| import torch |
| from torch import Tensor |
| from torch._prims import utils |
| from torch._prims.utils import ( |
| ELEMENTWISE_TYPE_PROMOTION_KIND, |
| check, |
| elementwise_dtypes, |
| ) |
| from torch._prims.wrappers import out_wrapper |
| |
| from typing import List, Optional |
| |
| meta_lib = torch.library.Library("aten", "IMPL", "Meta") |
| |
| |
| def toRealValueType(dtype): |
| from_complex = { |
| torch.complex32: torch.half, |
| torch.cfloat: torch.float, |
| torch.cdouble: torch.double, |
| } |
| return from_complex.get(dtype, dtype) |
| |
| |
| @torch.library.impl(meta_lib, "_fft_c2c") |
| def meta_fft_c2c(self, dim, normalization, forward): |
| assert self.dtype.is_complex |
| return self.new_empty(self.size()) |
| |
| |
| @torch.library.impl(meta_lib, "_fft_r2c") |
| def meta_fft_r2c(self, dim, normalization, onesided): |
| assert self.dtype.is_floating_point |
| output_sizes = list(self.size()) |
| |
| if onesided: |
| last_dim = dim[-1] |
| last_dim_halfsize = (output_sizes[last_dim] // 2) + 1 |
| output_sizes[last_dim] = last_dim_halfsize |
| |
| return self.new_empty( |
| output_sizes, dtype=utils.corresponding_complex_dtype(self.dtype) |
| ) |
| |
| |
| @torch.library.impl(meta_lib, "_fft_c2r.out") |
| @torch.library.impl(meta_lib, "_fft_c2r") |
| @out_wrapper() |
| def meta_fft_c2r(self, dim, normalization, lastdim): |
| assert self.dtype.is_complex |
| output_sizes = list(self.size()) |
| output_sizes[dim[-1]] = lastdim |
| return self.new_empty(output_sizes, dtype=toRealValueType(self.dtype)) |
| |
| |
| @torch.library.impl(meta_lib, "conj_physical.out") |
| def meta_conj_physical_out(self, out): |
| return torch._resize_output_(out, self.size(), self.device) |
| |
| |
| # Implementations below are taken from https://github.com/albanD/subclass_zoo/blob/main/python_meta_tensor.py |
| @torch.library.impl(meta_lib, "index_select") |
| def meta_index_select(self, dim, index): |
| result_size = list(self.size()) |
| if self.dim() > 0: |
| result_size[dim] = index.numel() |
| return self.new_empty(result_size) |
| |
| |
| @torch.library.impl(meta_lib, "index_select.out") |
| def meta_index_select_out(self, dim, index, out): |
| torch._resize_output_(out, self.size(), self.device) |
| return out.copy_(torch.index_select(self, dim, index)) |
| |
| |
| @torch.library.impl(meta_lib, "max") |
| def meta_max(self): |
| return self.new_empty(()) |
| |
| |
| @torch.library.impl(meta_lib, "min") |
| def meta_min(self): |
| return self.new_empty(()) |
| |
| |
| @torch.library.impl(meta_lib, "angle") |
| def meta_angle(self): |
| _, result_dtype = elementwise_dtypes( |
| self, type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT |
| ) |
| return self.new_empty(self.size(), dtype=result_dtype) |
| |
| |
| @torch.library.impl(meta_lib, "angle.out") |
| def meta_angle_out(self, out): |
| torch._resize_output_(out, self.size(), self.device) |
| return out.copy_(torch.angle(self)) |
| |
| |
| def squareCheckInputs(self, f_name): |
| assert ( |
| self.dim() >= 2 |
| ), f"{f_name}: The input tensor must have at least 2 dimensions." |
| assert self.size(-1) == self.size( |
| -2 |
| ), f"{f_name}: A must be batches of square matrices, but they are {self.size(-2)} by {self.size(-1)} matrices" |
| |
| |
| def checkUplo(uplo: str): |
| uplo_uppercase = uplo.upper() |
| assert ( |
| len(uplo) == 1 and uplo_uppercase == "U" or uplo_uppercase == "L" |
| ), f"Expected UPLO argument to be 'L' or 'U', but got {uplo}" |
| |
| |
| # Keeping this meta impl around, but we don't want to register it directly to the meta key |
| # because `aten::linalg_eigh` is composite. |
| # `_linalg_eigh` is implemented internally as a structured kernel, so we have meta support. |
