blob: 29e7d55d76ce180d9a60270a2ec4a7514b028220 [file] [log] [blame]
from typing import Any, Callable
import torch
def setup_baseline():
torch._dynamo.epilogue_fusion = False
torch._dynamo.config.automatic_dynamic_shapes = False
torch._dynamo.config.force_parameter_static_shapes = False
torch._dynamo.config.cache_size_limit = 10000
torch._inductor.config.force_fuse_int_mm_with_mul = True
torch._inductor.config.use_mixed_mm = True
def torchao_optimize_ctx(quantization: str):
import torchao
from torchao.quantization import (
change_linear_weights_to_int4_woqtensors,
change_linear_weights_to_int8_dqtensors,
change_linear_weights_to_int8_woqtensors,
)
def inner(model_iter_fn: Callable):
def _torchao_apply(module: torch.nn.Module, example_inputs: Any):
if getattr(module, "_quantized", None) is None:
if quantization == "int8dynamic":
change_linear_weights_to_int8_dqtensors(module)
elif quantization == "int8weightonly":
change_linear_weights_to_int8_woqtensors(module)
elif quantization == "int4weightonly":
change_linear_weights_to_int4_woqtensors(module)
elif quantization == "autoquant":
torchao.autoquant(module, error_on_unseen=False)
if isinstance(example_inputs, dict):
module(**example_inputs)
else:
module(*example_inputs)
from torchao.quantization.autoquant import AUTOQUANT_CACHE
assert (
len(AUTOQUANT_CACHE) > 0
), f"Err: found no autoquantizable layers in model {type(module)}, stopping autoquantization"
elif quantization == "noquant":
pass
else:
raise AssertionError(
f"Unsupposed quantization mode {quantization}."
)
setattr(module, "_quantized", True) # noqa: B010
model_iter_fn(module, example_inputs)
return _torchao_apply
return inner