blob: e195144f1e1166d3808a1020f6b070639cd6b994 [file] [log] [blame]
import scipy.special
from . import benchmark
class SoftmaxBench(benchmark.Benchmark):
def __init__(self, mode, device, dtype, M, N):
super().__init__(mode, device, dtype)
self.M = M
self.N = N
self.dtype = dtype
self.inputs = [
self.randn(
[M, N], device=device, dtype=dtype, requires_grad=self.requires_grad
)
]
def forward(self, inputs):
x = self.add(inputs, 0.001)
y = self.softmax(x, dim=-1, dtype=self.dtype)
return y
def reference(self):
return scipy.special.softmax(self.numpy(self.inputs), axis=-1)
def config(self):
return [self.M, self.N]
@staticmethod
def module():
return "softmax"
def memory_workload(self):
if self.mode == "fwd":
sol_count = 1 + 1
algorithmic_count = 3 + 1
else:
sol_count = (1 + 1) + (1 + 1)
algorithmic_count = (3 + 1) + (3 + 1)
buffer_size = self.M * self.N
return {
"sol": buffer_size * sol_count,
"algorithmic": buffer_size * algorithmic_count,
}
@staticmethod
def default_configs():
return [
[480, 20],
[1 << 15, 32],
[128, 1 << 16],
]
benchmark.register_benchmark_class(SoftmaxBench)