| def meta_linalg_eigh(self, uplo="L"): |
| squareCheckInputs(self, "linalg_eigh") |
| checkUplo(uplo) |
| real_dtype = toRealValueType(self.dtype) |
| assert self.dim() >= 2 |
| values = self.new_empty(self.shape, dtype=real_dtype) |
| values.transpose_(-2, -1) |
| vectors = self.new_empty(self.shape[:-1]) |
| return (values, vectors) |
| |
| |
| @torch.library.impl(meta_lib, "reflection_pad2d") |
| def meta_pad2d(self, padding): |
| valid_dims = self.size(1) != 0 and self.size(2) != 0 |
| check( |
| (self.ndim == 3 and valid_dims) |
| or (self.ndim == 4 and valid_dims and self.size(3) != 0), |
| lambda: f"3D or 4D (batch mode) tensor expected for input, but got: {self}", |
| ) |
| if self.ndim == 4: |
| nbatch, nplane, input_h, input_w = self.shape |
| else: |
| nbatch = 1 |
| nplane, input_h, input_w = self.shape |
| |
| pad_l, pad_r, pad_t, pad_b = padding |
| |
| output_h = input_h + pad_t + pad_b |
| output_w = input_w + pad_l + pad_r |
| |
| if self.ndim == 3: |
| return self.new_empty((nplane, output_h, output_w)) |
| else: |
| return self.new_empty((nbatch, nplane, output_h, output_w)) |
| |
| |
| @torch.library.impl(meta_lib, "dot") |
| def meta_dot(self, tensor): |
| check( |
| self.dim() == 1 and tensor.dim() == 1, |
| lambda: f"1D tensors expected, but got {self.dim()}D and {tensor.dim()}D tensors", |
| ) |
| return self.new_empty(()) |
| |
| |
| def _compute_reduction_shape(self, dims, keepdim): |
| if keepdim: |
| return tuple(self.shape[i] if i not in dims else 1 for i in range(self.ndim)) |
| |
| return utils.compute_reduction_output_shape(self.shape, dims) |
| |
| |
| @torch.library.impl(meta_lib, "var_mean.correction") |
| def meta_var_mean_correction(self, dim, *, correction, keepdim=False): |
| dim = utils.reduction_dims(self.shape, dim) |
| output_shape = _compute_reduction_shape(self, dim, keepdim) |
| result1 = self.new_empty(output_shape, dtype=toRealValueType(self.dtype)) |
| result2 = self.new_empty(output_shape) |
| return result1, result2 |
| |
| |
| @torch.library.impl(meta_lib, "inverse") |
| def meta_inverse(self): |
| # Bug: https://github.com/pytorch/pytorch/issues/77498 |
| if self.numel() == 0: |
| return torch.empty_like(self) |
| r = self.new_empty(self.shape) |
| r.transpose_(-2, -1) |
| return r |
| |
| |
| @torch.library.impl(meta_lib, "bernoulli.out") |
| def meta_bernoulli(self, *, generator=None, out): |
| torch._resize_output_(out, self.size(), self.device) |
| return out |
| |
| |
| @torch.library.impl(meta_lib, "_adaptive_avg_pool2d") |
| def meta_adaptive_avg_pool2d(self, output_size): |
| check( |
| self.ndim == 3 or self.ndim == 4, |
| lambda: f"Expected 3D or 4D tensor, but got {self.shape}", |
| ) |
| return self.new_empty(self.shape[:-2] + tuple(output_size)) |
| |
| |
| @torch.library.impl(meta_lib, "_adaptive_avg_pool3d") |
| def meta_adaptive_avg_pool3d(self, output_size): |
| check( |
| self.ndim == 4 or self.ndim == 5, |
| lambda: f"Expected 4D or 5D tensor, but got {self.shape}", |
| ) |
| return self.new_empty(self.shape[:-3] + tuple(output_size)) |
| |
| |
| @torch.library.impl(meta_lib, "repeat_interleave.Tensor") |
| def meta_repeat_interleave_Tensor(repeats, output_size=None): |
| if output_size is None: |
| raise RuntimeError("cannot repeat_interleave a meta tensor without output_size") |
| return repeats.new_empty(output_size) |
| |
| |
| # Leaving this function around because a python implementation |
| # of indexing shape inference is useful, |
| # but not registering it to the dispatcher because we already |
| # get shape inference through structured kernels |
| def meta_index_Tensor(self, indices): |
| check(indices, lambda: "at least one index must be provided") |
| # aten::index is the internal advanced indexing implementation |
