torch._VF.split(self, split_size, dim) # type: ignore[attr-defined] |
| else: |
| return torch._VF.split_with_sizes(self, split_size, dim) |
| |
| def unique(self, sorted=True, return_inverse=False, return_counts=False, dim=None): |
| r"""Returns the unique elements of the input tensor. |
| |
| See :func:`torch.unique` |
| """ |
| if has_torch_function_unary(self): |
| return handle_torch_function( |
| Tensor.unique, |
| (self,), |
| self, |
| sorted=sorted, |
| return_inverse=return_inverse, |
| return_counts=return_counts, |
| dim=dim, |
| ) |
| return torch.unique( |
| self, |
| sorted=sorted, |
| return_inverse=return_inverse, |
| return_counts=return_counts, |
| dim=dim, |
| ) |
| |
| def unique_consecutive(self, return_inverse=False, return_counts=False, dim=None): |
| r"""Eliminates all but the first element from every consecutive group of equivalent elements. |
| |
| See :func:`torch.unique_consecutive` |
| """ |
| if has_torch_function_unary(self): |
| return handle_torch_function( |
| Tensor.unique_consecutive, |
| (self,), |
| self, |
| return_inverse=return_inverse, |
| return_counts=return_counts, |
| dim=dim, |
| ) |
| return torch.unique_consecutive( |
| self, return_inverse=return_inverse, return_counts=return_counts, dim=dim |
| ) |
| |
| @_handle_torch_function_and_wrap_type_error_to_not_implemented |
| def __rsub__(self, other): |
| return _C._VariableFunctions.rsub(self, other) |
| |
| @_handle_torch_function_and_wrap_type_error_to_not_implemented |
| def __rdiv__(self, other): |
| return self.reciprocal() * other |
| |
| __rtruediv__ = __rdiv__ |
| __itruediv__ = _C.TensorBase.__idiv__ |
| |
| __pow__ = _handle_torch_function_and_wrap_type_error_to_not_implemented( |
| _C.TensorBase.pow |
| ) |
| __ipow__ = _handle_torch_function_and_wrap_type_error_to_not_implemented( |
| _C.TensorBase.pow_ |
| ) |
| |
| @_handle_torch_function_and_wrap_type_error_to_not_implemented |
| def __rmod__(self, other): |
| return torch.remainder(other, self) |
| |
| def __format__(self, format_spec): |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.__format__, (self,), self, format_spec) |
| if self.dim() == 0 and not self.is_meta and type(self) is Tensor: |
| return self.item().__format__(format_spec) |
| return object.__format__(self, format_spec) |
| |
| @_handle_torch_function_and_wrap_type_error_to_not_implemented |
| def __rpow__(self, other): |
| return torch.pow(other, self) |
| |
| @_handle_torch_function_and_wrap_type_error_to_not_implemented |
| def __floordiv__(self, other): |
| return torch.floor_divide(self, other) |
| |
| @_handle_torch_function_and_wrap_type_error_to_not_implemented |
| def __rfloordiv__(self, other): |
| return torch.floor_divide(other, self) |
| |
| @_handle_torch_function_and_wrap_type_error_to_not_implemented |
| def __rlshift__(self, other): |
| return torch.bitwise_left_shift(other, self) |
| |
| @_handle_torch_function_and_wrap_type_error_to_not_implemented |
| def __rrshift__(self, other): |
| return torch.bitwise_right_shift(other, self) |
| |
| @_handle_torch_function_and_wrap_type_error_to_not_implemented |
| def __rmatmul__(self, other): |
| return torch.matmul(other, self) |
| |
| __pos__ = _C.TensorBase.positive |
| __neg__ = _C.TensorBase.neg |
| __abs__ = _C.TensorBase.abs |
| |
| def __len__(self): |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.__len__, (self,), self) |
| if self.dim() == 0: |
| raise TypeError("len() of a 0-d tensor") |
| if torch._C._get_tracing_state(): |
| warnings.warn( |
| "Using len to get tensor shape might cause the trace to be incorrect. " |
| "Recommended usage would be tensor.shape[0]. " |
