| |
| |
| |
| |
| |
| import unittest |
| import hypothesis.strategies as st |
| from hypothesis import given |
| import numpy as np |
| import math |
| from caffe2.proto import caffe2_pb2 |
| from caffe2.python import core, workspace |
| from caffe2.python.transformations import optimizeForMKLDNN |
| import caffe2.python.hypothesis_test_util as hu |
| import caffe2.python.ideep_test_util as mu |
| |
| |
| @unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.") |
| class ConvFusionTest(hu.HypothesisTestCase): |
| @given(stride=st.integers(1, 3), |
| pad=st.integers(0, 3), |
| kernel=st.integers(3, 5), |
| size=st.integers(8, 20), |
| input_channels=st.integers(1, 16), |
| output_channels=st.integers(1, 16), |
| batch_size=st.integers(1, 3), |
| use_bias=st.booleans(), |
| group=st.integers(1, 1), |
| **mu.gcs) |
| def test_convolution_relu_fusion(self, stride, pad, kernel, size, |
| input_channels, output_channels, |
| batch_size, use_bias, group, gc, dc): |
| conv = core.CreateOperator( |
| "Conv", |
| ["X0", "w0", "b0"] if use_bias else ["X0", "w0"], |
| ["Y0"], |
| stride=stride, |
| pad=pad, |
| kernel=kernel, |
| group=group, |
| device_option=dc[0] |
| ) |
| relu = core.CreateOperator( |
| "Relu", |
| ["Y0"], |
| ["Y0"], |
| device_option=dc[0] |
| ) |
| |
| # Manual fusion for Conv + ReLU |
| conv_fusion = core.CreateOperator( |
| "ConvFusion", |
| ["X1", "w1", "b1"] if use_bias else ["X1", "w1"], |
| ["Y1"], |
| stride=stride, |
| pad=pad, |
| kernel=kernel, |
| group=group, |
| fusion_type = 1, |
| device_option=dc[1] |
| ) |
| |
| X = np.random.rand( |
| batch_size, input_channels * group, size, size).astype(np.float32) - 0.5 |
| w = np.random.rand( |
| output_channels * group, input_channels, kernel, kernel) \ |
| .astype(np.float32) - 0.5 |
| b = np.random.rand(output_channels * group).astype(np.float32) - 0.5 |
| |
| old_ws_name = workspace.CurrentWorkspace() |
| workspace.SwitchWorkspace("_device_check_", True) |
| workspace.FeedBlob('X0', X, dc[0]) |
| workspace.FeedBlob('w0', w, dc[0]) |
| workspace.FeedBlob('b0', b, dc[0]) |
| workspace.RunOperatorOnce(conv) |
| workspace.RunOperatorOnce(relu) |
| Y0 = workspace.FetchBlob('Y0') |
| |
| workspace.ResetWorkspace() |
| workspace.FeedBlob('X1', X, dc[1]) |
| workspace.FeedBlob('w1', w, dc[1]) |
| workspace.FeedBlob('b1', b, dc[1]) |
| workspace.RunOperatorOnce(conv_fusion) |
| Y1 = workspace.FetchBlob('Y1') |
| if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01): |
| print(Y1.flatten()) |
| print(Y0.flatten()) |
| print(np.max(np.abs(Y1 - Y0))) |
| self.assertTrue(False) |
| |
| # Auto fusion for Conv + ReLU |
| workspace.ResetWorkspace() |
| old_net = caffe2_pb2.NetDef() |
| conv_old = caffe2_pb2.OperatorDef() |
| conv_old.CopyFrom(conv) |
| conv_old.device_option.CopyFrom(dc[1]) |
| relu_old = caffe2_pb2.OperatorDef() |
| relu_old.CopyFrom(relu) |
| relu_old.device_option.CopyFrom(dc[1]) |
| old_net.op.extend([conv_old, relu_old]) |
| workspace.FeedBlob('X0', X, dc[1]) |
| workspace.FeedBlob('w0', w, dc[1]) |
| workspace.FeedBlob('b0', b, dc[1]) |
| net = core.Net("net") |
| net.Proto().CopyFrom(old_net) |
| optimizeForMKLDNN(net) |
| self.assertTrue(len(net.Proto().op) == 1) |
| self.assertTrue(net.Proto().op[0].type == "ConvFusion") |
| workspace.RunOperatorOnce(net.Proto().op[0]) |
| Y2 = workspace.FetchBlob('Y0') |
| if not np.allclose(Y0, Y2, atol=0.01, rtol=0.01): |
| print(Y2.flatten()) |