| # checkIndexTensorTypes and expandTensors |
| result: List[Optional[Tensor]] = [] |
| for i, index in enumerate(indices): |
| if index is not None: |
| check( |
| index.dtype in [torch.long, torch.int8, torch.bool], |
| lambda: "tensors used as indices must be long, byte or bool tensors", |
| ) |
| if index.dtype in [torch.int8, torch.bool]: |
| nonzero = index.nonzero() |
| k = len(result) |
| check( |
| k + index.ndim <= self.ndim, |
| lambda: f"too many indices for tensor of dimension {self.ndim}", |
| IndexError, |
| ) |
| for j in range(index.ndim): |
| check( |
| index.shape[j] == self.shape[k + j], |
| lambda: f"The shape of the mask {index.shape} at index {i} " |
| f"does not match the shape of the indexed tensor {self.shape} at index {k + j}", |
| IndexError, |
| ) |
| result.append(nonzero.select(1, j)) |
| else: |
| result.append(index) |
| else: |
| result.append(index) |
| indices = result |
| check( |
| len(indices) <= self.ndim, |
| lambda: f"too many indices for tensor of dimension {self.ndim} (got {len(indices)})", |
| ) |
| # expand_outplace |
| import torch._refs as refs # avoid import cycle in mypy |
| |
| indices = list(refs._maybe_broadcast(*indices)) |
| # add missing null tensors |
| while len(indices) < self.ndim: |
| indices.append(None) |
| |
| # hasContiguousSubspace |
| # true if all non-null tensors are adjacent |
| # See: |
| # https://numpy.org/doc/stable/user/basics.indexing.html#combining-advanced-and-basic-indexing |
| # https://stackoverflow.com/questions/53841497/why-does-numpy-mixed-basic-advanced-indexing-depend-on-slice-adjacency |
| state = 0 |
| has_contiguous_subspace = False |
| for index in indices: |
| if state == 0: |
| if index is not None: |
| state = 1 |
| elif state == 1: |
| if index is None: |
| state = 2 |
| else: |
| if index is not None: |
| break |
| else: |
| has_contiguous_subspace = True |
| |
| # transposeToFront |
| # This is the logic that causes the newly inserted dimensions to show up |
| # at the beginning of the tensor, if they're not contiguous |
| if not has_contiguous_subspace: |
| dims = [] |
| transposed_indices = [] |
| for i, index in enumerate(indices): |
| if index is not None: |
| dims.append(i) |
| transposed_indices.append(index) |
| for i, index in enumerate(indices): |
| if index is None: |
| dims.append(i) |
| transposed_indices.append(index) |
| self = self.permute(dims) |
| indices = transposed_indices |
| |
| # AdvancedIndex::AdvancedIndex |
| # Now we can assume the indices have contiguous subspace |
| # This is simplified from AdvancedIndex which goes to more effort |
| # to put the input and indices in a form so that TensorIterator can |
| # take them. If we write a ref for this, probably that logic should |
| # get implemented |
| before_shape: List[int] = [] |
| after_shape: List[int] = [] |
| replacement_shape: List[int] = [] |
| for dim, index in enumerate(indices): |
| if index is None: |
| if replacement_shape: |
| after_shape.append(self.shape[dim]) |
| else: |
| before_shape.append(self.shape[dim]) |
| else: |
| replacement_shape = list(index.shape) |
| return self.new_empty(before_shape + replacement_shape + after_shape) |
| |
| |
| @torch.library.impl(meta_lib, "addbmm") |
| @torch.library.impl(meta_lib, "addbmm.out") |
| @out_wrapper() |
| def meta_addbmm(self, batch1, batch2, *, beta=1, alpha=1): |
| dim1 = batch1.size(1) |
| dim2 = batch2.size(2) |
| self = self.expand((dim1, dim2)) |
| check(batch1.dim() == 3, lambda: "batch1 must be a 3D tensor") |
| check(batch2.dim() == 3, lambda: "batch2 must be a 3D tensor") |
| check( |
| batch1.size(0) == batch2.size(0), |
| lambda: f"batch1 and batch2 must have same number of batches, got {batch1.size(0)} and {batch2.size(0)}", |