| "Passing a tensor of different shape might lead to errors or silently give " |
| "incorrect results.", |
| category=torch.jit.TracerWarning, |
| stacklevel=2, |
| ) |
| return self.shape[0] |
| |
| def __iter__(self): |
| # NB: we use 'imap' and not 'map' here, so that in Python 2 we get a |
| # generator and don't eagerly perform all the indexes. This could |
| # save us work, and also helps keep trace ordering deterministic |
| # (e.g., if you zip(*hiddens), the eager map will force all the |
| # indexes of hiddens[0] before hiddens[1], while the generator |
| # map will interleave them.) |
| # NB: We have intentionally skipped __torch_function__ dispatch here. |
| # See gh-54457 |
| if self.dim() == 0: |
| raise TypeError("iteration over a 0-d tensor") |
| if torch._C._get_tracing_state(): |
| warnings.warn( |
| "Iterating over a tensor might cause the trace to be incorrect. " |
| "Passing a tensor of different shape won't change the number of " |
| "iterations executed (and might lead to errors or silently give " |
| "incorrect results).", |
| category=torch.jit.TracerWarning, |
| stacklevel=2, |
| ) |
| return iter(self.unbind(0)) |
| |
| def __hash__(self): |
| # Do NOT handle __torch_function__ here as user's default |
| # implementation that handle most functions will most likely do it wrong. |
| # It can be easily overridden by defining this method on the user |
| # subclass if needed. |
| return id(self) |
| |
| def __dir__(self): |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.__dir__, (self,), self) |
| tensor_methods = dir(self.__class__) |
| tensor_methods.remove("volatile") # deprecated |
| attrs = list(self.__dict__.keys()) |
| keys = tensor_methods + attrs |
| |
| # property only available dense, cuda tensors |
| if (not self.is_cuda) or self.is_sparse: |
| keys.remove("__cuda_array_interface__") |
| |
| return sorted(keys) |
| |
| # Numpy array interface, to support `numpy.asarray(tensor) -> ndarray` |
| __array_priority__ = 1000 # prefer Tensor ops over numpy ones |
| |
| def __array__(self, dtype=None): |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.__array__, (self,), self, dtype=dtype) |
| if dtype is None: |
| return self.numpy() |
| else: |
| return self.numpy().astype(dtype, copy=False) |
| |
| # Wrap Numpy array again in a suitable tensor when done, to support e.g. |
| # `numpy.sin(tensor) -> tensor` or `numpy.greater(tensor, 0) -> ByteTensor` |
| def __array_wrap__(self, array): |
| if has_torch_function_unary(self): |
| return handle_torch_function( |
| Tensor.__array_wrap__, (self,), self, array=array |
| ) |
| if array.dtype == bool: |
| # Workaround, torch has no built-in bool tensor |
| array = array.astype("uint8") |
| return torch.from_numpy(array) |
| |
| def __contains__(self, element: Any, /) -> bool: |
| r"""Check if `element` is present in tensor |
| |
| Args: |
| element (Tensor or scalar): element to be checked |
| for presence in current tensor" |
| """ |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.__contains__, (self,), self, element) |
| if isinstance( |
| element, (torch.Tensor, Number, torch.SymInt, torch.SymFloat, torch.SymBool) |
| ): |
| # type hint doesn't understand the __contains__ result array |
| return bool((element == self).any().item()) # type: ignore[union-attr] |
| |
| raise RuntimeError( |
| f"Tensor.__contains__ only supports Tensor or scalar, but you passed in a {type(element)}." |
| ) |
| |
| @property |
| def __cuda_array_interface__(self): |
| """Array view description for cuda tensors. |
| |
| See: |
| https://numba.pydata.org/numba-doc/latest/cuda/cuda_array_interface.html |
