| .. automodule:: torch.sparse |
| |
| .. currentmodule:: torch |
| |
| .. _sparse-docs: |
| |
| torch.sparse |
| ============ |
| |
| Introduction |
| ++++++++++++ |
| |
| PyTorch provides :class:`torch.Tensor` to represent a |
| multi-dimensional array containing elements of a single data type. By |
| default, array elements are stored contiguously in memory leading to |
| efficient implementations of various array processing algorithms that |
| relay on the fast access to array elements. However, there exists an |
| important class of multi-dimensional arrays, so-called sparse arrays, |
| where the contiguous memory storage of array elements turns out to be |
| suboptimal. Sparse arrays have a property of having a vast portion of |
| elements being equal to zero which means that a lot of memory as well |
| as processor resources can be spared if only the non-zero elements are |
| stored or/and processed. Various sparse storage formats (`such as COO, |
| CSR/CSC, LIL, etc.`__) have been developed that are optimized for a |
| particular structure of non-zero elements in sparse arrays as well as |
| for specific operations on the arrays. |
| |
| __ https://en.wikipedia.org/wiki/Sparse_matrix |
| |
| .. note:: |
| |
| When talking about storing only non-zero elements of a sparse |
| array, the usage of adjective "non-zero" is not strict: one is |
| allowed to store also zeros in the sparse array data |
| structure. Hence, in the following, we use "specified elements" for |
| those array elements that are actually stored. In addition, the |
| unspecified elements are typically assumed to have zero value, but |
| not only, hence we use the term "fill value" to denote such |
| elements. |
| |
| .. note:: |
| |
| Using a sparse storage format for storing sparse arrays can be |
| advantageous only when the size and sparsity levels of arrays are |
| high. Otherwise, for small-sized or low-sparsity arrays using the |
| contiguous memory storage format is likely the most efficient |
| approach. |
| |
| .. warning:: |
| |
| The PyTorch API of sparse tensors is in beta and may change in the near future. |
| |
| .. _sparse-coo-docs: |
| |
| Sparse COO tensors |
| ++++++++++++++++++ |
| |
| PyTorch implements the so-called Coordinate format, or COO |
| format, as one of the storage formats for implementing sparse |
| tensors. In COO format, the specified elements are stored as tuples |
| of element indices and the corresponding values. In particular, |
| |
| - the indices of specified elements are collected in ``indices`` |
| tensor of size ``(ndim, nse)`` and with element type |
| ``torch.int64``, |
| |
| - the corresponding values are collected in ``values`` tensor of |
| size ``(nse,)`` and with an arbitrary integer or floating point |
| number element type, |
| |
| where ``ndim`` is the dimensionality of the tensor and ``nse`` is the |
| number of specified elements. |
| |
| .. note:: |
| |
| The memory consumption of a sparse COO tensor is at least ``(ndim * |
| 8 + <size of element type in bytes>) * nse`` bytes (plus a constant |
| overhead from storing other tensor data). |
| |
| The memory consumption of a strided tensor is at least |
| ``product(<tensor shape>) * <size of element type in bytes>``. |
| |
| For example, the memory consumption of a 10 000 x 10 000 tensor |
