| from __future__ import annotations |
| |
| import textwrap |
| from dataclasses import dataclass |
| from typing import Sequence |
| |
| from torchgen.api.types import DispatcherSignature |
| from torchgen.api.types.signatures import CppSignature, CppSignatureGroup |
| from torchgen.context import method_with_native_function |
| from torchgen.model import ( |
| Argument, |
| BackendIndex, |
| BaseTy, |
| BaseType, |
| DispatchKey, |
| FunctionSchema, |
| ListType, |
| NativeFunction, |
| NativeFunctionsGroup, |
| OperatorName, |
| OptionalType, |
| Type, |
| ) |
| from torchgen.utils import mapMaybe |
| |
| |
| base_type_to_c_type = { |
| BaseTy.Tensor: "AtenTensorHandle", |
| BaseTy.bool: "int32_t", # Use int to pass bool |
| BaseTy.int: "int64_t", |
| BaseTy.SymInt: "int64_t", # Inductor-generated code won't see a SymInt |
| BaseTy.Scalar: "double", # Use double to pass both integer and floating point |
| BaseTy.float: "double", # TODO: how about other floating point types? |
| BaseTy.str: "const char*", |
| BaseTy.DeviceIndex: "int32_t", |
| BaseTy.Layout: "int32_t", # Represent enum as int |
| BaseTy.MemoryFormat: "int32_t", # Represent enum as int |
| BaseTy.ScalarType: "int32_t", # Represent enum as int |
| BaseTy.Generator: "AtenGeneratorHandle", |
| } |
| |
| base_type_to_aten_type = { |
| BaseTy.Tensor: "at::Tensor", |
| BaseTy.bool: "bool", |
| BaseTy.int: "int64_t", |
| BaseTy.SymInt: "c10::SymInt", |
| BaseTy.Scalar: "c10::Scalar", |
| BaseTy.float: "double", |
| BaseTy.str: "c10::string_view", |
| BaseTy.DeviceIndex: "c10::DeviceIndex", |
| BaseTy.Layout: "c10::Layout", |
| BaseTy.MemoryFormat: "c10::MemoryFormat", |
| BaseTy.ScalarType: "c10::ScalarType", |
| BaseTy.Generator: "at::Generator", |
| } |
| |
| base_type_to_callsite_expr = { |
| BaseTy.Tensor: "*tensor_handle_to_tensor_pointer", |
| BaseTy.bool: "", |
| BaseTy.int: "", |
| BaseTy.SymInt: "", |
| BaseTy.Scalar: "", |
| BaseTy.float: "", |
| BaseTy.str: "", |
| BaseTy.DeviceIndex: "static_cast<c10::DeviceIndex>", |
| BaseTy.Layout: "static_cast<c10::Layout>", |
| BaseTy.MemoryFormat: "static_cast<c10::MemoryFormat>", |
| BaseTy.ScalarType: "static_cast<c10::ScalarType>", |
| BaseTy.Generator: "*generator_handle_to_generator_pointer", |
| } |
| |
| |
| # convert args to C types, names in declarations, and expressions in function bodies |
| def convert_arg_type_and_name(typ: Type, name: str) -> tuple[list[str], list[str], list[str], list[str]]: # type: ignore[return] |
| if isinstance(typ, BaseType): |
| if typ.name in base_type_to_c_type: |
| return ( |
| [base_type_to_c_type[typ.name]], |
| [name], |
| [base_type_to_aten_type[typ.name]], |
| [ |
| f"{base_type_to_callsite_expr[typ.name]}({name})" |
| if base_type_to_callsite_expr[typ.name] |
| else name |
| ], |
| ) |
| elif typ.name == BaseTy.Device: |
| return ( |
| ["int32_t", "int32_t"], |
| [name, name + "_index_"], |
| ["c10::Device"], |
| [ |
| f"c10::Device(static_cast<c10::DeviceType>({name}), static_cast<c10::DeviceIndex>({name}_index_))" |
| ], |
| ) |
| else: |
| # TODO: BaseTy.Dimname, etc. |
| raise NotImplementedError(f"TODO: add support for arg type {repr(typ)}") |
| elif isinstance(typ, OptionalType): |
| c_types, names, aten_types, callsite_exprs = convert_arg_type_and_name( |
| typ.elem, name |
| ) |
| j = 0 # index for names |
| new_aten_types = [] |
| new_callsite_exprs = [] |
| for aten_type in aten_types: |
| # Use pointer to denote optional type |
| c_types[j] = c_types[j] + "*" |
| if aten_type.startswith("c10::ArrayRef<"): |
| # ArrayRef is passed as pointer + size, but no need to add "*" to the size argument |
| new_aten_types.append(f"::std::optional<{aten_type}>") |
| base_type = aten_type[len("c10::ArrayRef<") : -1] |
| new_callsite_exprs.append( |
| f"pointer_to_optional_list<{base_type}>({names[j]}, {names[j+1]})" |
| ) |
| j += 2 |
| elif aten_type == "c10::Device": |