| """ |
| if has_torch_function_unary(self): |
| # TODO mypy doesn't support @property, see: https://github.com/python/mypy/issues/6185 |
| return handle_torch_function( |
| Tensor.__cuda_array_interface__.__get__, # type: ignore[attr-defined] |
| (self,), |
| self, |
| ) |
| |
| # raise AttributeError for unsupported tensors, so that |
| # hasattr(cpu_tensor, "__cuda_array_interface__") is False. |
| if not self.is_cuda: |
| raise AttributeError( |
| f"Can't get __cuda_array_interface__ on non-CUDA tensor type: {self.type()} " |
| "If CUDA data is required use tensor.cuda() to copy tensor to device memory." |
| ) |
| |
| if self.is_sparse: |
| raise AttributeError( |
| f"Can't get __cuda_array_interface__ on sparse type: {self.type()} " |
| "Use Tensor.to_dense() to convert to a dense tensor first." |
| ) |
| |
| # RuntimeError, matching tensor.__array__() behavior. |
| if self.requires_grad: |
| raise RuntimeError( |
| "Can't get __cuda_array_interface__ on Variable that requires grad. " |
| "If gradients aren't required, use var.detach() to get Variable that doesn't require grad." |
| ) |
| |
| # CUDA devices are little-endian and tensors are stored in native byte |
| # order. 1-byte entries are endian-agnostic. |
| typestr = { |
| torch.complex64: "<c8", |
| torch.complex128: "<c16", |
| torch.bfloat16: "<f2", |
| torch.float16: "<f2", |
| torch.float32: "<f4", |
| torch.float64: "<f8", |
| torch.uint8: "|u1", |
| torch.int8: "|i1", |
| torch.uint16: "<u2", |
| torch.int16: "<i2", |
| torch.uint32: "<u4", |
| torch.int32: "<i4", |
| torch.uint64: "<u8", |
| torch.int64: "<i8", |
| torch.bool: "|b1", |
| }[self.dtype] |
| |
| itemsize = self.element_size() |
| |
| shape = tuple(self.shape) |
| if self.is_contiguous(): |
| # __cuda_array_interface__ v2 requires the strides to be omitted |
| # (either not set or set to None) for C-contiguous arrays. |
| strides = None |
| else: |
| strides = tuple(s * itemsize for s in self.stride()) |
| data_ptr = self.data_ptr() if self.numel() > 0 else 0 |
| data = (data_ptr, False) # read-only is false |
| |
| return dict(typestr=typestr, shape=shape, strides=strides, data=data, version=2) |
| |
| def storage_type(self): |
| r"""storage_type() -> type |
| |
| Returns the type of the underlying storage. |
| |
| """ |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.storage_type, (self,), self) |
| |
| torch.storage._warn_typed_storage_removal() |
| |
| return self._typed_storage()._get_legacy_storage_class() |
| |
| def refine_names(self, *names): |
| r"""Refines the dimension names of :attr:`self` according to :attr:`names`. |
| |
| Refining is a special case of renaming that "lifts" unnamed dimensions. |
| A ``None`` dim can be refined to have any name; a named dim can only be |
| refined to have the same name. |
| |
| Because named tensors can coexist with unnamed tensors, refining names |
| gives a nice way to write named-tensor-aware code that works with both |
| named and unnamed tensors. |
| |
| :attr:`names` may contain up to one Ellipsis (``...``). |
| The Ellipsis is expanded greedily; it is expanded in-place to fill |
| :attr:`names` to the same length as ``self.dim()`` using names from the |
| corresponding indices of ``self.names``. |
| |
| Python 2 does not support Ellipsis but one may use a string literal |
| instead (``'...'``). |
| |
| Args: |
| names (iterable of str): The desired names of the output tensor. May |
| contain up to one Ellipsis. |
| |
| Examples:: |
| |
| >>> imgs = torch.randn(32, 3, 128, 128) |
| >>> named_imgs = imgs.refine_names('N', 'C', 'H', 'W') |
| >>> named_imgs.names |
| ('N', 'C', 'H', 'W') |
