| # The Tensor classes are added to this module by python_tensor.cpp |
| from typing import Optional, Tuple, List, Union |
| |
| import torch |
| from torch._C import _add_docstr, _sparse # type: ignore[attr-defined] |
| from torch import Tensor |
| |
| # A workaround to support both TorchScript and MyPy: |
| from typing import TYPE_CHECKING |
| if TYPE_CHECKING: |
| from torch.types import _dtype as DType |
| DimOrDims = Optional[Union[int, Tuple[int], List[int]]] |
| else: |
| # The JIT doesn't understand Union, nor torch.dtype here |
| DType = int |
| DimOrDims = Optional[Tuple[int]] |
| |
| |
| __all__ = [ |
| 'addmm', |
| 'mm', |
| 'sum', |
| 'softmax', |
| 'log_softmax', |
| ] |
| |
| |
| addmm = _add_docstr(_sparse._sparse_addmm, r""" |
| sparse.addmm(mat, mat1, mat2, *, beta=1., alpha=1.) -> Tensor |
| |
| This function does exact same thing as :func:`torch.addmm` in the forward, |
| except that it supports backward for sparse COO matrix :attr:`mat1`. |
| When :attr:`mat1` is a COO tensor it must have `sparse_dim = 2`. |
| When inputs are COO tensors, this function also supports backward for both inputs. |
| |
| Supports both CSR and COO storage formats. |
| |
| .. note:: |
| This function doesn't support computing derivaties with respect to CSR matrices. |
| |
| Args: |
| mat (Tensor): a dense matrix to be added |
| mat1 (Tensor): a sparse matrix to be multiplied |
| mat2 (Tensor): a dense matrix to be multiplied |
| beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`) |
| alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) |
| """) |
| |
| |
| mm = _add_docstr(_sparse._sparse_mm, r""" |
| Performs a matrix multiplication of the sparse matrix :attr:`mat1` |
| and the (sparse or strided) matrix :attr:`mat2`. Similar to :func:`torch.mm`, if :attr:`mat1` is a |
| :math:`(n \times m)` tensor, :attr:`mat2` is a :math:`(m \times p)` tensor, out will be a |
| :math:`(n \times p)` tensor. |
| When :attr:`mat1` is a COO tensor it must have `sparse_dim = 2`. |
| When inputs are COO tensors, this function also supports backward for both inputs. |
| |
| Supports both CSR and COO storage formats. |
| |
| .. note:: |
| This function doesn't support computing derivaties with respect to CSR matrices. |
| |
| Args: |
| mat1 (Tensor): the first sparse matrix to be multiplied |
| mat2 (Tensor): the second matrix to be multiplied, which could be sparse or dense |
| |
| Shape: |
| The format of the output tensor of this function follows: |
| - sparse x sparse -> sparse |
| - sparse x dense -> dense |
| |
| Example:: |
| |
| >>> a = torch.randn(2, 3).to_sparse().requires_grad_(True) |
| >>> a |
| tensor(indices=tensor([[0, 0, 0, 1, 1, 1], |
| [0, 1, 2, 0, 1, 2]]), |
| values=tensor([ 1.5901, 0.0183, -0.6146, 1.8061, -0.0112, 0.6302]), |
| size=(2, 3), nnz=6, layout=torch.sparse_coo, requires_grad=True) |
| |
| >>> b = torch.randn(3, 2, requires_grad=True) |
| >>> b |
| tensor([[-0.6479, 0.7874], |
| [-1.2056, 0.5641], |
| [-1.1716, -0.9923]], requires_grad=True) |
| |
| >>> y = torch.sparse.mm(a, b) |
| >>> y |
| tensor([[-0.3323, 1.8723], |
| [-1.8951, 0.7904]], grad_fn=<SparseAddmmBackward>) |
| >>> y.sum().backward() |
| >>> a.grad |
| tensor(indices=tensor([[0, 0, 0, 1, 1, 1], |
