blob: 8a7453d460de5938899ad72e11cbe810212015a7 [file] [log] [blame]
import torch
from . import benchmark
class SwishBench(benchmark.Benchmark):
def __init__(self, mode, device, dtype, M, N):
super().__init__(mode, device, dtype)
self.M = M
self.N = N
self.data = self.rand(
[M, N], device=device, dtype=dtype, requires_grad=self.requires_grad
)
self.inputs = [self.data]
self.zeros = torch.zeros(M, N, device=device)
self.six = self.zeros + 6.0
self.three = self.zeros + 3.0
self.sixth = self.zeros + 1.0 / 6.0
def forward(self, inp):
y = inp * (torch.min(torch.relu(inp), self.six) + self.three) * self.sixth
return y
def reference(self):
return self.numpy(self.forward(self.data))
def config(self):
return [self.M, self.N]
@staticmethod
def module():
return "swish"
def memory_workload(self):
if self.mode == "fwd":
sol_count = 1 + 1
algorithmic_count = 3 + 1
else:
sol_count = (1 + 1) + (1 + 1)
algorithmic_count = (3 + 1) + (3 + 1)
buffer_size = self.M * self.N
return {
"sol": buffer_size * sol_count,
"algorithmic": buffer_size * algorithmic_count,
}
@staticmethod
def default_configs():
return [[128, 1 << 16]]
benchmark.register_benchmark_class(SwishBench)