| with 100 000 non-zero 32-bit floating point numbers is at least |
| ``(2 * 8 + 4) * 100 000 = 2 000 000`` bytes when using COO tensor |
| layout and ``10 000 * 10 000 * 4 = 400 000 000`` bytes when using |
| the default strided tensor layout. Notice the 200 fold memory |
| saving from using the COO storage format. |
| |
| Construction |
| ------------ |
| |
| A sparse COO tensor can be constructed by providing the two tensors of |
| indices and values, as well as the size of the sparse tensor (when it |
| cannot be inferred from the indices and values tensors) to a function |
| :func:`torch.sparse_coo_tensor`. |
| |
| Suppose we want to define a sparse tensor with the entry 3 at location |
| (0, 2), entry 4 at location (1, 0), and entry 5 at location (1, 2). |
| Unspecified elements are assumed to have the same value, fill value, |
| which is zero by default. We would then write: |
| |
| >>> i = [[0, 1, 1], |
| [2, 0, 2]] |
| >>> v = [3, 4, 5] |
| >>> s = torch.sparse_coo_tensor(i, v, (2, 3)) |
| >>> s |
| tensor(indices=tensor([[0, 1, 1], |
| [2, 0, 2]]), |
| values=tensor([3, 4, 5]), |
| size=(2, 3), nnz=3, layout=torch.sparse_coo) |
| >>> s.to_dense() |
| tensor([[0, 0, 3], |
| [4, 0, 5]]) |
| |
| Note that the input ``i`` is NOT a list of index tuples. If you want |
| to write your indices this way, you should transpose before passing them to |
| the sparse constructor: |
| |
| >>> i = [[0, 2], [1, 0], [1, 2]] |
| >>> v = [3, 4, 5 ] |
| >>> s = torch.sparse_coo_tensor(list(zip(*i)), v, (2, 3)) |
| >>> # Or another equivalent formulation to get s |
| >>> s = torch.sparse_coo_tensor(torch.tensor(i).t(), v, (2, 3)) |
| >>> torch.sparse_coo_tensor(i.t(), v, torch.Size([2,3])).to_dense() |
| tensor([[0, 0, 3], |
| [4, 0, 5]]) |
| |
| An empty sparse COO tensor can be constructed by specifying its size |
| only: |
| |
| >>> torch.sparse_coo_tensor(size=(2, 3)) |
| tensor(indices=tensor([], size=(2, 0)), |
| values=tensor([], size=(0,)), |
| size=(2, 3), nnz=0, layout=torch.sparse_coo) |
| |
| .. _sparse-hybrid-coo-docs: |
| |
| Hybrid sparse COO tensors |
| ------------------------- |
| |
| Pytorch implements an extension of sparse tensors with scalar values |
| to sparse tensors with (contiguous) tensor values. Such tensors are |
| called hybrid tensors. |
| |
| PyTorch hybrid COO tensor extends the sparse COO tensor by allowing |
| the ``values`` tensor to be a multi-dimensional tensor so that we |
| have: |
| |
| - the indices of specified elements are collected in ``indices`` |
| tensor of size ``(sparse_dims, nse)`` and with element type |
| ``torch.int64``, |
| |
| - the corresponding (tensor) values are collected in ``values`` |
| tensor of size ``(nse, dense_dims)`` and with an arbitrary integer |
| or floating point number element type. |
| |
| .. note:: |
| |
| We use (M + K)-dimensional tensor to denote a N-dimensional hybrid |
| sparse tensor, where M and K are the numbers of sparse and dense |
| dimensions, respectively, such that M + K == N holds. |
| |
| Suppose we want to create a (2 + 1)-dimensional tensor with the entry |
| [3, 4] at location (0, 2), entry [5, 6] at location (1, 0), and entry |
| [7, 8] at location (1, 2). We would write |
| |
| >>> i = [[0, 1, 1], |
| [2, 0, 2]] |
| >>> v = [[3, 4], [5, 6], [7, 8]] |
| >>> s = torch.sparse_coo_tensor(i, v, (2, 3, 2)) |
