| |
| |
| |
| |
| |
| from caffe2.python import core, workspace |
| from caffe2.proto import caffe2_pb2 |
| from caffe2.python.onnx.workspace import Workspace |
| from collections import namedtuple |
| from six import string_types |
| |
| OpSchema = workspace.C.OpSchema |
| |
| |
| def namedtupledict(typename, field_names, *args, **kwargs): |
| field_names_map = {n: i for i, n in enumerate(field_names)} |
| # Some output names are invalid python identifier, e.g. "0" |
| kwargs.setdefault('rename', True) |
| data = namedtuple(typename, field_names, *args, **kwargs) |
| |
| def getitem(self, key): |
| if isinstance(key, string_types): |
| key = field_names_map[key] |
| return super(type(self), self).__getitem__(key) |
| |
| data.__getitem__ = getitem |
| return data |
| |
| |
| class _Functional(object): |
| def __getattribute__(self, op_type): |
| def op_func(*inputs, **args): |
| ws = Workspace() |
| schema = OpSchema.get(op_type) |
| input_prefix = 'input_' |
| output_prefix = 'output_' |
| |
| def get_name_list(prefix, num, max_num): |
| return [prefix + str(x) for x in range(min(num, max_num))] |
| |
| input_names, output_names = [], [] |
| input_names = get_name_list( |
| input_prefix, len(inputs), schema.max_input |
| ) |
| # verify the length of input name is in range |
| # of schema |
| num_input = len(input_names) |
| if num_input > schema.max_input or num_input < \ |
| schema.min_input or not schema.num_inputs_allowed(num_input): |
| raise ValueError( |
| "Functional C2: Number of inputs not in \ |
| range: {} - {} or not allowed." |
| .format(schema.min_input, schema.max_input) |
| ) |
| |
| if 'num_output' in args: |
| num_output = args['num_output'] |
| if num_output > schema.max_output or \ |
| num_output < schema.min_output or \ |
| not schema.num_outputs_allowed(num_output) or \ |
| not schema.num_inputs_outputs_allowed(num_input, |
| num_output): |
| raise ValueError( |
| "Functional C2: Number of output \ |
| not in range: {} - {} or not allowed" |
| .format(schema.min_output, schema.max_output) |
| ) |
| output_names = get_name_list( |
| output_prefix, num_output, schema.max_output |
| ) |
| args.pop('num_output') |
| calculated = schema.CalculateOutput(num_input) |
| if not output_names and calculated != -1: |
| output_names = get_name_list( |
| output_prefix, calculated, schema.max_output |
| ) |
| |
| if not output_names: |
| max_output = schema.max_output |
| # For an op with max_output == inf |
| # and no Output defined in schema |
| # user should pass output_size explicitly |
| if schema.inf == max_output: |
| raise ValueError( |
| "For operators with max_output == inf,\ |
| user should pass num_output explicitly." |
| ) |
| output_names = get_name_list( |
| output_prefix, max_output, max_output |
| ) |
| |
| # There could be input-output inplace enforcement; replace the |
| # output names with input ones if such enforcements exist |
| for i in range(len(input_names)): |
| for j in range(len(output_names)): |
| if schema.inplace_enforced(i, j): |
| output_names[j] = input_names[i] |
| |
| op = core.CreateOperator( |
| op_type, input_names, output_names, **args |
| ) |
| device_option = args.get('device_option', core.DeviceOption(caffe2_pb2.CPU)) |
| with core.DeviceScope(device_option): |
| for i, input_blob in enumerate(inputs): |
| ws.FeedBlob(input_names[i], input_blob) |
| # RunOperator |
| ws.RunOperatorOnce(op) |
| output_values = [ws.FetchBlob(x) for x in output_names] |
| return namedtupledict('output', output_names)(*output_values) |
| |
| return op_func |
| |
| |
| Functional = _Functional() |