| ) |
| check( |
| batch1.size(2) == batch2.size(1), |
| lambda: ( |
| f"Incompatible matrix sizes for bmm ({batch1.size(1)}x{batch1.size(2)} " |
| f"and {batch2.size(1)}x{batch2.size(2)})" |
| ), |
| ) |
| check( |
| self.size(0) == dim1 and self.size(1) == dim2, |
| lambda: "self tensor does not match matmul output shape", |
| ) |
| return self.new_empty(self.size()) |
| |
| |
| @torch.library.impl(meta_lib, "_cdist_forward") |
| def meta_cdist_forward(x1, x2, p, compute_mode): |
| check( |
| x1.dim() >= 2, |
| lambda: f"cdist only supports at least 2D tensors, X1 got: {x1.dim()}D", |
| ) |
| check( |
| x2.dim() >= 2, |
| lambda: f"cdist only supports at least 2D tensors, X2 got: {x2.dim()}D", |
| ) |
| check( |
| x1.size(-1) == x2.size(-1), |
| lambda: f"X1 and X2 must have the same number of columns. X1: {x1.size(-1)} X2: {x2.size(-1)}", |
| ) |
| check( |
| utils.is_float_dtype(x1.dtype), |
| lambda: "cdist only supports floating-point dtypes, X1 got: {x1.dtype}", |
| ) |
| check( |
| utils.is_float_dtype(x2.dtype), |
| lambda: "cdist only supports floating-point dtypes, X2 got: {x2.dtype}", |
| ) |
| check(p >= 0, lambda: "cdist only supports non-negative p values") |
| check( |
| compute_mode >= 0 and compute_mode <= 2, |
| lambda: f"possible modes: 0, 1, 2, but was: {compute_mode}", |
| ) |
| r1 = x1.size(-2) |
| r2 = x2.size(-2) |
| batch_tensor1 = x1.shape[:-2] |
| batch_tensor2 = x2.shape[:-2] |
| output_shape = list(torch.broadcast_shapes(batch_tensor1, batch_tensor2)) |
| output_shape.extend([r1, r2]) |
| return x1.new_empty(output_shape) |
| |
| |
| @torch.library.impl(meta_lib, "_embedding_bag") |
| def meta_embedding_bag( |
| weight, |
| indices, |
| offsets, |
| scale_grad_by_freq=False, |
| mode=0, |
| sparse=False, |
| per_sample_weights=None, |
| include_last_offset=False, |
| padding_idx=-1, |
| ): |
| check( |
| indices.dtype in (torch.long, torch.int), |
| lambda: f"expected indices to be long or int, got {indices.dtype}", |
| ) |
| check( |
| offsets.dtype in (torch.long, torch.int), |
| lambda: f"expected offsets to be long or int, got {offsets.dtype}", |
| ) |
| check( |
| utils.is_float_dtype(weight.dtype), |
| lambda: f"expected weight to be floating point type, got {weight.dtype}", |
| ) |
| |
| num_bags = offsets.size(0) |
| if include_last_offset: |
| check( |
| num_bags >= 1, lambda: "include_last_offset: numBags should be at least 1" |
| ) |
| num_bags -= 1 |
| |
| output = weight.new_empty(num_bags, weight.size(1)) |
| MODE_SUM, MODE_MEAN, MODE_MAX = range(3) |
| |
| if per_sample_weights is not None: |
| check( |
| mode == MODE_SUM, |
| lambda: "embedding_bag: per_sample_weights only supported with mode='sum'", |
| ) |
| check( |
| per_sample_weights.dtype == weight.dtype, |
| lambda: f"expected weight ({weight.dtype}) and per_sample_weights ({per_sample_weights.dtype}) to have same dtype", |
| ) |
| check( |
| per_sample_weights.ndim == 1, |
| lambda: f"expected per_sample_weights to be 1D tensor, got {per_sample_weights.ndim}D", |
| ) |
| check( |
| per_sample_weights.numel() == indices.numel(), |
| lambda: ( |
| f"expected per_sample_weights.numel() ({per_sample_weights.numel()} " |
| f"to be the same as indices.numel() ({indices.numel()})" |
| ), |
| ) |
| |
| def is_fast_path_index_select_scale(src, scale, output, padding_idx): |
| return ( |
| is_fast_path_index_select(src, output, padding_idx) and scale.stride(0) == 1 |
| ) |
| |
| def is_fast_path_index_select(src, output, padding_idx): |
| return ( |
| (src.dtype == torch.float or src.dtype == torch.half) |
| and src.stride(1) == 1 |
| and output.stride(1) == 1 |
| and padding_idx < 0 |
| ) |
| |
| def is_fast_path(src, scale, output, padding_idx): |
| if scale is not None: |