| >>> s |
| tensor(indices=tensor([[0, 1, 1], |
| [2, 0, 2]]), |
| values=tensor([[3, 4], |
| [5, 6], |
| [7, 8]]), |
| size=(2, 3, 2), nnz=3, layout=torch.sparse_coo) |
| |
| >>> s.to_dense() |
| tensor([[[0, 0], |
| [0, 0], |
| [3, 4]], |
| [[5, 6], |
| [0, 0], |
| [7, 8]]]) |
| |
| In general, if ``s`` is a sparse COO tensor and ``M = |
| s.sparse_dim()``, ``K = s.dense_dim()``, then we have the following |
| invariants: |
| |
| - ``M + K == len(s.shape) == s.ndim`` - dimensionality of a tensor |
| is the sum of the number of sparse and dense dimensions, |
| - ``s.indices().shape == (M, nse)`` - sparse indices are stored |
| explicitly, |
| - ``s.values().shape == (nse,) + s.shape[M : M + K]`` - the values |
| of a hybrid tensor are K-dimensional tensors, |
| - ``s.values().layout == torch.strided`` - values are stored as |
| strided tensors. |
| |
| .. note:: |
| |
| Dense dimensions always follow sparse dimensions, that is, mixing |
| of dense and sparse dimensions is not supported. |
| |
| .. _sparse-uncoalesced-coo-docs: |
| |
| Uncoalesced sparse COO tensors |
| ------------------------------ |
| |
| PyTorch sparse COO tensor format permits *uncoalesced* sparse tensors, |
| where there may be duplicate coordinates in the indices; in this case, |
| the interpretation is that the value at that index is the sum of all |
| duplicate value entries. For example, one can specify multiple values, |
| ``3`` and ``4``, for the same index ``1``, that leads to an 1-D |
| uncoalesced tensor: |
| |
| >>> i = [[1, 1]] |
| >>> v = [3, 4] |
| >>> s=torch.sparse_coo_tensor(i, v, (3,)) |
| >>> s |
| tensor(indices=tensor([[1, 1]]), |
| values=tensor( [3, 4]), |
| size=(3,), nnz=2, layout=torch.sparse_coo) |
| |
| while the coalescing process will accumulate the multi-valued elements |
| into a single value using summation: |
| |
| >>> s.coalesce() |
| tensor(indices=tensor([[1]]), |
| values=tensor([7]), |
| size=(3,), nnz=1, layout=torch.sparse_coo) |
| |
| In general, the output of :meth:`torch.Tensor.coalesce` method is a |
| sparse tensor with the following properties: |
| |
| - the indices of specified tensor elements are unique, |
| - the indices are sorted in lexicographical order, |
| - :meth:`torch.Tensor.is_coalesced()` returns ``True``. |
| |
| .. note:: |
| |
| For the most part, you shouldn't have to care whether or not a |
| sparse tensor is coalesced or not, as most operations will work |
| identically given a coalesced or uncoalesced sparse tensor. |
| |
| However, some operations can be implemented more efficiently on |
| uncoalesced tensors, and some on coalesced tensors. |
| |
| For instance, addition of sparse COO tensors is implemented by |
| simply concatenating the indices and values tensors: |
| |
| >>> a = torch.sparse_coo_tensor([[1, 1]], [5, 6], (2,)) |
| >>> b = torch.sparse_coo_tensor([[0, 0]], [7, 8], (2,)) |
| >>> a + b |
| tensor(indices=tensor([[0, 0, 1, 1]]), |
| values=tensor([7, 8, 5, 6]), |
| size=(2,), nnz=4, layout=torch.sparse_coo) |
| |
| If you repeatedly perform an operation that can produce duplicate |
| entries (e.g., :func:`torch.Tensor.add`), you should occasionally |
| coalesce your sparse tensors to prevent them from growing too large. |
| |
| On the other hand, the lexicographical ordering of indices can be |
