| |
| |
| |
| |
| import unittest |
| import numpy as np |
| from hypothesis import assume, given, settings |
| import hypothesis.strategies as st |
| |
| from caffe2.python import core, workspace |
| import caffe2.python.hypothesis_test_util as hu |
| import caffe2.python.ideep_test_util as mu |
| |
| |
| @unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.") |
| class ConvTransposeTest(hu.HypothesisTestCase): |
| @given(stride=st.integers(1, 2), |
| pad=st.integers(0, 3), |
| kernel=st.integers(1, 5), |
| adj=st.integers(0, 2), |
| size=st.integers(7, 10), |
| input_channels=st.integers(1, 8), |
| output_channels=st.integers(1, 8), |
| batch_size=st.integers(1, 3), |
| use_bias=st.booleans(), |
| training_mode=st.booleans(), |
| compute_dX=st.booleans(), |
| **mu.gcs) |
| @settings(max_examples=2, timeout=100) |
| def test_convolution_transpose_gradients(self, stride, pad, kernel, adj, |
| size, input_channels, |
| output_channels, batch_size, |
| use_bias, training_mode, |
| compute_dX, gc, dc): |
| training = 1 if training_mode else 0 |
| assume(adj < stride) |
| X = np.random.rand( |
| batch_size, input_channels, size, size).astype(np.float32) - 0.5 |
| w = np.random.rand( |
| input_channels, output_channels, kernel, kernel)\ |
| .astype(np.float32) - 0.5 |
| b = np.random.rand(output_channels).astype(np.float32) - 0.5 |
| op = core.CreateOperator( |
| "ConvTranspose", |
| ["X", "w", "b"] if use_bias else ["X", "w"], |
| ["Y"], |
| stride=stride, |
| kernel=kernel, |
| pad=pad, |
| adj=adj, |
| training_mode=training, |
| no_gradient_to_input=not compute_dX, |
| ) |
| |
| inputs = [X, w, b] if use_bias else [X, w] |
| self.assertDeviceChecks(dc, op, inputs, [0], threshold=0.001) |
| |
| if training_mode: |
| if use_bias and compute_dX: |
| # w, b, X |
| outputs_to_check = [1, 2, 0] |
| elif use_bias: |
| # w, b |
| outputs_to_check = [1, 2] |
| elif compute_dX: |
| # w, X |
| outputs_to_check = [1, 0] |
| else: |
| # w |
| outputs_to_check = [1] |
| for i in outputs_to_check: |
| self.assertGradientChecks(gc, op, inputs, i, [0]) |
| |
| |
| if __name__ == "__main__": |
| unittest.main() |