blob: 5ac0395bff633222d4b46505a792d596370c921e [file] [log] [blame]
import numpy as np
import hypothesis.strategies as st
import unittest
import caffe2.python.hypothesis_test_util as hu
from caffe2.python import core, workspace
from hypothesis import given
import caffe2.python.ideep_test_util as mu
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class TestAdamOps(hu.HypothesisTestCase):
@given(inputs=hu.tensors(n=4),
ITER=st.integers(min_value=0, max_value=10000),
LR=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
beta1=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
beta2=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**mu.gcs)
def test_adam(self, inputs, ITER, LR, beta1, beta2, epsilon, gc, dc):
param, mom1, mom2, grad = inputs
ITER = np.array([ITER], dtype=np.int64)
LR = np.array([LR], dtype=np.float32)
mom2 = np.absolute(mom2)
op = core.CreateOperator(
"Adam",
["param", "mom1", "mom2", "grad", "lr", "iter"],
["output_param", "output_mom1", "output_mom2"],
beta1=beta1, beta2=beta2, epsilon=epsilon)
# Iter lives on the CPU
input_device_options = {'iter': hu.cpu_do, 'lr': hu.cpu_do}
self.assertDeviceChecks(
dc, op,
[param, mom1, mom2, grad, LR, ITER],
[0],
input_device_options=input_device_options,
threshold=0.001)
@given(inputs=hu.tensors(n=4),
ITER=st.integers(min_value=0, max_value=10000),
LR=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
beta1=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
beta2=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**mu.gcs)
def test_adam_output_grad(self, inputs, ITER, LR, beta1, beta2, epsilon, gc, dc):
param, mom1, mom2, grad = inputs
ITER = np.array([ITER], dtype=np.int64)
LR = np.array([LR], dtype=np.float32)
mom2 = np.absolute(mom2)
op = core.CreateOperator(
"Adam",
["param", "mom1", "mom2", "grad", "lr", "iter"],
["output_param", "output_mom1", "output_mom2", "output_grad"],
beta1=beta1, beta2=beta2, epsilon=epsilon)
# Iter lives on the CPU
input_device_options = {'iter': hu.cpu_do, 'lr': hu.cpu_do}
self.assertDeviceChecks(
dc, op,
[param, mom1, mom2, grad, LR, ITER],
[0],
input_device_options=input_device_options,
threshold=0.001)
if __name__ == "__main__":
unittest.main()