| advantageous for implementing algorithms that involve many element |
| selection operations, such as slicing or matrix products. |
| |
| |
| Working with sparse COO tensors |
| ------------------------------- |
| |
| Let's consider the following example: |
| |
| >>> i = [[0, 1, 1], |
| [2, 0, 2]] |
| >>> v = [[3, 4], [5, 6], [7, 8]] |
| >>> s = torch.sparse_coo_tensor(i, v, (2, 3, 2)) |
| |
| As mentioned above, a sparse COO tensor is a :class:`torch.Tensor` |
| instance and to distinguish it from the `Tensor` instances that use |
| some other layout, on can use :attr:`torch.Tensor.is_sparse` or |
| :attr:`torch.Tensor.layout` properties: |
| |
| >>> isinstance(s, torch.Tensor) |
| True |
| >>> s.is_sparse |
| True |
| >>> s.layout == torch.sparse_coo |
| True |
| |
| The number of sparse and dense dimensions can be acquired using |
| methods :meth:`torch.Tensor.sparse_dim` and |
| :meth:`torch.Tensor.dense_dim`, respectively. For instance: |
| |
| >>> s.sparse_dim(), s.dense_dim() |
| (2, 1) |
| |
| |
| If ``s`` is a sparse COO tensor then its COO format data can be |
| acquired using methods :meth:`torch.Tensor.indices()` and |
| :meth:`torch.Tensor.values()`. |
| |
| .. note:: |
| |
| Currently, one can acquire the COO format data only when the tensor |
| instance is coalesced: |
| |
| >>> s.indices() |
| RuntimeError: Cannot get indices on an uncoalesced tensor, please call .coalesce() first |
| |
| For acquiring the COO format data of an uncoalesced tensor, use |
| :func:`torch.Tensor._values()` and :func:`torch.Tensor._indices()`: |
| |
| >>> s._indices() |
| tensor([[0, 1, 1], |
| [2, 0, 2]]) |
| |
| .. See https://github.com/pytorch/pytorch/pull/45695 for a new API. |
| |
| .. warning:: |
| Calling :meth:`torch.Tensor._values()` will return a *detached* tensor. |
| To track gradients, :meth:`torch.Tensor.coalesce().values()` must be |
| used instead. |
| |
| Constructing a new sparse COO tensor results a tensor that is not |
| coalesced: |
| |
| >>> s.is_coalesced() |
| False |
| |
| but one can construct a coalesced copy of a sparse COO tensor using |
| the :meth:`torch.Tensor.coalesce` method: |
| |
| >>> s2 = s.coalesce() |
| >>> s2.indices() |
| tensor([[0, 1, 1], |
| [2, 0, 2]]) |
| |
| When working with uncoalesced sparse COO tensors, one must take into |
| an account the additive nature of uncoalesced data: the values of the |
| same indices are the terms of a sum that evaluation gives the value of |
| the corresponding tensor element. For example, the scalar |
| multiplication on an uncoalesced sparse tensor could be implemented by |
| multiplying all the uncoalesced values with the scalar because ``c * |
| (a + b) == c * a + c * b`` holds. However, any nonlinear operation, |
| say, a square root, cannot be implemented by applying the operation to |
| uncoalesced data because ``sqrt(a + b) == sqrt(a) + sqrt(b)`` does not |
| hold in general. |
| |
| Slicing (with positive step) of a sparse COO tensor is supported only |
| for dense dimensions. Indexing is supported for both sparse and dense |
| dimensions: |
| |
| >>> s[1] |
| tensor(indices=tensor([[0, 2]]), |
| values=tensor([[5, 6], |
| [7, 8]]), |
| size=(3, 2), nnz=2, layout=torch.sparse_coo) |
| >>> s[1, 0, 1] |
| tensor(6) |
| >>> s[1, 0, 1:] |
| tensor([6]) |
| |
| |