| # Device is passed as device_type + device_index |
| new_aten_types.append("::std::optional<c10::Device>") |
| new_callsite_exprs.append( |
| f"pointer_to_optional_device({names[j]}, {names[j+1]})" |
| ) |
| j += 2 |
| else: |
| new_aten_types.append(f"::std::optional<{aten_type}>") |
| new_callsite_exprs.append( |
| f"pointer_to_optional<{aten_type}>({names[j]})" |
| ) |
| j += 1 |
| |
| return ( |
| c_types, |
| names, |
| new_aten_types, |
| new_callsite_exprs, |
| ) |
| elif isinstance(typ, ListType): |
| # Need to explictly pass the list as pointer + length |
| c_types, names, aten_types, _ = convert_arg_type_and_name(typ.elem, name) |
| assert len(c_types) == 1, "ListType with unsupported element type " + repr(typ) |
| |
| # The list content should never be modified |
| c_types[0] = f"const {c_types[0]}*" |
| c_types.append("int64_t") |
| name = names[0] |
| names.append(name + "_len_") |
| |
| atype = aten_types[0] |
| callsite_exprs = [] |
| if atype == "bool": |
| # no converter from std::vector<bool> to c10::ArrayRef<bool> |
| # construct std::array<bool, N> instead |
| assert typ.size is not None |
| callsite_exprs.append(f"pointer_to_list<{typ.size}>({name})") |
| elif atype == "::std::optional<at::Tensor>": |
| # convert from std::vector<::std::optional<at::Tensor>> to c10::List<::std::optional<at::Tensor>> |
| callsite_exprs.append( |
| f"c10::List<{atype}>(c10::ArrayRef<{atype}>(pointer_to_list<{atype}>({name}, {name}_len_)))" |
| ) |
| else: |
| callsite_exprs.append(f"pointer_to_list<{atype}>({name}, {name}_len_)") |
| |
| aten_types = [f"c10::ArrayRef<{t}>" for t in aten_types] |
| return ( |
| c_types, |
| names, |
| aten_types, |
| callsite_exprs, |
| ) |
| |
| |
| def zip_type_and_name(types: list[str], names: list[str]) -> list[str]: |
| return [typ + " " + name for typ, name in zip(types, names)] |
| |
| |
| # Generate argument declarations and callsite expressions |
| def gen_arguments(flat_arguments: Sequence[Argument]) -> tuple[list[str], list[str]]: |
| types = [] |
| new_names = [] |
| callsite_exprs = [] |
| for arg in flat_arguments: |
| new_types, names, _, new_callsite_exprs = convert_arg_type_and_name( |
| arg.type, arg.name |
| ) |
| types.extend(new_types) |
| new_names.extend(names) |
| callsite_exprs.extend(new_callsite_exprs) |
| return zip_type_and_name(types, new_names), callsite_exprs |
| |
| |
| # Return values are passed out as pointer arguments because all the C shim functions |
| # are expected to return AOTITorchError. |
| # Generate returns as declarations and callsite expressions |
| def gen_returns(schema: FunctionSchema) -> tuple[list[str], list[str]]: |
| types = [] |
| names = [] |
| for idx, ret in enumerate(schema.returns): |
| names.append(f"ret{idx}") |
| if isinstance(ret.type, BaseType) and ret.type.name in base_type_to_c_type: |
| types.append(base_type_to_c_type[ret.type.name] + "*") |
| else: |
| raise NotImplementedError( |
| f"TODO: add support for return type {repr(ret.type)}" |
| ) |
| |
| def convert_return(typ: BaseType, val: str) -> str: |
| if typ.name == BaseTy.Tensor: |
| return f"new_tensor_handle(std::move({val}));" |
| elif typ.name == BaseTy.SymInt: |
| return f"{val}.expect_int()" |
| elif typ.name == BaseTy.Scalar: |
| return f"{val}.toDouble()" |
| else: |
| return val |
| |
| ret_pointer_can_be_null = False |
| unambiguous_name = schema.name.unambiguous_name() |
| for name in [ |
| "_scaled_dot_product_flash_attention", |
| "_scaled_dot_product_efficient_attention", |
| "_scaled_dot_product_cudnn_attention", |
| "convolution_backward", |
| ]: |
| if name in unambiguous_name: |
| ret_pointer_can_be_null = True |
| break |
| |
| callsite_exprs: list[str] = [] |
| for idx, ret in enumerate(schema.returns): |
| tmp = "tmp_result" if len(names) == 1 else f"std::get<{idx}>(tmp_result)" |
| assert isinstance(ret.type, BaseType) |
| rval = convert_return(ret.type, tmp) |
| if ret_pointer_can_be_null: |