| print(Y0.flatten()) |
| print(np.max(np.abs(Y2 - Y0))) |
| self.assertTrue(False) |
| |
| workspace.SwitchWorkspace(old_ws_name) |
| |
| @given(stride=st.integers(1, 3), |
| pad=st.integers(0, 3), |
| kernel=st.integers(3, 5), |
| size=st.integers(8, 20), |
| input_channels=st.integers(1, 16), |
| output_channels=st.integers(1, 16), |
| batch_size=st.integers(1, 3), |
| use_bias=st.booleans(), |
| group=st.integers(1, 1), |
| sum_add=st.sampled_from(["Sum", "Add"]), |
| **mu.gcs) |
| def test_convolution_sum_fusion(self, stride, pad, kernel, size, |
| input_channels, output_channels, |
| batch_size, use_bias, group, sum_add, gc, dc): |
| pool_S0 = core.CreateOperator( |
| "MaxPool", |
| ["SX0"], |
| ["S0"], |
| stride=2, |
| pad=0, |
| kernel=2, |
| device_option=dc[0] |
| ) |
| conv = core.CreateOperator( |
| "Conv", |
| ["X0", "w0", "b0"] if use_bias else ["X0", "w0"], |
| ["Y0"], |
| stride=stride, |
| pad=pad, |
| kernel=kernel, |
| group=group, |
| device_option=dc[0] |
| ) |
| sum = core.CreateOperator( |
| sum_add, |
| ["S0", "Y0"], |
| ["S0"], |
| device_option=dc[0] |
| ) |
| |
| # Manual fusion for Conv + Sum |
| pool_S1 = core.CreateOperator( |
| "MaxPool", |
| ["SX1"], |
| ["S1"], |
| stride=2, |
| pad=0, |
| kernel=2, |
| group=group, |
| device_option=dc[1] |
| ) |
| conv_fusion = core.CreateOperator( |
| "ConvFusion", |
| ["X1", "w1", "b1", "S1"] if use_bias else ["X1", "w1", "S1"], |
| ["S1"], |
| stride=stride, |
| pad=pad, |
| kernel=kernel, |
| group=group, |
| fusion_type = 2, |
| device_option=dc[1] |
| ) |
| pool_input_size = int(math.ceil(float(size + 2 * pad - kernel + 1) / stride)) * 2; |
| SX = np.random.rand( |
| batch_size, output_channels * group, pool_input_size, pool_input_size).astype(np.float32) - 0.5 |
| X = np.random.rand( |
| batch_size, input_channels * group, size, size).astype(np.float32) - 0.5 |
| w = np.random.rand( |
| output_channels * group, input_channels, kernel, kernel) \ |
| .astype(np.float32) - 0.5 |
| b = np.random.rand(output_channels * group).astype(np.float32) - 0.5 |
| |
| old_ws_name = workspace.CurrentWorkspace() |
| workspace.SwitchWorkspace("_device_check_", True) |
| workspace.FeedBlob('SX0', SX, dc[0]) |
| workspace.FeedBlob('X0', X, dc[0]) |
| workspace.FeedBlob('w0', w, dc[0]) |
| workspace.FeedBlob('b0', b, dc[0]) |
| workspace.RunOperatorOnce(pool_S0) |
| workspace.RunOperatorOnce(conv) |
| workspace.RunOperatorOnce(sum) |
| S0 = workspace.FetchBlob('S0') |
| |
| workspace.ResetWorkspace() |
| workspace.FeedBlob('SX1', SX, dc[1]) |
| workspace.FeedBlob('X1', X, dc[1]) |
| workspace.FeedBlob('w1', w, dc[1]) |
| workspace.FeedBlob('b1', b, dc[1]) |
| workspace.RunOperatorOnce(pool_S1) |
| workspace.RunOperatorOnce(conv_fusion) |
| S1 = workspace.FetchBlob('S1') |
| |
| if not np.allclose(S0, S1, atol=0.01, rtol=0.01): |
| print(S1.flatten()) |
| print(S0.flatten()) |
| print(np.max(np.abs(S1 - S0))) |
| self.assertTrue(False) |
| |
| # Auto fusion for Conv + Sum |
| workspace.ResetWorkspace() |
| old_net = caffe2_pb2.NetDef() |
| pool_S0_old = caffe2_pb2.OperatorDef() |
| pool_S0_old.CopyFrom(pool_S0) |
| pool_S0_old.device_option.CopyFrom(dc[1]) |
| conv_old = caffe2_pb2.OperatorDef() |
| conv_old.CopyFrom(conv) |
| conv_old.device_option.CopyFrom(dc[1]) |
| sum_old = caffe2_pb2.OperatorDef() |
| sum_old.CopyFrom(sum) |
| sum_old.device_option.CopyFrom(dc[1]) |
| old_net.op.extend([pool_S0_old, conv_old, sum_old]) |
| |