| In PyTorch, the fill value of a sparse tensor cannot be specified |
| explicitly and is assumed to be zero in general. However, there exists |
| operations that may interpret the fill value differently. For |
| instance, :func:`torch.sparse.softmax` computes the softmax with the |
| assumption that the fill value is negative infinity. |
| |
| .. See https://github.com/Quansight-Labs/rfcs/tree/pearu/rfc-fill-value/RFC-0004-sparse-fill-value for a new API |
| |
| .. _sparse-csr-docs: |
| |
| Sparse CSR Tensor |
| +++++++++++++++++ |
| |
| The CSR (Compressed Sparse Row) sparse tensor format implements the CSR format |
| for storage of 2 dimensional tensors. Although there is no support for N-dimensional |
| tensors, the primary advantage over the COO format is better use of storage and |
| much faster computation operations such as sparse matrix-vector multiplication |
| using MKL and MAGMA backends. CUDA support does not exist as of now. |
| |
| A CSR sparse tensor consists of three 1-D tensors: ``crow_indices``, ``col_indices`` |
| and ``values``: |
| |
| - The ``crow_indices`` tensor consists of compressed row indices. This is a 1-D tensor |
| of size ``size[0] + 1``. The last element is the number of non-zeros. This tensor |
| encodes the index in ``values`` and ``col_indices`` depending on where the given row |
| starts. Each successive number in the tensor subtracted by the number before it denotes |
| the number of elements in a given row. |
| - The ``col_indices`` tensor contains the column indices of each value. This is a 1-D |
| tensor of size ``nnz``. |
| - The ``values`` tensor contains the values of the CSR tensor. This is a 1-D tensor |
| of size ``nnz``. |
| |
| .. note:: |
| |
| The index tensors ``crow_indices`` and ``col_indices`` should have element type either |
| ``torch.int64`` (default) or ``torch.int32``. If you want to use MKL-enabled matrix |
| operations, use ``torch.int32``. This is as a result of the default linking of pytorch |
| being with MKL LP64, which uses 32 bit integer indexing. |
| |
| Construction of CSR tensors |
| --------------------------- |
| |
| Sparse CSR matrices can be directly constructed by using the :func:`torch.sparse_csr_tensor` |
| method. The user must supply the row and column indices and values tensors separately. |
| The ``size`` argument is optional and will be deduced from the the ``crow_indices`` |
| and ``col_indices`` if it is not present. |
| |
| >>> crow_indices = torch.tensor([0, 2, 4]) |
| >>> col_indices = torch.tensor([0, 1, 0, 1]) |
| >>> values = torch.tensor([1, 2, 3, 4]) |
| >>> csr = torch.sparse_csr_tensor(crow_indices, col_indices, values, dtype=torch.double) |
| >>> csr |
| tensor(crow_indices=tensor([0, 2, 4]), |
| col_indices=tensor([0, 1, 0, 1]), |
| values=tensor([1., 2., 3., 4.]), size=(2, 2), nnz=4, |
| dtype=torch.float64) |
| >>> csr.to_dense() |
| tensor([[1., 2.], |
| [3., 4.]], dtype=torch.float64) |
| |
| CSR Tensor Operations |
| --------------------- |
| |
| The simplest way of constructing a sparse CSR tensor from a strided or sparse COO |
| tensor is to use :meth:`tensor.to_sparse_csr`. Any zeros in the (strided) tensor will |
| be interpreted as missing values in the sparse tensor: |
| |
| >>> a = torch.tensor([[0, 0, 1, 0], [1, 2, 0, 0], [0, 0, 0, 0]], dtype = torch.float64) |
| >>> sp = a.to_sparse_csr() |