| callsite_exprs.append(f"if ({names[idx]}) {{ *{names[idx]} = {rval}; }}") |
| else: |
| callsite_exprs.append(f"*{names[idx]} = {rval};") |
| |
| return zip_type_and_name(types, names), callsite_exprs |
| |
| |
| # gen.py generates header first and then src, so caching the result here to avoid duplicate work |
| declaration_definition_cache: dict[tuple[str, str, str], tuple[str, str]] = {} |
| |
| |
| def gen_declaration_and_definition( |
| schema: FunctionSchema, device: str, backend_call: str |
| ) -> tuple[str, str]: |
| func_name = schema.name.unambiguous_name() |
| |
| global declaration_definition_cache |
| if (func_name, device, backend_call) in declaration_definition_cache: |
| return declaration_definition_cache[(func_name, device, backend_call)] |
| |
| if schema.is_out_fn(): |
| # out_variant has out arguments in the front, and it's ok to ignore return values |
| # because C shim functions only return AOTITorchError |
| args, callsite_exprs = gen_arguments( |
| [*schema.arguments.out, *schema.arguments.flat_non_out] |
| ) |
| ret_assignments: list[str] = [] |
| else: |
| args, callsite_exprs = gen_arguments(schema.arguments.flat_all) |
| # ignore return values for inplace ops |
| ret_declarations, ret_assignments = ( |
| ([], []) if schema.name.name.inplace else gen_returns(schema) |
| ) |
| args.extend(ret_declarations) |
| |
| declaration = f"AOTITorchError aoti_torch_{device}_{func_name}({', '.join(args)})" |
| |
| tmp_result = "auto tmp_result = " if ret_assignments else "" |
| ret_assignments_str = "\n" + "\n".join(ret_assignments) if ret_assignments else "" |
| definition = f""" |
| {declaration} {{ |
| AOTI_TORCH_CONVERT_EXCEPTION_TO_ERROR_CODE({{ |
| {tmp_result}{backend_call}( |
| {textwrap.indent(', '.join(callsite_exprs), " ")} |
| );{textwrap.indent(ret_assignments_str, " ")} |
| }}); |
| }} |
| """ |
| declaration_definition_cache[(func_name, device, backend_call)] = ( |
| declaration, |
| definition, |
| ) |
| return declaration, definition |
| |
| |
| def gen_static_dispatch_backend_call_signature( |
| sig: CppSignature | DispatcherSignature, |
| f: NativeFunction, |
| ) -> CppSignature: |
| sig = DispatcherSignature.from_schema(f.func) |
| cpp_sigs = CppSignatureGroup.from_native_function( |
| f, method=False, fallback_binding=False |
| ) |
| if sig.symint and f.func.has_symint(): |
| cpp_sig = cpp_sigs.symint_signature |
| else: |
| cpp_sig = cpp_sigs.signature |
| assert cpp_sig is not None |
| return cpp_sig |
| |
| |
| def gen_static_dispatch_backend_call( |
| f: NativeFunction, |
| backend_index: BackendIndex, |
| ) -> str: |
| sig = DispatcherSignature.from_schema(f.func) |
| cpp_sig = gen_static_dispatch_backend_call_signature(sig, f) |
| return f"at::{backend_index.dispatch_key.lower()}::{cpp_sig.name()}" |
| |
| |
| def get_backend_index_for_aoti( |
| func: NativeFunction, |
| func_group_mapping: dict[OperatorName, NativeFunctionsGroup], |
| dispatch_key: DispatchKey, |
| backend_indices: dict[DispatchKey, BackendIndex], |
| ) -> BackendIndex | None: |
| backend_index = None |
| if backend_indices[dispatch_key].has_kernel(func) or ( |
| func.structured_delegate is not None |
| and func.structured_delegate in func_group_mapping |
| and backend_indices[dispatch_key].has_kernel( |
| func_group_mapping[func.structured_delegate] |
| ) |
| ): |
| backend_index = backend_indices[dispatch_key] |
| elif backend_indices[DispatchKey.CompositeExplicitAutograd].has_kernel(func): |
| # We need to create C shim wrappers for CompositeExplicitAutograd kernels |
| backend_index = backend_indices[DispatchKey.CompositeExplicitAutograd] |
| elif backend_indices[DispatchKey.CompositeExplicitAutogradNonFunctional].has_kernel( |
| func |
| ): |
| # We need to create C shim wrappers for CompositeExplicitAutogradNonFunctional kernels |
| backend_index = backend_indices[ |
| DispatchKey.CompositeExplicitAutogradNonFunctional |
| ] |