| # Conv + Sum should be fused case: [PreNode, Conv, Sum] |
| workspace.FeedBlob('SX0', SX, dc[1]) |
| workspace.FeedBlob('X0', X, dc[1]) |
| workspace.FeedBlob('w0', w, dc[1]) |
| workspace.FeedBlob('b0', b, dc[1]) |
| net = core.Net("net") |
| net.Proto().CopyFrom(old_net) |
| optimizeForMKLDNN(net) |
| self.assertTrue(len(net.Proto().op) == 2) |
| self.assertTrue(net.Proto().op[1].type == "ConvFusion") |
| workspace.RunNetOnce(net.Proto()) |
| # The output tensor name will be changed by optimization |
| # sometimes when applying conv sum fusion |
| S2 = workspace.FetchBlob(net.Proto().op[-1].output[0]) |
| if not np.allclose(S0, S2, atol=0.01, rtol=0.01): |
| print(S2.flatten()) |
| print(S0.flatten()) |
| print(np.max(np.abs(S2 - S0))) |
| self.assertTrue(False) |
| |
| # Conv + Sum should be fused case: [Conv, PreNode, Sum] |
| workspace.ResetWorkspace() |
| old_net = caffe2_pb2.NetDef() |
| workspace.FeedBlob('SX0', SX, dc[1]) |
| workspace.FeedBlob('X0', X, dc[1]) |
| workspace.FeedBlob('w0', w, dc[1]) |
| workspace.FeedBlob('b0', b, dc[1]) |
| old_net.op.extend([conv_old, pool_S0_old, sum_old]) |
| net = core.Net("net") |
| net.Proto().CopyFrom(old_net) |
| optimizeForMKLDNN(net) |
| self.assertTrue(len(net.Proto().op) == 2) |
| self.assertTrue(net.Proto().op[1].type == "ConvFusion") |
| workspace.RunNetOnce(net.Proto()) |
| # The output tensor name will be changed by optimization |
| # sometimes when applying conv sum fusion |
| S2 = workspace.FetchBlob(net.Proto().op[-1].output[0]) |
| if not np.allclose(S0, S2, atol=0.01, rtol=0.01): |
| print(S2.flatten()) |
| print(S0.flatten()) |
| print(np.max(np.abs(S2 - S0))) |
| self.assertTrue(False) |
| |
| # Conv + Sum should not be fused case: [Conv, midOp, preNode, Sum] Conv output is used by midOp |
| dropout = core.CreateOperator( |
| "Dropout", |
| ["Y0"], |
| ["Y_dropout"], |
| ratio=0.5, |
| is_test=True, |
| device_option=dc[1] |
| ) |
| |
| workspace.ResetWorkspace() |
| workspace.FeedBlob('SX0', SX, dc[1]) |
| workspace.FeedBlob('X0', X, dc[1]) |
| workspace.FeedBlob('w0', w, dc[1]) |
| workspace.FeedBlob('b0', b, dc[1]) |
| old_net = caffe2_pb2.NetDef() |
| old_net.op.extend([conv_old, dropout, pool_S0_old, sum_old]) |
| net = core.Net("net") |
| net.Proto().CopyFrom(old_net) |
| optimizeForMKLDNN(net) |
| self.assertTrue(len(net.Proto().op) == 4) |
| workspace.RunNetOnce(net.Proto()) |
| S2 = workspace.FetchBlob(net.Proto().op[-1].output[0]) |
| if not np.allclose(S0, S2, atol=0.01, rtol=0.01): |
| print(S2.flatten()) |
| print(S0.flatten()) |
| print(np.max(np.abs(S2 - S0))) |
| self.assertTrue(False) |
| |
| # Conv + Sum should not be fused case: [Conv, preNode, Sum, midOp] preNode output is used by midOp |
| sum1 = core.CreateOperator( |
| sum_add, |
| ["S0", "Y0"], |
| ["S3"], |
| device_option=dc[1] |
| ) |
| dropout = core.CreateOperator( |
| "Dropout", |
| ["S0"], |
| ["Y_dropout"], |
| ratio=0.5, |
| is_test=True, |
| device_option=dc[1] |
| ) |
| |
| workspace.ResetWorkspace() |
| workspace.FeedBlob('SX0', SX, dc[1]) |
| workspace.FeedBlob('X0', X, dc[1]) |
| workspace.FeedBlob('w0', w, dc[1]) |
| workspace.FeedBlob('b0', b, dc[1]) |
| old_net = caffe2_pb2.NetDef() |
| old_net.op.extend([conv_old, pool_S0_old, sum1, dropout]) |
| net = core.Net("net") |
| net.Proto().CopyFrom(old_net) |
| optimizeForMKLDNN(net) |
| print("net={}\n".format(net.Proto())) |
| self.assertTrue(len(net.Proto().op) == 4) |