| >>> sp |
| tensor(crow_indices=tensor([0, 1, 3, 3]), |
| col_indices=tensor([2, 0, 1]), |
| values=tensor([1., 1., 2.]), size=(3, 4), nnz=3, dtype=torch.float64) |
| |
| The sparse matrix-vector multiplication can be performed with the |
| :meth:`tensor.matmul` method. This is currently the only math operation |
| supported on CSR tensors. |
| |
| >>> vec = torch.randn(4, 1, dtype=torch.float64) |
| >>> sp.matmul(vec) |
| tensor([[0.9078], |
| [1.3180], |
| [0.0000]], dtype=torch.float64) |
| |
| Supported Linear Algebra operations |
| +++++++++++++++++++++++++++++++++++ |
| |
| The following table summarizes supported Linear Algebra operations on |
| sparse matrices where the operands layouts may vary. Here |
| ``T[layout]`` denotes a tensor with a given layout. Similarly, |
| ``M[layout]`` denotes a matrix (2-D PyTorch tensor), and ``V[layout]`` |
| denotes a vector (1-D PyTorch tensor). In addition, ``f`` denotes a |
| scalar (float or 0-D PyTorch tensor), ``*`` is element-wise |
| multiplication, and ``@`` is matrix multiplication. |
| |
| .. csv-table:: |
| :header: "PyTorch operation", "Sparse grad?", "Layout signature" |
| :widths: 20, 5, 60 |
| :delim: ; |
| |
| :func:`torch.mv`;no; ``M[sparse_coo] @ V[strided] -> V[strided]`` |
| :func:`torch.mv`;no; ``M[sparse_csr] @ V[strided] -> V[strided]`` |
| :func:`torch.matmul`; no; ``M[sparse_coo] @ M[strided] -> M[strided]`` |
| :func:`torch.matmul`; no; ``M[sparse_csr] @ M[strided] -> M[strided]`` |
| :func:`torch.mm`; no; ``M[sparse_coo] @ M[strided] -> M[strided]`` |
| :func:`torch.sparse.mm`; yes; ``M[sparse_coo] @ M[strided] -> M[strided]`` |
| :func:`torch.smm`; no; ``M[sparse_coo] @ M[strided] -> M[sparse_coo]`` |
| :func:`torch.hspmm`; no; ``M[sparse_coo] @ M[strided] -> M[hybrid sparse_coo]`` |
| :func:`torch.bmm`; no; ``T[sparse_coo] @ T[strided] -> T[strided]`` |
| :func:`torch.addmm`; no; ``f * M[strided] + f * (M[sparse_coo] @ M[strided]) -> M[strided]`` |
| :func:`torch.sparse.addmm`; yes; ``f * M[strided] + f * (M[sparse_coo] @ M[strided]) -> M[strided]`` |
| :func:`torch.sspaddmm`; no; ``f * M[sparse_coo] + f * (M[sparse_coo] @ M[strided]) -> M[sparse_coo]`` |
| :func:`torch.lobpcg`; no; ``GENEIG(M[sparse_coo]) -> M[strided], M[strided]`` |
| :func:`torch.pca_lowrank`; yes; ``PCA(M[sparse_coo]) -> M[strided], M[strided], M[strided]`` |
| :func:`torch.svd_lowrank`; yes; ``SVD(M[sparse_coo]) -> M[strided], M[strided], M[strided]`` |
| |
| where "Sparse grad?" column indicates if the PyTorch operation supports |
| backward with respect to sparse matrix argument. All PyTorch operations, |
| except :func:`torch.smm`, support backward with respect to strided |
| matrix arguments. |
| |
| .. note:: |
| |
| Currently, PyTorch does not support matrix multiplication with the |
| layout signature ``M[strided] @ M[sparse_coo]``. However, |
| applications can still compute this using the matrix relation ``D @ |
| S == (S.t() @ D.t()).t()``. |
| |
| Tensor methods and sparse |
| +++++++++++++++++++++++++ |
| |
| The following Tensor methods are related to sparse tensors: |
| |
| .. autosummary:: |
| :nosignatures: |
| |
| Tensor.is_sparse |
| Tensor.dense_dim |
| Tensor.sparse_dim |
| Tensor.sparse_mask |
| Tensor.to_sparse |
| Tensor.to_sparse_coo |
| Tensor.to_sparse_csr |
| Tensor.indices |
| Tensor.values |
| |
