| |
| |
| |
| |
| import unittest |
| |
| import numpy as np |
| from caffe2.proto import caffe2_pb2 |
| from caffe2.python import core, workspace, test_util |
| |
| |
| @unittest.skipIf(not workspace.C.has_mkldnn, "Skipping as we do not have mkldnn.") |
| class TestMKLBasic(test_util.TestCase): |
| def testReLUSpeed(self): |
| X = np.random.randn(128, 4096).astype(np.float32) |
| mkl_do = core.DeviceOption(caffe2_pb2.MKLDNN) |
| # Makes sure that feed works. |
| workspace.FeedBlob("X", X) |
| workspace.FeedBlob("X_mkl", X, device_option=mkl_do) |
| net = core.Net("test") |
| # Makes sure that we can run relu. |
| net.Relu("X", "Y") |
| net.Relu("X_mkl", "Y_mkl", device_option=mkl_do) |
| workspace.CreateNet(net) |
| workspace.RunNet(net) |
| # makes sure that the results are good. |
| np.testing.assert_allclose( |
| workspace.FetchBlob("Y"), |
| workspace.FetchBlob("Y_mkl"), |
| atol=1e-10, |
| rtol=1e-10) |
| runtime = workspace.BenchmarkNet(net.Proto().name, 1, 100, True) |
| |
| # The returned runtime is the time of |
| # [whole_net, cpu_op, mkl_op] |
| # so we will assume that the MKL one runs faster than the CPU one. |
| |
| # Note(Yangqing): in fact, it seems that in optimized mode, this is |
| # not always guaranteed - MKL runs slower than the Eigen vectorized |
| # version, so I am turning this assertion off. |
| #self.assertTrue(runtime[1] >= runtime[2]) |
| |
| print("Relu CPU runtime {}, MKL runtime {}.".format(runtime[1], runtime[2])) |
| |
| |
| def testConvSpeed(self): |
| # We randomly select a shape to test the speed. Intentionally we |
| # test a batch size of 1 since this may be the most frequent use |
| # case for MKL during deployment time. |
| X = np.random.rand(1, 256, 27, 27).astype(np.float32) - 0.5 |
| W = np.random.rand(192, 256, 3, 3).astype(np.float32) - 0.5 |
| b = np.random.rand(192).astype(np.float32) - 0.5 |
| mkl_do = core.DeviceOption(caffe2_pb2.MKLDNN) |
| # Makes sure that feed works. |
| workspace.FeedBlob("X", X) |
| workspace.FeedBlob("W", W) |
| workspace.FeedBlob("b", b) |
| workspace.FeedBlob("X_mkl", X, device_option=mkl_do) |
| workspace.FeedBlob("W_mkl", W, device_option=mkl_do) |
| workspace.FeedBlob("b_mkl", b, device_option=mkl_do) |
| net = core.Net("test") |
| # Makes sure that we can run relu. |
| net.Conv(["X", "W", "b"], "Y", pad=1, stride=1, kernel=3) |
| net.Conv(["X_mkl", "W_mkl", "b_mkl"], "Y_mkl", |
| pad=1, stride=1, kernel=3, device_option=mkl_do) |
| workspace.CreateNet(net) |
| workspace.RunNet(net) |
| # makes sure that the results are good. |
| np.testing.assert_allclose( |
| workspace.FetchBlob("Y"), |
| workspace.FetchBlob("Y_mkl"), |
| atol=1e-2, |
| rtol=1e-2) |
| runtime = workspace.BenchmarkNet(net.Proto().name, 1, 100, True) |
| |
| print("Conv CPU runtime {}, MKL runtime {}.".format(runtime[1], runtime[2])) |
| |
| |
| if __name__ == '__main__': |
| unittest.main() |