blob: 1fc4873204252e8e26787420959a6fc92faa2d0e [file] [log] [blame]
# mypy: ignore-errors
import warnings
import numpy as np
import pandas as pd # type: ignore[import-untyped]
from scipy.stats import gmean # type: ignore[import-untyped]
from sklearn.model_selection import train_test_split # type: ignore[import-untyped]
from sklearn.tree import DecisionTreeRegressor # type: ignore[import-untyped]
from train import AHTrain
from torch._inductor.autoheuristic.autoheuristic_utils import CHOICE_COL, FEEDBACK_COL
# TODO (AlnisM): Fix these warnings
warnings.filterwarnings(
"ignore",
message="The behavior of DataFrame concatenation with empty or all-NA entries is deprecated",
)
warnings.filterwarnings(
"ignore",
message="DataFrameGroupBy.apply operated on the grouping columns.",
)
class AHTrainRegressionTree(AHTrain):
"""
This class is responsible for generating a heuristic by using data collected with AutoHeuristic. It will learn a
regression tree that predicts a score that represents how well a specific choice will perform given an input.
A higher score means a better choice. The heuristic will be generated in a file named <heuristic_name>.py in the
torch/_inductor/autoheuristic/artifacts/ directory.
"""
def __init__(self):
super().__init__()
def main(
self,
log_path,
other_datasets,
nrows,
heuristic_name,
save_dot=False,
ranking=False,
):
"""
Main function that trains a decision tree and generates a heuristic.
"""
(df, choices, cat_feature2cats, dummy_col_2_col_val, metadata) = self.get_df(
log_path, nrows=nrows, apply_filters=True
)
df_train, df_val, df_test, feature_columns = self.custom_train_test_split(df)
datasets = {"train": df_train, "val": df_val, "test": df_test}
self.add_real_datasets(datasets, other_datasets, cat_feature2cats)
# We will do a grid search over these values
# Only trying out max_depths of 5, 6, and 7 because we want to keep the tree and
# generated code small, but smaller than 5 does not perform well enough
max_depths = [5, 6, 7]
min_samples_leafs = [1, 2, 5, 10]
choice_columns = [f"{CHOICE_COL}_{choice}" for choice in choices]
(results_df, best_model, threshold) = self.train_and_evaluate_models(
datasets, feature_columns, choice_columns, max_depths, min_samples_leafs
)
# prints results for all models and datasets
print(results_df.to_string())
# prints results grouped by dataset
for set_name in results_df["dataset"].unique():
dataset_results = results_df[results_df["dataset"] == set_name]
dataset_results = dataset_results.sort_values(by="correct")
print(dataset_results.to_string() + "\n")
feature_names = feature_columns + choice_columns
self.dt_to_python(
best_model,
metadata,
feature_names,
dummy_col_2_col_val,
heuristic_name,
threshold,
)
def get_df(self, log_path, cat_feature2cats=None, nrows=None, apply_filters=False):
"""
Parses the log file and processes the data into a dataframe that can be used for training.
"""
(df, metadata, feature_columns, categorical_features, choices) = self.parse_log(
log_path, nrows
)
def process_data(
df,
feature_columns,
apply_filters,
min_count_measurements=3,
max_relative_std=5,
):
# Calculate statistics for each input and choice combination
def calculate_stats(group):
count = len(group)
mean = group[FEEDBACK_COL].mean()
std = group[FEEDBACK_COL].std()
relative_std = (std / mean) * 100 if mean != 0 else np.inf
median = group[FEEDBACK_COL].median()
return pd.Series(
{
"count": count,
"median_execution_time": median,
"relative_std": relative_std,
}
)
stats = (
df.groupby(feature_columns + [CHOICE_COL])
.apply(calculate_stats)
.reset_index()
)
if apply_filters:
# Remove unstables measurements
valid_stats = stats[
(stats["count"] >= min_count_measurements)
& (stats["relative_std"] <= max_relative_std)
]
# Keep only inputs with at least two valid choices
valid_inputs = valid_stats.groupby(feature_columns).filter(
lambda x: len(x) >= 2
)
else:
valid_inputs = stats
# Compute the winner and ratios for each input
def get_winner_and_speedups(group):
mean_time = group["median_execution_time"].mean()
winner = group.loc[group["median_execution_time"].idxmin(), CHOICE_COL]
min_time = group["median_execution_time"].min()
max_time = group["median_execution_time"].max()
group["winner"] = winner
group["speedup"] = max_time / min_time
group["target"] = mean_time / group["median_execution_time"]
return group[
feature_columns + [CHOICE_COL, "winner", "speedup", "target"]
]
results = (
valid_inputs.groupby(feature_columns)
.apply(get_winner_and_speedups)
.reset_index(drop=True)
)
return results
results = process_data(df, feature_columns, apply_filters)
(results, added_categorical_features) = self.add_new_features(results)
categorical_features += added_categorical_features
categorical_features += [CHOICE_COL]
(
results,
cat_feature2cats,
dummy_col_2_col_val,
) = self.handle_categorical_features(
cat_feature2cats, categorical_features, results
)
return (results, choices, cat_feature2cats, dummy_col_2_col_val, metadata)
def custom_train_test_split(
self, df, test_size=0.2, val_size=0.25, random_state=42
):
"""
Splits the dataframe into train, val, and test sets.