| [0, 1, 2, 0, 1, 2]]), |
| values=tensor([ 0.1394, -0.6415, -2.1639, 0.1394, -0.6415, -2.1639]), |
| size=(2, 3), nnz=6, layout=torch.sparse_coo) |
| """) |
| |
| |
| sampled_addmm = _add_docstr(_sparse.sparse_sampled_addmm, r""" |
| sparse.sampled_addmm(input, mat1, mat2, *, beta=1., alpha=1., out=None) -> Tensor |
| |
| Performs a matrix multiplication of the dense matrices :attr:`mat1` and :attr:`mat2` at the locations |
| specified by the sparsity pattern of :attr:`input`. The matrix :attr:`input` is added to the final result. |
| |
| Mathematically this performs the following operation: |
| |
| .. math:: |
| |
| \text{out} = \alpha\ (\text{mat1} \mathbin{@} \text{mat2})*\text{spy}(\text{input}) + \beta\ \text{input} |
| |
| where :math:`\text{spy}(\text{input})` is the sparsity pattern matrix of :attr:`input`, :attr:`alpha` |
| and :attr:`beta` are the scaling factors. |
| :math:`\text{spy}(\text{input})` has value 1 at the positions where :attr:`input` has non-zero values, and 0 elsewhere. |
| |
| .. note:: |
| :attr:`input` must be a sparse CSR tensor. :attr:`mat1` and :attr:`mat2` must be dense tensors. |
| This function is implemented only for tensors on CUDA devices. |
| |
| Args: |
| input (Tensor): a sparse CSR matrix of shape `(m, n)` to be added and used to compute |
| the sampled matrix multiplication |
| mat1 (Tensor): a dense matrix of shape `(m, k)` to be multiplied |
| mat2 (Tensor): a dense matrix of shape `(k, n)` to be multiplied |
| |
| Keyword args: |
| beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) |
| alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) |
| out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. |
| |
| Examples:: |
| |
| >>> input = torch.eye(3, device='cuda').to_sparse_csr() |
| >>> mat1 = torch.randn(3, 5, device='cuda') |
| >>> mat2 = torch.randn(5, 3, device='cuda') |
| >>> torch.sparse.sampled_addmm(input, mat1, mat2) |
| tensor(crow_indices=tensor([0, 1, 2, 3]), |
| col_indices=tensor([0, 1, 2]), |
| values=tensor([ 0.2847, -0.7805, -0.1900]), device='cuda:0', |
| size=(3, 3), nnz=3, layout=torch.sparse_csr) |
| >>> torch.sparse.sampled_addmm(input, mat1, mat2).to_dense() |
| tensor([[ 0.2847, 0.0000, 0.0000], |
| [ 0.0000, -0.7805, 0.0000], |
| [ 0.0000, 0.0000, -0.1900]], device='cuda:0') |
| >>> torch.sparse.sampled_addmm(input, mat1, mat2, beta=0.5, alpha=0.5) |
| tensor(crow_indices=tensor([0, 1, 2, 3]), |
| col_indices=tensor([0, 1, 2]), |
| values=tensor([ 0.1423, -0.3903, -0.0950]), device='cuda:0', |
| size=(3, 3), nnz=3, layout=torch.sparse_csr) |
| """) |
| |
| |
| def sum(input: Tensor, dim: DimOrDims = None, |
| dtype: Optional[DType] = None) -> Tensor: |
| r""" |
| Returns the sum of each row of the sparse tensor :attr:`input` in the given |
| dimensions :attr:`dim`. If :attr:`dim` is a list of dimensions, |
| reduce over all of them. When sum over all ``sparse_dim``, this method |
| returns a dense tensor instead of a sparse tensor. |
| |
| All summed :attr:`dim` are squeezed (see :func:`torch.squeeze`), resulting an output |
| tensor having :attr:`dim` fewer dimensions than :attr:`input`. |
| |
| During backward, only gradients at ``nnz`` locations of :attr:`input` |
| will propagate back. Note that the gradients of :attr:`input` is coalesced. |