| workspace.RunNetOnce(net.Proto()) |
| S2 = workspace.FetchBlob(net.Proto().op[-2].output[0]) |
| if not np.allclose(S0, S2, atol=0.01, rtol=0.01): |
| print(S2.flatten()) |
| print(S0.flatten()) |
| print(np.max(np.abs(S2 - S0))) |
| self.assertTrue(False) |
| |
| # Conv + Sum should not be fused case: [Conv, midOp, preNode, Sum] |
| # midOp output has the same name with that of the Conv input |
| relu_0 = core.CreateOperator( |
| "Relu", |
| ["X0"], |
| ["X1"], |
| device_option=dc[0] |
| ) |
| conv = core.CreateOperator( |
| "Conv", |
| ["X1", "w0", "b0"] if use_bias else ["X1", "w0"], |
| ["Y0"], |
| stride=1, |
| pad=0, |
| kernel=1, |
| device_option=dc[0] |
| ) |
| relu_1 = core.CreateOperator( |
| "Relu", |
| ["X1"], |
| ["X1"], |
| device_option=dc[0] |
| ) |
| pool = core.CreateOperator( |
| "MaxPool", |
| ["X1"], |
| ["S0"], |
| stride=1, |
| pad=0, |
| kernel=1, |
| device_option=dc[0] |
| ) |
| sum = core.CreateOperator( |
| "Sum", |
| ["S0", "Y0"], |
| ["S0"], |
| device_option=dc[0] |
| ) |
| |
| X = np.random.rand( |
| batch_size, input_channels, size, size).astype(np.float32) - 0.5 |
| w = np.random.rand( |
| input_channels, input_channels, 1, 1).astype(np.float32) - 0.5 |
| b = np.random.rand(input_channels).astype(np.float32) - 0.5 |
| |
| workspace.SwitchWorkspace(old_ws_name) |
| workspace.ResetWorkspace() |
| workspace.FeedBlob('X0', X, dc[0]) |
| workspace.FeedBlob('w0', w, dc[0]) |
| workspace.FeedBlob('b0', b, dc[0]) |
| workspace.RunOperatorOnce(relu_0) |
| workspace.RunOperatorOnce(conv) |
| workspace.RunOperatorOnce(relu_1) |
| workspace.RunOperatorOnce(pool) |
| workspace.RunOperatorOnce(sum) |
| S0 = workspace.FetchBlob('S0') |
| |
| workspace.ResetWorkspace() |
| workspace.FeedBlob('X0', X, dc[1]) |
| workspace.FeedBlob('w0', w, dc[1]) |
| workspace.FeedBlob('b0', b, dc[1]) |
| relu_0_old = caffe2_pb2.OperatorDef() |
| relu_0_old.CopyFrom(relu_0) |
| relu_0_old.device_option.CopyFrom(dc[1]) |
| conv_old = caffe2_pb2.OperatorDef() |
| conv_old.CopyFrom(conv) |
| conv_old.device_option.CopyFrom(dc[1]) |
| relu_1_old = caffe2_pb2.OperatorDef() |
| relu_1_old.CopyFrom(relu_1) |
| relu_1_old.device_option.CopyFrom(dc[1]) |
| pool_old = caffe2_pb2.OperatorDef() |
| pool_old.CopyFrom(pool) |
| pool_old.device_option.CopyFrom(dc[1]) |
| sum_old = caffe2_pb2.OperatorDef() |
| sum_old.CopyFrom(sum) |
| sum_old.device_option.CopyFrom(dc[1]) |
| |
| old_net = caffe2_pb2.NetDef() |
| old_net.op.extend([relu_0_old, conv_old, relu_1_old, pool_old, sum_old]) |
| net = core.Net("net") |
| net.Proto().CopyFrom(old_net) |
| optimizeForMKLDNN(net) |
| self.assertTrue(len(net.Proto().op) == 5) |
| workspace.RunNetOnce(net.Proto()) |
| S2 = workspace.FetchBlob(net.Proto().op[-1].output[0]) |
| if not np.allclose(S0, S2, atol=0.01, rtol=0.01): |
| print(S2.flatten()) |
| print(S0.flatten()) |
| print(np.max(np.abs(S2 - S0))) |
| self.assertTrue(False) |
| |
| @given(stride=st.integers(1, 3), |
| pad=st.integers(0, 3), |
| kernel=st.integers(3, 5), |
| size=st.integers(8, 20), |
| input_channels=st.integers(1, 16), |
| output_channels=st.integers(1, 16), |
| batch_size=st.integers(1, 3), |
| use_bias=st.booleans(), |
| group=st.integers(1, 1), |
| sum_add=st.sampled_from(["Sum", "Add"]), |
| **mu.gcs) |
| def test_convolution_sum_relu_fusion(self, stride, pad, kernel, size, |
| input_channels, output_channels, |
| batch_size, use_bias, group, sum_add, gc, dc): |