Also adds other datasets, specified by the user, to the train set.
We need to be careful, because we want to make sure that rows with the same input but different choice are
kept in the same set, e.g.
Rows that looks like this
input_1,choice1,...
input_1,choice2,...
should be in the same set.
"""
# We want to make sure that rows with the same input but different choice are kept in the same set
exclude_columns = ["speedup", "winner", "target"]
feature_columns = [
col
for col in df.columns
if col not in exclude_columns and not col.startswith(CHOICE_COL + "_")
]
df["input_id"] = df.groupby(feature_columns).ngroup()
# Get unique input IDs
unique_inputs = df["input_id"].unique()
# Split unique inputs into train+val and test
train_val_inputs, test_inputs = train_test_split(
unique_inputs, test_size=test_size, random_state=random_state
)
# Split train+val inputs into train and val
train_inputs, val_inputs = train_test_split(
train_val_inputs, test_size=val_size, random_state=random_state
)
# Create masks for each set
train_mask = df["input_id"].isin(train_inputs)
val_mask = df["input_id"].isin(val_inputs)
test_mask = df["input_id"].isin(test_inputs)
# Split the dataframe
df_train = df[train_mask]
df_val = df[val_mask]
df_test = df[test_mask]
# Remove the temporary input_id column
df_train = df_train.drop("input_id", axis=1)
df_val = df_val.drop("input_id", axis=1)
df_test = df_test.drop("input_id", axis=1)
return df_train, df_val, df_test, feature_columns
def train_and_evaluate_models(
self,
datasets,
feature_columns,
choice_columns,
max_depths,
min_samples_leafs,
threshold=0.99,
):
"""
Does a grid search over max_depths, min_samples_leafs, and returns the best model.
"""
results = []
df_train = datasets["train"]
df_val = datasets["val"]
best_model = None
best_model_threshold = 0
max_correct_predictions = -1
for max_depth in max_depths:
for min_samples_leaf in min_samples_leafs:
print(
f"Evaluating max_depth={max_depth}, min_samples_leaf={min_samples_leaf}"
)
model = DecisionTreeRegressor(
random_state=42,
max_depth=max_depth,
min_samples_leaf=min_samples_leaf,
)
model.fit(
df_train[feature_columns + choice_columns], df_train["target"]
)
# we first compute a safe threshold: this threshold ensures that on the validation set,
# if the heuristic returns a choice, the choice will be correct, although a high threshold
# can lead to a lot of 'unsure' choices
eval_result = self.evaluate_model(
model, df_val, feature_columns, choice_columns, threshold
)
safe_threshold = eval_result["wrong_max_ratio"]
for dataset_name, dataset in datasets.items():
eval_result = self.evaluate_model(
model, dataset, feature_columns, choice_columns, safe_threshold
)
print(eval_result)
if dataset_name == "val":
eval_correct = eval_result["correct"]
if eval_correct > max_correct_predictions:
best_model = model
best_model_threshold = safe_threshold
max_correct_predictions = eval_correct
results.append(
{
"max_depth": max_depth,
"min_samples_leaf": min_samples_leaf,
"dataset": dataset_name,
"correct": eval_result["correct"],
"wrong": eval_result["wrong"],
"unsure": eval_result["unsure"],
"total": eval_result["total"],
"max_wrong_speedup": eval_result["max_wrong_speedup"],
"gman_wrong_speedup": eval_result["gman_wrong_speedup"],
"threshold": safe_threshold,
}
)
return (pd.DataFrame(results), best_model, best_model_threshold)
def evaluate_model(self, model, df, feature_columns, choice_columns, threshold):
"""
Custom evaluation function that evaluates a learned decision tree.
