| .. role:: hidden |
| :class: hidden-section |
| |
| torch.backends |
| ============== |
| .. automodule:: torch.backends |
| |
| `torch.backends` controls the behavior of various backends that PyTorch supports. |
| |
| These backends include: |
| |
| - ``torch.backends.cuda`` |
| - ``torch.backends.cudnn`` |
| - ``torch.backends.mkl`` |
| - ``torch.backends.mkldnn`` |
| - ``torch.backends.openmp`` |
| |
| |
| torch.backends.cuda |
| ^^^^^^^^^^^^^^^^^^^ |
| .. automodule:: torch.backends.cuda |
| |
| .. autofunction:: torch.backends.cuda.is_built |
| |
| .. attribute:: torch.backends.cuda.matmul.allow_tf32 |
| |
| A :class:`bool` that controls whether TensorFloat-32 tensor cores may be used in matrix |
| multiplications on Ampere or newer GPUs. See :ref:`tf32_on_ampere`. |
| |
| .. attribute:: torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction |
| |
| A :class:`bool` that controls whether reduced precision reductions (e.g., with fp16 accumulation type) are allowed with fp16 GEMMs. |
| |
| .. attribute:: torch.backends.cuda.cufft_plan_cache |
| |
| ``cufft_plan_cache`` caches the cuFFT plans |
| |
| .. attribute:: size |
| |
| A readonly :class:`int` that shows the number of plans currently in the cuFFT plan cache. |
| |
| .. attribute:: max_size |
| |
| A :class:`int` that controls cache capacity of cuFFT plan. |
| |
| .. method:: clear() |
| |
| Clears the cuFFT plan cache. |
| |
| .. autofunction:: torch.backends.cuda.preferred_linalg_library |
| |
| |
| torch.backends.cudnn |
| ^^^^^^^^^^^^^^^^^^^^ |
| .. automodule:: torch.backends.cudnn |
| |
| .. autofunction:: torch.backends.cudnn.version |
| |
| .. autofunction:: torch.backends.cudnn.is_available |
| |
| .. attribute:: torch.backends.cudnn.enabled |
| |
| A :class:`bool` that controls whether cuDNN is enabled. |
| |
| .. attribute:: torch.backends.cudnn.allow_tf32 |
| |
| A :class:`bool` that controls where TensorFloat-32 tensor cores may be used in cuDNN |
| convolutions on Ampere or newer GPUs. See :ref:`tf32_on_ampere`. |
| |
| .. attribute:: torch.backends.cudnn.deterministic |
| |
| A :class:`bool` that, if True, causes cuDNN to only use deterministic convolution algorithms. |
| See also :func:`torch.are_deterministic_algorithms_enabled` and |
| :func:`torch.use_deterministic_algorithms`. |
| |
| .. attribute:: torch.backends.cudnn.benchmark |
| |
| A :class:`bool` that, if True, causes cuDNN to benchmark multiple convolution algorithms |
| and select the fastest. |
| |
| .. attribute:: torch.backends.cudnn.benchmark_limit |
| |
| A :class:`int` that specifies the maximum number of cuDNN convolution algorithms to try when |
| `torch.backends.cudnn.benchmark` is True. Set `benchmark_limit` to zero to try every |
| available algorithm. Note that this setting only affects convolutions dispatched via the |
| cuDNN v8 API. |
| |
| |
| torch.backends.mps |
| ^^^^^^^^^^^^^^^^^^ |
| .. automodule:: torch.backends.mps |
| |
| .. autofunction:: torch.backends.mps.is_available |
| |
| .. autofunction:: torch.backends.mps.is_built |
| |
| |
| torch.backends.mkl |
| ^^^^^^^^^^^^^^^^^^ |
| .. automodule:: torch.backends.mkl |
| |
| .. autofunction:: torch.backends.mkl.is_available |
| |
| |
| torch.backends.mkldnn |
| ^^^^^^^^^^^^^^^^^^^^^ |
| .. automodule:: torch.backends.mkldnn |
| |
| .. autofunction:: torch.backends.mkldnn.is_available |
| |
| |
| torch.backends.openmp |
| ^^^^^^^^^^^^^^^^^^^^^ |
| .. automodule:: torch.backends.openmp |
| |
| .. autofunction:: torch.backends.openmp.is_available |
| |
| .. Docs for other backends need to be added here. |
| .. Automodules are just here to ensure checks run but they don't actually |
| .. add anything to the rendered page for now. |
| .. py:module:: torch.backends.quantized |
| .. py:module:: torch.backends.xnnpack |