| conv_S0 = core.CreateOperator( |
| "Conv", |
| ["SX0", "Sw0", "Sb0"] if use_bias else ["SX0", "Sw0"], |
| ["S0"], |
| stride=stride, |
| pad=pad, |
| kernel=kernel, |
| group=group, |
| device_option=dc[0] |
| ) |
| conv = core.CreateOperator( |
| "Conv", |
| ["X0", "w0", "b0"] if use_bias else ["X0", "w0"], |
| ["Y0"], |
| stride=stride, |
| pad=pad, |
| kernel=kernel, |
| group=group, |
| device_option=dc[0] |
| ) |
| sum = core.CreateOperator( |
| sum_add, |
| ["S0", "Y0"], |
| ["S0"], |
| device_option=dc[0] |
| ) |
| relu = core.CreateOperator( |
| "Relu", |
| ["S0"], |
| ["S0"], |
| device_option=dc[0] |
| ) |
| |
| # Manual fusion for Conv + Sum + ReLU |
| conv_S1 = core.CreateOperator( |
| "Conv", |
| ["SX1", "Sw1", "Sb1"] if use_bias else ["SX1", "Sw1"], |
| ["S1"], |
| stride=stride, |
| pad=pad, |
| kernel=kernel, |
| group=group, |
| device_option=dc[1] |
| ) |
| conv_fusion = core.CreateOperator( |
| "ConvFusion", |
| ["X1", "w1", "b1", "S1"] if use_bias else ["X1", "w1", "S1"], |
| ["S1"], |
| stride=stride, |
| pad=pad, |
| kernel=kernel, |
| group=group, |
| fusion_type = 3, |
| device_option=dc[1] |
| ) |
| SX = np.random.rand( |
| batch_size, input_channels * group, size, size).astype(np.float32) - 0.5 |
| Sw = np.random.rand( |
| output_channels * group, input_channels, kernel, kernel) \ |
| .astype(np.float32) - 0.5 |
| Sb = np.random.rand(output_channels * group).astype(np.float32) - 0.5 |
| X = np.random.rand( |
| batch_size, input_channels * group, size, size).astype(np.float32) - 0.5 |
| w = np.random.rand( |
| output_channels * group, input_channels, kernel, kernel) \ |
| .astype(np.float32) - 0.5 |
| b = np.random.rand(output_channels * group).astype(np.float32) - 0.5 |
| |
| old_ws_name = workspace.CurrentWorkspace() |
| workspace.SwitchWorkspace("_device_check_", True) |
| workspace.FeedBlob('SX0', SX, dc[0]) |
| workspace.FeedBlob('Sw0', Sw, dc[0]) |
| workspace.FeedBlob('Sb0', Sb, dc[0]) |
| workspace.FeedBlob('X0', X, dc[0]) |
| workspace.FeedBlob('w0', w, dc[0]) |
| workspace.FeedBlob('b0', b, dc[0]) |
| workspace.RunOperatorOnce(conv_S0) |
| workspace.RunOperatorOnce(conv) |
| workspace.RunOperatorOnce(sum) |
| workspace.RunOperatorOnce(relu) |
| S0 = workspace.FetchBlob('S0') |
| |
| workspace.ResetWorkspace() |
| workspace.FeedBlob('SX1', SX, dc[1]) |
| workspace.FeedBlob('Sw1', Sw, dc[1]) |
| workspace.FeedBlob('Sb1', Sb, dc[1]) |
| workspace.FeedBlob('X1', X, dc[1]) |
| workspace.FeedBlob('w1', w, dc[1]) |
| workspace.FeedBlob('b1', b, dc[1]) |
| workspace.RunOperatorOnce(conv_S1) |
| workspace.RunOperatorOnce(conv_fusion) |
| S1 = workspace.FetchBlob('S1') |
| |
| if not np.allclose(S0, S1, atol=0.01, rtol=0.01): |
| print(S1.flatten()) |
| print(S0.flatten()) |
| print(np.max(np.abs(S1 - S0))) |
| self.assertTrue(False) |
| |
| # Auto fusion for Conv + Sum + ReLU |
| workspace.ResetWorkspace() |
| old_net = caffe2_pb2.NetDef() |
| conv_S0_old = caffe2_pb2.OperatorDef() |
| conv_S0_old.CopyFrom(conv_S0) |
| conv_S0_old.device_option.CopyFrom(dc[1]) |
| conv_old = caffe2_pb2.OperatorDef() |
| conv_old.CopyFrom(conv) |
| conv_old.device_option.CopyFrom(dc[1]) |
| sum_old = caffe2_pb2.OperatorDef() |
| sum_old.CopyFrom(sum) |
| sum_old.device_option.CopyFrom(dc[1]) |
| relu_old = caffe2_pb2.OperatorDef() |
| relu_old.CopyFrom(relu) |
| relu_old.device_option.CopyFrom(dc[1]) |
| old_net.op.extend([conv_S0_old, conv_old, sum_old, relu_old]) |