| |
| >>> tensor = torch.randn(2, 3, 5, 7, 11) |
| >>> tensor = tensor.refine_names('A', ..., 'B', 'C') |
| >>> tensor.names |
| ('A', None, None, 'B', 'C') |
| |
| .. warning:: |
| The named tensor API is experimental and subject to change. |
| |
| """ |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.refine_names, (self,), self, *names) |
| names = resolve_ellipsis(names, self.names, "refine_names") |
| return super().refine_names(names) |
| |
| def align_to(self, *names): |
| r"""Permutes the dimensions of the :attr:`self` tensor to match the order |
| specified in :attr:`names`, adding size-one dims for any new names. |
| |
| All of the dims of :attr:`self` must be named in order to use this method. |
| The resulting tensor is a view on the original tensor. |
| |
| All dimension names of :attr:`self` must be present in :attr:`names`. |
| :attr:`names` may contain additional names that are not in ``self.names``; |
| the output tensor has a size-one dimension for each of those new names. |
| |
| :attr:`names` may contain up to one Ellipsis (``...``). |
| The Ellipsis is expanded to be equal to all dimension names of :attr:`self` |
| that are not mentioned in :attr:`names`, in the order that they appear |
| in :attr:`self`. |
| |
| Python 2 does not support Ellipsis but one may use a string literal |
| instead (``'...'``). |
| |
| Args: |
| names (iterable of str): The desired dimension ordering of the |
| output tensor. May contain up to one Ellipsis that is expanded |
| to all unmentioned dim names of :attr:`self`. |
| |
| Examples:: |
| |
| >>> tensor = torch.randn(2, 2, 2, 2, 2, 2) |
| >>> named_tensor = tensor.refine_names('A', 'B', 'C', 'D', 'E', 'F') |
| |
| # Move the F and E dims to the front while keeping the rest in order |
| >>> named_tensor.align_to('F', 'E', ...) |
| |
| .. warning:: |
| The named tensor API is experimental and subject to change. |
| |
| """ |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.align_to, (self,), self, *names) |
| ellipsis_idx = single_ellipsis_index(names, "align_to") |
| if ellipsis_idx is None: |
| return super().align_to(names) |
| return super().align_to( |
| [name for name in names if not is_ellipsis(name)], ellipsis_idx |
| ) |
| |
| def unflatten(self, dim, sizes): |
| r""" |
| unflatten(dim, sizes) -> Tensor |
| |
| See :func:`torch.unflatten`. |
| |
| """ |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.unflatten, (self,), self, dim, sizes) |
| |
| if not sizes: |
| raise RuntimeError("unflatten: sizes must be non-empty") |
| |
| names = None |
| if isinstance(sizes, OrderedDict) or ( |
| isinstance(sizes, (tuple, list)) and isinstance(sizes[0], (tuple, list)) |
| ): |
| names, sizes = unzip_namedshape(sizes) |
| return super().unflatten(dim, sizes, names) |
| else: |
| return super().unflatten(dim, sizes) |
| |
| def rename_(self, *names, **rename_map): |
| """In-place version of :meth:`~Tensor.rename`.""" |
| |
| if has_torch_function_unary(self): |
| return handle_torch_function( |
| Tensor.rename_, (self,), self, *names, **rename_map |
| ) |
| |
| # Note [rename_ / rename API] |
| # The Python API for these is different from the C++ API. In Python: |
| # 1) tensor.rename(*names) takes a vararglist of names |
| # 2) tensor.rename(**rename_map) takes a map of names to rename. |
| # C++ is static, making it difficult to implement similar behavior. |
| return update_names(self, names, rename_map, inplace=True) |
| |
| def rename(self, *names, **rename_map): |
| """Renames dimension names of :attr:`self`. |
| |
| There are two main usages: |
| |
| ``self.rename(**rename_map)`` returns a view on tensor that has dims |