| elif backend_indices[DispatchKey.CompositeImplicitAutograd].has_kernel(func): |
| backend_index = backend_indices[DispatchKey.CompositeImplicitAutograd] |
| |
| return backend_index |
| |
| |
| def get_header_for_aoti( |
| func: NativeFunction, |
| func_group_mapping: dict[OperatorName, NativeFunctionsGroup], |
| dispatch_key: DispatchKey, |
| backend_indices: dict[DispatchKey, BackendIndex], |
| ) -> str | None: |
| backend_index = get_backend_index_for_aoti( |
| func, func_group_mapping, dispatch_key, backend_indices |
| ) |
| return ( |
| None |
| if backend_index is None |
| else f"#include <ATen/ops/{func.root_name}_{backend_index.dispatch_key.lower()}_dispatch.h>" |
| ) |
| |
| |
| def get_fallback_op_name(func: NativeFunction) -> str: |
| return ( |
| f"{func.namespace}.{func.func.name.name}.{func.func.name.overload_name}" |
| if func.func.name.overload_name |
| else f"{func.namespace}.{func.func.name.name}.default" |
| ) |
| |
| |
| def gen_c_shim( |
| func: NativeFunction, |
| func_group_mapping: dict[OperatorName, NativeFunctionsGroup], |
| dispatch_key: DispatchKey, |
| backend_indices: dict[DispatchKey, BackendIndex], |
| header: bool, |
| ) -> str | None: |
| backend_index = get_backend_index_for_aoti( |
| func, func_group_mapping, dispatch_key, backend_indices |
| ) |
| if backend_index is None: |
| return None |
| |
| schema = func.func |
| device = dispatch_key.lower() |
| backend_call = gen_static_dispatch_backend_call( |
| func, |
| backend_index, |
| ) |
| |
| try: |
| if header: |
| declaration, _ = gen_declaration_and_definition( |
| schema, device, backend_call |
| ) |
| return f"AOTI_TORCH_EXPORT {declaration};" |
| else: |
| _, definition = gen_declaration_and_definition(schema, device, backend_call) |
| return definition |
| |
| except NotImplementedError: |
| return None |
| |
| |
| @dataclass(frozen=True) |
| class ShimGenerator: |
| func_group_mapping: dict[OperatorName, NativeFunctionsGroup] |
| dispatch_key: DispatchKey |
| backend_indices: dict[DispatchKey, BackendIndex] |
| header: bool # True to generate .h and False to generate .cpp |
| |
| @method_with_native_function |
| def __call__( |
| self, |
| func: NativeFunction, |
| ) -> str | None: |
| result = gen_c_shim( |
| func, |
| self.func_group_mapping, |
| self.dispatch_key, |
| self.backend_indices, |
| self.header, |
| ) |
| return result |
| |
| |
| def gen_aoti_c_shim( |
| native_functions: Sequence[NativeFunction], |
| func_group_mapping: dict[OperatorName, NativeFunctionsGroup], |
| dispatch_key: DispatchKey, |
| backend_indices: dict[DispatchKey, BackendIndex], |
| header: bool, |
| includes: str = "", |
| ) -> str: |
| body = "\n".join( |
| list( |
| mapMaybe( |
| ShimGenerator( |
| func_group_mapping, dispatch_key, backend_indices, header |
| ), |
| native_functions, |
| ) |
| ) |
| ) |
| device = dispatch_key.lower() |
| |
| warning = """ |
| // WARNING: THIS FILE IS AUTOGENERATED BY torchgen. DO NOT MODIFY BY HAND. |
| // See https://github.com/pytorch/pytorch/blob/7e86a7c0155295539996e0cf422883571126073e/torchgen/gen.py#L2424-L2436 for details""" |
| |
| if header: |
| return f""" |
| {warning} |
| |
| #pragma once |
| |
| #include <torch/csrc/inductor/aoti_torch/c/shim.h> |
| |
| #ifdef __cplusplus |
| extern "C" {{ |
| #endif |
| |
| {body} |
| |
| #ifdef __cplusplus |
| }} // extern "C" |
| #endif |
| """ |
| |
| else: |
| return f""" |
| {warning} |
| |
| #include <torch/csrc/inductor/aoti_torch/generated/c_shim_{device}.h> |
| #include <torch/csrc/inductor/aoti_torch/utils.h> |
| |
| #ifndef AT_PER_OPERATOR_HEADERS |
| #include <ATen/{str(dispatch_key)}Functions.h> |
| #include <ATen/CompositeExplicitAutogradFunctions.h> |
| #include <ATen/CompositeExplicitAutogradNonFunctionalFunctions.h> |
| #include <ATen/CompositeImplicitAutogradFunctions.h> |
| #else |
| {includes} |
| #endif |
| |
| using namespace torch::aot_inductor; |
| |
| {body}""" |