| workspace.FeedBlob('SX0', SX, dc[1]) |
| workspace.FeedBlob('Sw0', Sw, dc[1]) |
| workspace.FeedBlob('Sb0', Sb, dc[1]) |
| workspace.FeedBlob('X0', X, dc[1]) |
| workspace.FeedBlob('w0', w, dc[1]) |
| workspace.FeedBlob('b0', b, dc[1]) |
| net = core.Net("net") |
| net.Proto().CopyFrom(old_net) |
| optimizeForMKLDNN(net) |
| self.assertTrue(len(net.Proto().op) == 2) |
| self.assertTrue(net.Proto().op[1].type == "ConvFusion") |
| workspace.RunNetOnce(net.Proto()) |
| # The output tensor name will be changed by optimization |
| # sometimes when applying conv sum fusion |
| S2 = workspace.FetchBlob(net.Proto().op[-1].output[0]) |
| if not np.allclose(S0, S2, atol=0.01, rtol=0.01): |
| print(S2.flatten()) |
| print(S0.flatten()) |
| print(np.max(np.abs(S2 - S0))) |
| self.assertTrue(False) |
| |
| workspace.SwitchWorkspace(old_ws_name) |
| |
| @given(stride=st.integers(1, 3), |
| pad=st.integers(0, 3), |
| kernel=st.integers(3, 5), |
| size=st.integers(8, 20), |
| input_channels=st.integers(7, 17), |
| output_channels=st.integers(5, 15), |
| batch_size=st.integers(1, 3), |
| use_bias=st.booleans(), |
| group=st.integers(2, 5), |
| **mu.gcs) |
| def test_convolution_grouped_sum_relu_fusion(self, stride, pad, kernel, size, |
| input_channels, output_channels, |
| batch_size, use_bias, group, gc, dc): |
| conv_S0 = core.CreateOperator( |
| "Conv", |
| ["SX0", "Sw0", "Sb0"] if use_bias else ["SX0", "Sw0"], |
| ["S0"], |
| stride=stride, |
| pad=pad, |
| kernel=kernel, |
| group=group, |
| device_option=dc[0] |
| ) |
| conv = core.CreateOperator( |
| "Conv", |
| ["X0", "w0", "b0"] if use_bias else ["X0", "w0"], |
| ["Y0"], |
| stride=stride, |
| pad=pad, |
| kernel=kernel, |
| group=group, |
| device_option=dc[0] |
| ) |
| sum = core.CreateOperator( |
| "Sum", |
| ["S0", "Y0"], |
| ["S0"], |
| device_option=dc[0] |
| ) |
| relu = core.CreateOperator( |
| "Relu", |
| ["S0"], |
| ["S0"], |
| device_option=dc[0] |
| ) |
| |
| SX = np.random.rand( |
| batch_size, input_channels * group, size, size).astype(np.float32) - 0.5 |
| Sw = np.random.rand( |
| output_channels * group, input_channels, kernel, kernel) \ |
| .astype(np.float32) - 0.5 |
| Sb = np.random.rand(output_channels * group).astype(np.float32) - 0.5 |
| X = np.random.rand( |
| batch_size, input_channels * group, size, size).astype(np.float32) - 0.5 |
| w = np.random.rand( |
| output_channels * group, input_channels, kernel, kernel) \ |
| .astype(np.float32) - 0.5 |
| b = np.random.rand(output_channels * group).astype(np.float32) - 0.5 |
| |
| old_ws_name = workspace.CurrentWorkspace() |
| workspace.SwitchWorkspace("_device_check_", True) |
| workspace.FeedBlob('SX0', SX, dc[0]) |
| workspace.FeedBlob('Sw0', Sw, dc[0]) |
| workspace.FeedBlob('Sb0', Sb, dc[0]) |
| workspace.FeedBlob('X0', X, dc[0]) |
| workspace.FeedBlob('w0', w, dc[0]) |
| workspace.FeedBlob('b0', b, dc[0]) |
| workspace.RunOperatorOnce(conv_S0) |
| workspace.RunOperatorOnce(conv) |
| workspace.RunOperatorOnce(sum) |
| workspace.RunOperatorOnce(relu) |
| S0 = workspace.FetchBlob('S0') |
| |
| workspace.ResetWorkspace() |
| old_net = caffe2_pb2.NetDef() |
| conv_S0_old = caffe2_pb2.OperatorDef() |
| conv_S0_old.CopyFrom(conv_S0) |
| conv_S0_old.device_option.CopyFrom(dc[1]) |
| conv_old = caffe2_pb2.OperatorDef() |
| conv_old.CopyFrom(conv) |
| conv_old.device_option.CopyFrom(dc[1]) |
| sum_old = caffe2_pb2.OperatorDef() |
| sum_old.CopyFrom(sum) |
| sum_old.device_option.CopyFrom(dc[1]) |