| renamed as specified in the mapping :attr:`rename_map`. |
| |
| ``self.rename(*names)`` returns a view on tensor, renaming all |
| dimensions positionally using :attr:`names`. |
| Use ``self.rename(None)`` to drop names on a tensor. |
| |
| One cannot specify both positional args :attr:`names` and keyword args |
| :attr:`rename_map`. |
| |
| Examples:: |
| |
| >>> imgs = torch.rand(2, 3, 5, 7, names=('N', 'C', 'H', 'W')) |
| >>> renamed_imgs = imgs.rename(N='batch', C='channels') |
| >>> renamed_imgs.names |
| ('batch', 'channels', 'H', 'W') |
| |
| >>> renamed_imgs = imgs.rename(None) |
| >>> renamed_imgs.names |
| (None, None, None, None) |
| |
| >>> renamed_imgs = imgs.rename('batch', 'channel', 'height', 'width') |
| >>> renamed_imgs.names |
| ('batch', 'channel', 'height', 'width') |
| |
| .. warning:: |
| The named tensor API is experimental and subject to change. |
| |
| """ |
| if has_torch_function_unary(self): |
| return handle_torch_function( |
| Tensor.rename, (self,), self, *names, **rename_map |
| ) |
| |
| # See Note [rename_ / rename API] |
| return update_names(self, names, rename_map, inplace=False) |
| |
| def to_sparse_coo(self): |
| """Convert a tensor to :ref:`coordinate format <sparse-coo-docs>`. |
| |
| Examples:: |
| |
| >>> dense = torch.randn(5, 5) |
| >>> sparse = dense.to_sparse_coo() |
| >>> sparse._nnz() |
| 25 |
| |
| """ |
| return self.to_sparse() |
| |
| def dim_order(self): |
| """ |
| |
| dim_order() -> tuple |
| |
| Returns a tuple of int describing the dim order or physical layout of :attr:`self`. |
| |
| Args: |
| None |
| |
| Dim order represents how dimensions are laid out in memory, |
| starting from the outermost to the innermost dimension. |
| |
| Example:: |
| >>> torch.empty((2, 3, 5, 7)).dim_order() |
| (0, 1, 2, 3) |
| >>> torch.empty((2, 3, 5, 7), memory_format=torch.channels_last).dim_order() |
| (0, 2, 3, 1) |
| |
| .. warning:: |
| The dim_order tensor API is experimental and subject to change. |
| |
| """ |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.dim_order, (self,), self) |
| |
| import torch._prims_common as utils |
| |
| return tuple(utils.compute_elementwise_output_logical_to_physical_perm(self)) |
| |
| def _update_names(self, names, inplace): |
| if has_torch_function_unary(self): |
| return handle_torch_function( |
| Tensor._update_names, (self,), self, names, inplace |
| ) |
| |
| # See Note [rename_ / rename API] |
| if inplace: |
| return super().rename_(names) |
| else: |
| return super().rename(names) |
| |
| @classmethod |
| def __torch_function__(cls, func, types, args=(), kwargs=None): |
| """ |
| This __torch_function__ implementation wraps subclasses such that |
| methods called on subclasses return a subclass instance instead of |
| a ``torch.Tensor`` instance. |
| |
| One corollary to this is that you need coverage for torch.Tensor |
| methods if implementing __torch_function__ for subclasses. |
| |
| We recommend always calling ``super().__torch_function__`` as the base |
| case when doing the above. |
| |
| While not mandatory, we recommend making `__torch_function__` a classmethod. |
| """ |
| if kwargs is None: |
| kwargs = {} |
| |
| if not all(issubclass(cls, t) for t in types): |
| return NotImplemented |
| |
| with _C.DisableTorchFunctionSubclass(): |
| ret = func(*args, **kwargs) |
| if func in get_default_nowrap_functions(): |
| return ret |
| else: |
| return _convert(ret, cls) |
| |
| __torch_dispatch__ = _C._disabled_torch_dispatch_impl |
| |
| def __dlpack__(self, stream=None): |
| """ |
| Creates a DLpack `capsule https://data-apis.org/array-api/latest/design_topics/data_interchange.html#data-interchange`_ |