| |
| Args: |
| input (Tensor): the input sparse tensor |
| dim (int or tuple of ints): a dimension or a list of dimensions to reduce. Default: reduce |
| over all dims. |
| dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. |
| Default: dtype of :attr:`input`. |
| |
| Example:: |
| |
| >>> nnz = 3 |
| >>> dims = [5, 5, 2, 3] |
| >>> I = torch.cat([torch.randint(0, dims[0], size=(nnz,)), |
| torch.randint(0, dims[1], size=(nnz,))], 0).reshape(2, nnz) |
| >>> V = torch.randn(nnz, dims[2], dims[3]) |
| >>> size = torch.Size(dims) |
| >>> S = torch.sparse_coo_tensor(I, V, size) |
| >>> S |
| tensor(indices=tensor([[2, 0, 3], |
| [2, 4, 1]]), |
| values=tensor([[[-0.6438, -1.6467, 1.4004], |
| [ 0.3411, 0.0918, -0.2312]], |
| |
| [[ 0.5348, 0.0634, -2.0494], |
| [-0.7125, -1.0646, 2.1844]], |
| |
| [[ 0.1276, 0.1874, -0.6334], |
| [-1.9682, -0.5340, 0.7483]]]), |
| size=(5, 5, 2, 3), nnz=3, layout=torch.sparse_coo) |
| |
| # when sum over only part of sparse_dims, return a sparse tensor |
| >>> torch.sparse.sum(S, [1, 3]) |
| tensor(indices=tensor([[0, 2, 3]]), |
| values=tensor([[-1.4512, 0.4073], |
| [-0.8901, 0.2017], |
| [-0.3183, -1.7539]]), |
| size=(5, 2), nnz=3, layout=torch.sparse_coo) |
| |
| # when sum over all sparse dim, return a dense tensor |
| # with summed dims squeezed |
| >>> torch.sparse.sum(S, [0, 1, 3]) |
| tensor([-2.6596, -1.1450]) |
| """ |
| if dtype is None: |
| if dim is not None: |
| return torch._sparse_sum(input, dim) |
| else: |
| return torch._sparse_sum(input) |
| else: |
| if dim is not None: |
| return torch._sparse_sum(input, dim, dtype=dtype) |
| else: |
| return torch._sparse_sum(input, dtype=dtype) |
| |
| |
| softmax = _add_docstr(_sparse._sparse_softmax, r""" |
| sparse.softmax(input, dim, *, dtype=None) -> Tensor |
| |
| Applies a softmax function. |
| |
| Softmax is defined as: |
| |
| :math:`\text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)}` |
| |
| where :math:`i, j` run over sparse tensor indices and unspecified |
| entries are ignores. This is equivalent to defining unspecified |
| entries as negative infinity so that :math:`exp(x_k) = 0` when the |
| entry with index :math:`k` has not specified. |
| |
| It is applied to all slices along `dim`, and will re-scale them so |
| that the elements lie in the range `[0, 1]` and sum to 1. |
| |
| Args: |
| input (Tensor): input |
| dim (int): A dimension along which softmax will be computed. |
| dtype (:class:`torch.dtype`, optional): the desired data type |
| of returned tensor. If specified, the input tensor is |
| casted to :attr:`dtype` before the operation is |
| performed. This is useful for preventing data type |
| overflows. Default: None |
| """) |
| |
| |
| log_softmax = _add_docstr(_sparse._sparse_log_softmax, r""" |
| sparse.log_softmax(input, dim, *, dtype=None) -> Tensor |
| |
| Applies a softmax function followed by logarithm. |
| |
| See :class:`~torch.sparse.softmax` for more details. |
| |
| Args: |
| input (Tensor): input |
| dim (int): A dimension along which softmax will be computed. |
| dtype (:class:`torch.dtype`, optional): the desired data type |
| of returned tensor. If specified, the input tensor is |
| casted to :attr:`dtype` before the operation is |