| relu_old = caffe2_pb2.OperatorDef() |
| relu_old.CopyFrom(relu) |
| relu_old.device_option.CopyFrom(dc[1]) |
| old_net.op.extend([conv_S0_old, conv_old, sum_old, relu_old]) |
| workspace.FeedBlob('SX0', SX, dc[1]) |
| workspace.FeedBlob('Sw0', Sw, dc[1]) |
| workspace.FeedBlob('Sb0', Sb, dc[1]) |
| workspace.FeedBlob('X0', X, dc[1]) |
| workspace.FeedBlob('w0', w, dc[1]) |
| workspace.FeedBlob('b0', b, dc[1]) |
| net = core.Net("net") |
| net.Proto().CopyFrom(old_net) |
| optimizeForMKLDNN(net) |
| workspace.RunNetOnce(net.Proto()) |
| # The output tensor name will be changed by optimization |
| # sometimes when applying conv sum fusion |
| S2 = workspace.FetchBlob(net.Proto().op[-1].output[0]) |
| if not np.allclose(S0, S2, atol=0.01, rtol=0.01): |
| print(S2.flatten()) |
| print(S0.flatten()) |
| print(np.max(np.abs(S2 - S0))) |
| self.assertTrue(False) |
| |
| workspace.SwitchWorkspace(old_ws_name) |
| |
| @given(stride=st.integers(1, 3), |
| pad=st.integers(0, 3), |
| kernel=st.integers(3, 5), |
| size=st.integers(8, 20), |
| input_channels=st.integers(1, 16), |
| output_channels=st.integers(1, 16), |
| batch_size=st.integers(1, 3), |
| use_bias=st.booleans(), |
| group=st.integers(1, 1), |
| inplace=st.sampled_from([True, False]), |
| **mu.gcs) |
| def test_convolution_bn_folding( |
| self, stride, pad, kernel, size, input_channels, |
| output_channels, batch_size, use_bias, group, |
| inplace, gc, dc): |
| conv = core.CreateOperator( |
| "Conv", |
| ["X0", "w0", "b0"] if use_bias else ["X0", "w0"], |
| ["X1"], |
| stride=stride, |
| pad=pad, |
| kernel=kernel, |
| group=group, |
| device_option=dc[1] |
| ) |
| bn = core.CreateOperator( |
| "SpatialBN", |
| ["X1", "scale", "bias", "mean", "var"], |
| ["X1" if inplace else "Y"], |
| is_test=True, |
| device_option=dc[1] |
| ) |
| |
| X = np.random.rand( |
| batch_size, input_channels * group, size, size).astype(np.float32) - 0.5 |
| w = np.random.rand( |
| output_channels * group, input_channels, kernel, kernel) \ |
| .astype(np.float32) - 0.5 |
| b = np.random.rand(output_channels * group).astype(np.float32) - 0.5 |
| scale = np.random.rand(output_channels).astype(np.float32) + 0.5 |
| bias = np.random.rand(output_channels).astype(np.float32) - 0.5 |
| mean = np.random.randn(output_channels).astype(np.float32) |
| var = np.absolute(np.random.rand(output_channels).astype(np.float32)) + 0.5 |
| |
| old_ws_name = workspace.CurrentWorkspace() |
| workspace.SwitchWorkspace("_device_check_", True) |
| workspace.FeedBlob('X0', X, dc[1]) |
| workspace.FeedBlob('w0', w, dc[1]) |
| workspace.FeedBlob('b0', b, dc[1]) |
| workspace.FeedBlob('scale', scale, dc[1]) |
| workspace.FeedBlob('bias', bias, dc[1]) |
| workspace.FeedBlob('mean', mean, dc[1]) |
| workspace.FeedBlob('var', var, dc[1]) |
| workspace.RunOperatorOnce(conv) |
| workspace.RunOperatorOnce(bn) |
| Y = workspace.FetchBlob('X1' if inplace else "Y") |
| |
| workspace.ResetWorkspace() |
| old_net = caffe2_pb2.NetDef() |
| conv_old = caffe2_pb2.OperatorDef() |
| conv_old.CopyFrom(conv) |
| conv_old.device_option.CopyFrom(dc[1]) |
| bn_old = caffe2_pb2.OperatorDef() |
| bn_old.CopyFrom(bn) |
| bn_old.device_option.CopyFrom(dc[1]) |
| old_net.op.extend([conv_old, bn_old]) |
| workspace.FeedBlob('X0', X, dc[1]) |
| workspace.FeedBlob('w0', w, dc[1]) |
| workspace.FeedBlob('b0', b, dc[1]) |
| workspace.FeedBlob('scale', scale, dc[1]) |
| workspace.FeedBlob('bias', bias, dc[1]) |
