blob: fe5bd310d8cca0ffde963a19906f3e935e923ac3 [file] [log] [blame]
import pytest
import torch
from .fuser import set_fuser
from .runner import get_nn_runners
@pytest.fixture(scope="class")
def modeldef(request, net_name, executor, fuser):
set_fuser(fuser, executor)
# Given a 'net_name' provided by generate_tests, build the thing
name, rnn_creator, context = get_nn_runners(net_name)[0]
creator_args = creator_args = {
"seqLength": 100,
"numLayers": 1,
"inputSize": 512,
"hiddenSize": 512,
"miniBatch": 64,
"device": "cuda",
"seed": None,
}
return rnn_creator(**creator_args)
def cuda_sync(func, *args, **kwargs):
out = func(*args, **kwargs)
torch.cuda.synchronize()
return out
@pytest.mark.benchmark(
warmup=True,
warmup_iterations=3,
disable_gc=True,
max_time=0.1,
group="fastrnns",
)
class TestBenchNetwork:
# See 'modeldef' fixture, which provides the things to benchmark
def test_forward(self, modeldef, benchmark):
forward_output = benchmark(cuda_sync, modeldef.forward, *modeldef.inputs)
def test_backward(self, modeldef, benchmark):
backward_input = modeldef.forward(*modeldef.inputs)
if modeldef.backward_setup is not None:
backward_input = modeldef.backward_setup(backward_input)
if modeldef.backward is not None:
benchmark(cuda_sync, modeldef.backward, *backward_input, retain_graph=True)
with torch.no_grad():
for param in modeldef.params:
assert param.grad is not None
param.grad.zero_()