| performed. This is useful for preventing data type |
| overflows. Default: None |
| """) |
| |
| |
| spdiags = _add_docstr( |
| _sparse._spdiags, |
| r""" |
| sparse.spdiags(diagonals, offsets, shape, layout=None) -> Tensor |
| |
| Creates a sparse 2D tensor by placing the values from rows of |
| :attr:`diagonals` along specified diagonals of the output |
| |
| The :attr:`offsets` tensor controls which diagonals are set. |
| |
| - If :attr:`offsets[i]` = 0, it is the main diagonal |
| - If :attr:`offsets[i]` < 0, it is below the main diagonal |
| - If :attr:`offsets[i]` > 0, it is above the main diagonal |
| |
| The number of rows in :attr:`diagonals` must match the length of :attr:`offsets`, |
| and an offset may not be repeated. |
| |
| Args: |
| diagonals (Tensor): Matrix storing diagonals row-wise |
| offsets (Tensor): The diagonals to be set, stored as a vector |
| shape (2-tuple of ints): The desired shape of the result |
| Keyword args: |
| layout (:class:`torch.layout`, optional): The desired layout of the |
| returned tensor. ``torch.sparse_coo``, ``torch.sparse_csc`` and ``torch.sparse_csr`` |
| are supported. Default: ``torch.sparse_coo`` |
| |
| Examples: |
| |
| Set the main and first two lower diagonals of a matrix:: |
| |
| >>> diags = torch.arange(9).reshape(3, 3) |
| >>> diags |
| tensor([[0, 1, 2], |
| [3, 4, 5], |
| [6, 7, 8]]) |
| >>> s = torch.sparse.spdiags(diags, torch.tensor([0, -1, -2]), (3, 3)) |
| >>> s |
| tensor(indices=tensor([[0, 1, 2, 1, 2, 2], |
| [0, 1, 2, 0, 1, 0]]), |
| values=tensor([0, 1, 2, 3, 4, 6]), |
| size=(3, 3), nnz=6, layout=torch.sparse_coo) |
| >>> s.to_dense() |
| tensor([[0, 0, 0], |
| [3, 1, 0], |
| [6, 4, 2]]) |
| |
| |
| Change the output layout:: |
| |
| >>> diags = torch.arange(9).reshape(3, 3) |
| >>> diags |
| tensor([[0, 1, 2],[3, 4, 5], [6, 7, 8]) |
| >>> s = torch.sparse.spdiags(diags, torch.tensor([0, -1, -2]), (3, 3), layout=torch.sparse_csr) |
| >>> s |
| tensor(crow_indices=tensor([0, 1, 3, 6]), |
| col_indices=tensor([0, 0, 1, 0, 1, 2]), |
| values=tensor([0, 3, 1, 6, 4, 2]), size=(3, 3), nnz=6, |
| layout=torch.sparse_csr) |
| >>> s.to_dense() |
| tensor([[0, 0, 0], |
| [3, 1, 0], |
| [6, 4, 2]]) |
| |
| Set partial diagonals of a large output:: |
| |
| >>> diags = torch.tensor([[1, 2], [3, 4]]) |
| >>> offsets = torch.tensor([0, -1]) |
| >>> torch.sparse.spdiags(diags, offsets, (5, 5)).to_dense() |
| tensor([[1, 0, 0, 0, 0], |
| [3, 2, 0, 0, 0], |
| [0, 4, 0, 0, 0], |
| [0, 0, 0, 0, 0], |
| [0, 0, 0, 0, 0]]) |
| |
| .. note:: |
| |
| When setting the values along a given diagonal the index into the diagonal |
| and the index into the row of :attr:`diagonals` is taken as the |
| column index in the output. This has the effect that when setting a diagonal |
| with a positive offset `k` the first value along that diagonal will be |
| the value in position `k` of the row of :attr:`diagonals` |
| |
| Specifying a positive offset:: |
| |
| >>> diags = torch.tensor([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) |
| >>> torch.sparse.spdiags(diags, torch.tensor([0, 1, 2]), (5, 5)).to_dense() |
| tensor([[1, 2, 3, 0, 0], |
| [0, 2, 3, 0, 0], |
| [0, 0, 3, 0, 0], |
| [0, 0, 0, 0, 0], |
| [0, 0, 0, 0, 0]]) |
| """) |