| workspace.FeedBlob('mean', mean, dc[1]) |
| workspace.FeedBlob('var', var, dc[1]) |
| net = core.Net("net") |
| net.Proto().CopyFrom(old_net) |
| optimizeForMKLDNN(net) |
| self.assertTrue(len(net.Proto().op) == 1) |
| self.assertTrue(net.Proto().op[0].type == "Conv") |
| workspace.RunOperatorOnce(net.Proto().op[0]) |
| Y1 = workspace.FetchBlob('X1' if inplace else "Y") |
| if not np.allclose(Y, Y1, atol=0.01, rtol=0.01): |
| print(Y.flatten()) |
| print(Y1.flatten()) |
| print(np.max(np.abs(Y - Y1))) |
| self.assertTrue(False) |
| |
| workspace.SwitchWorkspace(old_ws_name) |
| |
| @given(stride=st.integers(1, 3), |
| pad=st.integers(0, 3), |
| kernel=st.integers(3, 5), |
| size=st.integers(8, 20), |
| input_channels=st.integers(1, 16), |
| output_channels=st.integers(1, 16), |
| batch_size=st.integers(1, 3), |
| use_bias=st.booleans(), |
| group=st.integers(1, 1), |
| inplace=st.sampled_from([True, False]), |
| **mu.gcs) |
| def test_convolution_affch_folding( |
| self, stride, pad, kernel, size, input_channels, |
| output_channels, batch_size, use_bias, group, |
| inplace, gc, dc): |
| conv = core.CreateOperator( |
| "Conv", |
| ["X0", "w0", "b0"] if use_bias else ["X0", "w0"], |
| ["X1"], |
| stride=stride, |
| pad=pad, |
| kernel=kernel, |
| group=group, |
| device_option=dc[1] |
| ) |
| affch = core.CreateOperator( |
| "AffineChannel", |
| ["X1", "scale", "bias"], |
| ["X1" if inplace else "Y"], |
| device_option=dc[1] |
| ) |
| |
| X = np.random.rand( |
| batch_size, input_channels * group, size, size).astype(np.float32) - 0.5 |
| w = np.random.rand( |
| output_channels * group, input_channels, kernel, kernel) \ |
| .astype(np.float32) - 0.5 |
| b = np.random.rand(output_channels * group).astype(np.float32) - 0.5 |
| scale = np.random.rand(output_channels).astype(np.float32) + 0.5 |
| bias = np.random.rand(output_channels).astype(np.float32) - 0.5 |
| |
| old_ws_name = workspace.CurrentWorkspace() |
| workspace.SwitchWorkspace("_device_check_", True) |
| workspace.FeedBlob('X0', X, dc[1]) |
| workspace.FeedBlob('w0', w, dc[1]) |
| workspace.FeedBlob('b0', b, dc[1]) |
| workspace.FeedBlob('scale', scale, dc[1]) |
| workspace.FeedBlob('bias', bias, dc[1]) |
| workspace.RunOperatorOnce(conv) |
| workspace.RunOperatorOnce(affch) |
| Y = workspace.FetchBlob('X1' if inplace else "Y") |
| |
| workspace.ResetWorkspace() |
| old_net = caffe2_pb2.NetDef() |
| conv_old = caffe2_pb2.OperatorDef() |
| conv_old.CopyFrom(conv) |
| conv_old.device_option.CopyFrom(dc[1]) |
| affch_old = caffe2_pb2.OperatorDef() |
| affch_old.CopyFrom(affch) |
| affch_old.device_option.CopyFrom(dc[1]) |
| old_net.op.extend([conv_old, affch_old]) |
| workspace.FeedBlob('X0', X, dc[1]) |
| workspace.FeedBlob('w0', w, dc[1]) |
| workspace.FeedBlob('b0', b, dc[1]) |
| workspace.FeedBlob('scale', scale, dc[1]) |
| workspace.FeedBlob('bias', bias, dc[1]) |
| net = core.Net("net") |
| net.Proto().CopyFrom(old_net) |
| optimizeForMKLDNN(net) |
| self.assertTrue(len(net.Proto().op) == 1) |
| self.assertTrue(net.Proto().op[0].type == "Conv") |
| workspace.RunOperatorOnce(net.Proto().op[0]) |
| Y1 = workspace.FetchBlob('X1' if inplace else "Y") |
| if not np.allclose(Y, Y1, atol=0.01, rtol=0.01): |
| print(Y.flatten()) |
| print(Y1.flatten()) |
| print(np.max(np.abs(Y - Y1))) |
| self.assertTrue(False) |
| |
| workspace.SwitchWorkspace(old_ws_name) |
| |
| if __name__ == "__main__": |
| unittest.main() |