| return is_fast_path_index_select_scale(src, scale, output, padding_idx) |
| else: |
| return is_fast_path_index_select(src, output, padding_idx) |
| |
| if offsets.device.type != "cpu": |
| offset2bag = indices.new_empty(indices.size(0)) |
| bag_size = indices.new_empty(offsets.size()) |
| if mode == MODE_MAX: |
| max_indices = indices.new_empty(num_bags, weight.size(1)) |
| else: |
| max_indices = indices.new_empty(0) |
| else: |
| fast_path_sum = is_fast_path(weight, per_sample_weights, output, padding_idx) |
| if mode == MODE_MEAN or mode == MODE_MAX or not fast_path_sum: |
| offset2bag = offsets.new_empty(indices.size(0)) |
| else: |
| offset2bag = offsets.new_empty(0) |
| bag_size = offsets.new_empty(num_bags) |
| max_indices = offsets.new_empty(bag_size.size()) |
| return output, offset2bag, bag_size, max_indices |
| |
| |
| @torch.library.impl(meta_lib, "diag") |
| @torch.library.impl(meta_lib, "diag.out") |
| @out_wrapper() |
| def meta_diag(self, dim=0): |
| check(self.dim() in (1, 2), lambda: "matrix or a vector expected") |
| if self.dim() == 1: |
| sz = self.size(0) + abs(dim) |
| return self.new_empty((sz, sz)) |
| |
| # case: dim is 2 |
| if dim >= 0: |
| sz = min(self.size(0), self.size(1) - dim) |
| else: |
| sz = min(self.size(0) + dim, self.size(1)) |
| return self.new_empty((sz,)) |
| |
| |
| @torch.library.impl(meta_lib, "_embedding_bag_forward_only") |
| def meta_embedding_bag_forward_only(weight, indices, offsets, *args): |
| output, offset2bag, bag_size, max_indices = meta_embedding_bag( |
| weight, indices, offsets, *args |
| ) |
| if offsets.device.type == "cpu": |
| bag_size = offsets.new_empty(offsets.size()) |
| return output, offset2bag, bag_size, max_indices |
| |
| |
| def _get_reduction_dtype(input, dtype, promote_int_to_long=True): |
| # if specified, dtype takes precedence |
| if dtype: |
| return dtype |
| |
| if input.dtype.is_floating_point or input.dtype.is_complex: |
| return input.dtype |
| elif promote_int_to_long: |
| return torch.long |
| |
| return input.dtype |
| |
| |
| @torch.library.impl(meta_lib, "nansum") |
| @torch.library.impl(meta_lib, "nansum.out") |
| @out_wrapper() |
| def meta_nansum(input, dims=None, keepdim=False, *, dtype=None): |
| output_dtype = _get_reduction_dtype(input, dtype, promote_int_to_long=True) |
| dims = utils.reduction_dims(input.shape, dims) |
| output_shape = _compute_reduction_shape(input, dims, keepdim) |
| return input.new_empty(output_shape, dtype=output_dtype) |
| |
| |
| @torch.library.impl(meta_lib, "nanmedian") |
| def meta_nanmedian(input): |
| output_shape = utils.compute_reduction_output_shape( |
| input.shape, tuple(range(input.dim())) |
| ) |
| return input.new_empty(output_shape) |
| |
| |
| @torch.library.impl(meta_lib, "nanmedian.dim_values") |
| @torch.library.impl(meta_lib, "nanmedian.dim") |
| @out_wrapper("values", "indices") |
| def meta_nanmedian_dim(input, dim=-1, keepdim=False): |
| dim = utils.reduction_dims(input.shape, (dim,)) |
| output_shape = _compute_reduction_shape(input, dim, keepdim) |
| return input.new_empty(output_shape), input.new_empty( |
| output_shape, dtype=torch.long |
| ) |
| |
| |
| @torch.library.impl(meta_lib, "nan_to_num") |
| def meta_nan_to_num(self, nan=None, posinf=None, neginf=None): |
| return self.new_empty(self.shape) |
| |
| |
| @torch.library.impl(meta_lib, "remainder.Scalar_Tensor") |
| def meta_remainder_scalar(scalar, other): |
| return other % scalar |
| |
| |
| @torch.library.impl(meta_lib, "logical_not_") |
| def meta_logical_not_(self): |
| return self |
| |
| |
| # We must also trigger meta registrations from PrimTorch ref |
| # decompositions |
| import torch._refs |
| import torch._refs.nn.functional |
| import torch._refs.special |