| of the current tensor to be exported to other libraries. |
| |
| This function will be called from the `from_dlpack` method |
| of the library that will consume the capsule. `from_dlpack` passes the current |
| stream to this method as part of the specification. |
| |
| Args: |
| stream (integer or None): An optional Python integer representing a |
| pointer to a CUDA stream. The current stream is synchronized with |
| this stream before the capsule is created, and since the capsule |
| shares its storage with the tensor this make it safe to access from |
| both streams. If None or -1 is passed then no synchronization is performed. |
| If 1 (on CUDA) or 0 (on ROCM) then the default stream is used for |
| synchronization. |
| """ |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.__dlpack__, (self,), self, stream) |
| |
| # DLPack capsules can't capture all of PyTorch's semantics, |
| # so we prohibit exporting tensors that would lose their properties like |
| # requires_grad and having the conjugate bit set. |
| if self.requires_grad: |
| raise RuntimeError( |
| "Can't export tensors that require gradient, use tensor.detach()" |
| ) |
| if self.is_conj(): |
| raise RuntimeError("Can't export tensors with the conjugate bit set") |
| if self.layout != torch.strided: |
| raise RuntimeError( |
| "Can't export tensors with layout other than torch.strided" |
| ) |
| |
| if stream is not None and type(stream) is not int: |
| # Stream pointers in CUDA/ROCm are uniquely numbered and can |
| # be retrieved from their integer value. |
| raise TypeError("stream must be ``int`` or ``none``") |
| elif stream is not None and stream != -1: |
| if self.device.type == "cuda": |
| # NB: This logic handles the special case values for default |
| # streams and must be kept in sync with from_dlpack in |
| # torch/utils/dlpack.py |
| if stream == 1 and torch.version.hip is None: |
| stream = torch.cuda.default_stream() |
| elif stream == 0 and torch.version.hip is not None: |
| stream = torch.cuda.default_stream() |
| else: |
| stream = torch.cuda.ExternalStream(stream) |
| # Only synchronize on different streams |
| sync_stream = torch.cuda.current_stream() |
| if stream != sync_stream: |
| event = torch.cuda.Event() |
| event.record(sync_stream) |
| stream.wait_event(event) |
| return torch.to_dlpack(self) |
| |
| def __dlpack_device__(self) -> Tuple[enum.IntEnum, int]: |
| if has_torch_function_unary(self): |
| return handle_torch_function(Tensor.__dlpack_device__, (self,), self) |
| |
| from torch.utils.dlpack import DLDeviceType |
| |
| device = self.device |
| idx = device.index if device.index is not None else 0 |
| torch_device_type = device.type |
| if torch_device_type == "cuda" and torch.version.hip is not None: |
| device_type = DLDeviceType.kDLROCM |
| elif torch_device_type == "cpu" and self.is_pinned(): |
| device_type = DLDeviceType.kDLCPUPinned |
| elif torch_device_type == "cuda": |
| device_type = DLDeviceType.kDLGPU |
| elif torch_device_type == "cpu": |
| device_type = DLDeviceType.kDLCPU |
| elif self.device.type == "xpu": |
| device_type = DLDeviceType.kDLOneAPI |
| else: |
| raise ValueError(f"Unknown device type {torch_device_type} for Dlpack") |
| return (device_type, idx) |
| |
| __module__ = "torch" |
| |
| |
| def _convert(ret, cls): |
| if cls is Tensor: |
| return ret |
| |
| if isinstance(ret, Tensor) and not isinstance(ret, cls): |
| ret = ret.as_subclass(cls) |
| |
| if isinstance(ret, (tuple, list)): |
| # Also handles things like namedtuples |
| ret = type(ret)(_convert(r, cls) for r in ret) |
| |
| return ret |