"""
def predict_winner(group):
predictions = model.predict(group[feature_columns + choice_columns])
# Find the index of the maximum prediction (best choice)
best_choice_index = np.argmax(predictions)
# Get the corresponding choice
predicted_choice = (
group[choice_columns].iloc[best_choice_index].idxmax().split("_")[-1]
)
# Calculate the ratio between the best and second-best prediction
sorted_predictions = np.sort(predictions)[::-1]
top_pred_ratio = (
sorted_predictions[0] / sorted_predictions[1]
if len(sorted_predictions) > 1
else np.inf
)
# If the best choice is not "significantly" better than the second best choice,
# the learned heuristic will return "unsure"
if top_pred_ratio <= threshold:
predicted_winner = "unsure"
else:
predicted_winner = predicted_choice
actual_winner = group["winner"].iloc[0]
is_correct = (
predicted_winner == actual_winner
if predicted_winner != "unsure"
else "unsure"
)
return pd.Series(
{
"predicted_winner": predicted_winner,
"ratio": top_pred_ratio,
"actual_winner": actual_winner,
"is_correct": is_correct,
"speedup": group["speedup"].iloc[
0
], # Speedup is the same for all rows in the group
}
)
results = df.groupby(feature_columns).apply(predict_winner).reset_index()
correct = (results["is_correct"].eq(True)).sum()
unsure = (results["is_correct"] == "unsure").sum()
wrong_results = results[results["is_correct"].eq(False)]
wrong = len(wrong_results)
# Calculate max and geometric mean of speedup for wrong predictions
# Used for debugging purposes
wrong_speedups = wrong_results["speedup"]
max_wrong_speedup = wrong_speedups.max() if not wrong_speedups.empty else np.nan
geo_mean_wrong_speedup = (
gmean(wrong_speedups) if not wrong_speedups.empty else np.nan
)
wrong_max_ratio = wrong_results["ratio"].max()
total = correct + wrong + unsure
return {
"correct": correct,
"wrong": wrong,
"unsure": unsure,
"total": total,
"max_wrong_speedup": max_wrong_speedup,
"gman_wrong_speedup": geo_mean_wrong_speedup,
"wrong_max_ratio": wrong_max_ratio,
}
def dt_to_python(
self,
dt,
metadata,
feature_names,
dummy_col_2_col_val,
heuristic_name,
threshold,
unsafe_leaves=None,
):
tree_ = dt.tree_
feature_name = [
feature_names[i] if i != -1 else "undefined!" for i in tree_.feature
]
lines = []
device_capa = metadata["device_capa"]
device_capa_str = f"({device_capa[0]}, {device_capa[1]})"
opt_name = metadata["name"]
lines.append(
self.codegen_boilerplate(
heuristic_name,
opt_name,
threshold,
metadata["shared_memory"],
device_capa_str,
dt,
)
)
fn_def = f"\n {self.gen_predict_fn_def()}"
lines.append(fn_def)
def dt_to_python(node, depth):
indent = " " * (depth + 1)
false_predicate = ""
if tree_.feature[node] != -2:
name = feature_name[node]
threshold = tree_.threshold[node]
if name in dummy_col_2_col_val:
(orig_name, value) = dummy_col_2_col_val[name]
predicate = f"{indent}if str(context.get_value('{orig_name}')) != '{value}':"
assert (
threshold == 0.5
), f"expected threshold to be 0.5 but is {threshold}"
else:
predicate = (
f"{indent}if context.get_value('{name}') <= {threshold}:"
)
lines.append(predicate)
dt_to_python(tree_.children_left[node], depth + 1)
lines.append(f"{indent}else:")
dt_to_python(tree_.children_right[node], depth + 1)
else:
lines.append(self.handle_leaf(tree_, node, indent, unsafe_leaves))
dt_to_python(0, 1)
self.write_heuristic_to_file(lines, heuristic_name)
def handle_leaf(self, tree_, node, indent, unsafe_leaves):
"""
Generates the code for a leaf node. This is just the value predicted by the regression tree.
"""
value = tree_.value[node][0][0]
return f"{indent}return {str(value)}"
def gen_predict_fn_def(self):
return "def predict(self, context: AHContext) -> float:"
def codegen_boilerplate(
self, heuristic_name, opt_name, threshold, shared_memory, device_capa, classes
):
"""
Generates the boilerplate code for the generated heuristic. This includes things like imports, class definition,
etc.
"""
boiler_plate = f"""# flake8: noqa: B950
# fmt: off
# This file was generated by AutoHeuristic. Do not modify it manually!
# To regenerate this file, take a look at the steps in the README.md file inside torchgen/_autoheuristic/{opt_name}/
from torch._inductor.autoheuristic.autoheuristic_utils import AHContext, AHMetadata, Choice, CHOICE_COL
from torch._inductor.autoheuristic.learnedheuristic_interface import (
LearnedHeuristicRegression,
)
class {heuristic_name}(LearnedHeuristicRegression):
def __init__(self) -> None:
pass
{self.gen_precondition(opt_name, shared_memory, device_capa)}
def get_feedback(self, context: AHContext, choice: Choice) -> float:
context.context_dict[CHOICE_COL] = choice
return self.predict(context)
def get_confidence_threshold(self) -> float:
return {threshold}
def get_name(self) -> str:
return '{opt_name}'"""
return boiler_plate
if __name__ == "__main__":
train = AHTrain()
train.generate_heuristic()