| The following Tensor methods are specific to sparse COO tensors: |
| |
| .. autosummary:: |
| :toctree: generated |
| :nosignatures: |
| |
| Tensor.coalesce |
| Tensor.sparse_resize_ |
| Tensor.sparse_resize_and_clear_ |
| Tensor.is_coalesced |
| Tensor.to_dense |
| |
| The following methods are specific to :ref:`sparse CSR tensors <sparse-csr-docs>`: |
| |
| .. autosummary:: |
| :nosignatures: |
| |
| Tensor.crow_indices |
| Tensor.col_indices |
| |
| The following Tensor methods support sparse COO tensors: |
| |
| :meth:`~torch.Tensor.add` |
| :meth:`~torch.Tensor.add_` |
| :meth:`~torch.Tensor.addmm` |
| :meth:`~torch.Tensor.addmm_` |
| :meth:`~torch.Tensor.any` |
| :meth:`~torch.Tensor.asin` |
| :meth:`~torch.Tensor.asin_` |
| :meth:`~torch.Tensor.arcsin` |
| :meth:`~torch.Tensor.arcsin_` |
| :meth:`~torch.Tensor.bmm` |
| :meth:`~torch.Tensor.clone` |
| :meth:`~torch.Tensor.deg2rad` |
| :meth:`~torch.Tensor.deg2rad_` |
| :meth:`~torch.Tensor.detach` |
| :meth:`~torch.Tensor.detach_` |
| :meth:`~torch.Tensor.dim` |
| :meth:`~torch.Tensor.div` |
| :meth:`~torch.Tensor.div_` |
| :meth:`~torch.Tensor.floor_divide` |
| :meth:`~torch.Tensor.floor_divide_` |
| :meth:`~torch.Tensor.get_device` |
| :meth:`~torch.Tensor.index_select` |
| :meth:`~torch.Tensor.isnan` |
| :meth:`~torch.Tensor.log1p` |
| :meth:`~torch.Tensor.log1p_` |
| :meth:`~torch.Tensor.mm` |
| :meth:`~torch.Tensor.mul` |
| :meth:`~torch.Tensor.mul_` |
| :meth:`~torch.Tensor.mv` |
| :meth:`~torch.Tensor.narrow_copy` |
| :meth:`~torch.Tensor.neg` |
| :meth:`~torch.Tensor.neg_` |
| :meth:`~torch.Tensor.negative` |
| :meth:`~torch.Tensor.negative_` |
| :meth:`~torch.Tensor.numel` |
| :meth:`~torch.Tensor.rad2deg` |
| :meth:`~torch.Tensor.rad2deg_` |
| :meth:`~torch.Tensor.resize_as_` |
| :meth:`~torch.Tensor.size` |
| :meth:`~torch.Tensor.pow` |
| :meth:`~torch.Tensor.sqrt` |
| :meth:`~torch.Tensor.square` |
| :meth:`~torch.Tensor.smm` |
| :meth:`~torch.Tensor.sspaddmm` |
| :meth:`~torch.Tensor.sub` |
| :meth:`~torch.Tensor.sub_` |
| :meth:`~torch.Tensor.t` |
| :meth:`~torch.Tensor.t_` |
| :meth:`~torch.Tensor.transpose` |
| :meth:`~torch.Tensor.transpose_` |
| :meth:`~torch.Tensor.zero_` |
| |
| Torch functions specific to sparse Tensors |
| ++++++++++++++++++++++++++++++++++++++++++ |
| .. autosummary:: |
| :toctree: generated |
| :nosignatures: |
| |
| sparse_coo_tensor |
| sparse_csr_tensor |
| sparse.sum |
| sparse.addmm |
| sparse.sampled_addmm |
| sparse.mm |
| sspaddmm |
| hspmm |
| smm |
| sparse.softmax |
| sparse.log_softmax |
| sparse.spdiags |
| |
| Other functions |
| +++++++++++++++ |
| |
| The following :mod:`torch` functions support sparse tensors: |
| |
| :func:`~torch.cat` |
| :func:`~torch.dstack` |
| :func:`~torch.empty` |
| :func:`~torch.empty_like` |
| :func:`~torch.hstack` |
| :func:`~torch.index_select` |
| :func:`~torch.is_complex` |
| :func:`~torch.is_floating_point` |
| :func:`~torch.is_nonzero` |
| :func:`~torch.is_same_size` |
| :func:`~torch.is_signed` |
| :func:`~torch.is_tensor` |
| :func:`~torch.lobpcg` |
| :func:`~torch.mm` |
| :func:`~torch.native_norm` |
| :func:`~torch.pca_lowrank` |
| :func:`~torch.select` |
| :func:`~torch.stack` |
| :func:`~torch.svd_lowrank` |
| :func:`~torch.unsqueeze` |
| :func:`~torch.vstack` |
| :func:`~torch.zeros` |
| :func:`~torch.zeros_like` |