blob: eacf6cf0f00dbeec52ef793a733e5843b88da8fb [file] [log] [blame]
import argparse
import itertools
import random
import warnings
from dataclasses import dataclass
from pathlib import Path
from pprint import pprint
from typing import List, Optional
import numpy as np
from prettytable import PrettyTable
from tqdm import tqdm
import torch
import torch.utils.benchmark as benchmark
from torch.backends.cuda import sdp_kernel
warnings.filterwarnings("ignore")
@dataclass(frozen=True)
class ExperimentConfig:
batch_size: int
num_heads: int
max_sequence_len: int
embed_dimension: int
dtype: torch.dtype
pad_percentage: Optional[float]
enable_math: bool
enable_flash: bool
enable_mem_efficient: bool
enable_cudnn: bool
def get_entries(self) -> List:
return [
self.batch_size,
self.num_heads,
self.max_sequence_len,
self.embed_dimension,
self.dtype,
self.pad_percentage,
self.enable_math,
self.enable_flash,
self.enable_mem_efficient,
self.enable_cudnn,
]
@classmethod
def get_entry_names(cls) -> List[str]:
return [
"batch_size",
"num_heads",
"max_sequence_len",
"embed_dimension",
"dtype",
"pad_percentage",
"enable_math",
"enable_flash",
"enable_mem_efficient",
"enable_cudnn",
]
@dataclass(frozen=True)
class ExperimentResults:
nn_mha_time: float
compiled_nn_mha_time: Optional[float]
composite_mha_time: float
compiled_composite_mha_time: Optional[float]
def get_entries(self) -> List:
return [
f"{self.nn_mha_time:2f}",
f"{self.compiled_nn_mha_time:2f}" if self.compiled_nn_mha_time else None,
f"{self.composite_mha_time:2f}",
f"{self.compiled_composite_mha_time:2f}"
if self.compiled_composite_mha_time
else None,
]
@classmethod
def get_entry_names(cls) -> List[str]:
return [
"nn_mha_time (\u00B5s)",
"compiled_nn_mha_time (\u00B5s)",
"composite_mha_time (\u00B5s)",
"compiled_composite_mha_time (\u00B5s)",
]
@dataclass(frozen=True)
class Experiment:
config: ExperimentConfig
results: ExperimentResults
def get_entries(self) -> List:
return self.config.get_entries() + self.results.get_entries()
class CompositeMHA(torch.nn.Module):
def __init__(self, num_heads, in_proj_weight, in_proj_bias, out_proj):
super().__init__()
self.in_proj_weight = in_proj_weight
self.in_proj_bias = in_proj_bias
self.out_proj = out_proj
self.num_heads = num_heads
def forward(self, query, key, value, mask):
if not (query is key and key is value):
raise NotImplementedError(
"query, key and value must be the same Tensor for now."
)
if mask is not None:
raise NotImplementedError("mask is currently not supported.")
query_projected = torch.nn.functional.linear(
query, self.in_proj_weight, self.in_proj_bias
)
batch_size = query_projected.size(0)
embed_dim = query_projected.size(2)
head_dim = embed_dim // (self.num_heads * 3)
query, key, value = query_projected.chunk(3, -1)
query = query.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
attn = torch.nn.functional.scaled_dot_product_attention(
query,
key,
value,
attn_mask=None,
dropout_p=0.0,
is_causal=False,
)
attn = attn.transpose(1, 2).reshape(batch_size, -1, self.num_heads * head_dim)
# Match return signature of nn.MHA
return self.out_proj(attn), None
def build_composite_mha_from_nn_mha(pt):
assert pt._qkv_same_embed_dim
in_proj_weight = pt.in_proj_weight
assert in_proj_weight is not None
assert pt.batch_first
return CompositeMHA(pt.num_heads, pt.in_proj_weight, pt.in_proj_bias, pt.out_proj)
def generate_rand_batch(
batch_size,
max_sequence_len,
embed_dimension,
pad_percentage=None,
dtype=torch.float16,
device="cuda",
):
if not pad_percentage:
return (
torch.randn(
batch_size,
max_sequence_len,
embed_dimension,
dtype=dtype,
device=device,
),
None,
)
# Really slow but should work
seq_len_list = [
int(max_sequence_len * (1 - random.gauss(pad_percentage, 0.01)))
for _ in range(batch_size)
]
# Make random ele max length
seq_len_list[random.randint(0, batch_size - 1)] = max_sequence_len
# print(f"Theoretical padding: {pad_percentage} actual: {1 - (sum(seq_len_list) / (batch_size * max_sequence_len))}")
return (
torch.nested.nested_tensor(
[
torch.randn(seq_len, embed_dimension, dtype=dtype, device=device)
for seq_len in seq_len_list
]
),
seq_len_list,
)
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
t0 = benchmark.Timer(
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
)
return t0.blocked_autorange().mean * 1e6
def assert_close_tensors(tensor_a, tensor_b):
# First order sanity check. Not a replacement for rigorous tests.
if tensor_a.is_nested and tensor_b.is_nested:
for a, b in zip(tensor_a.unbind(), tensor_b.unbind()):
assert torch.allclose(a, b, atol=1e-2, rtol=1e-2)
else:
assert torch.allclose(tensor_a, tensor_b, atol=1e-3, rtol=1e-3)
def run_single_experiment(config: ExperimentConfig) -> ExperimentResults:
with sdp_kernel(
enable_math=config.enable_math,
enable_flash=config.enable_flash,
enable_mem_efficient=config.enable_mem_efficient,
enable_cudnn=config.enable_cudnn,
) as kernel_choice, torch.inference_mode() as inference_mode:
dropout_p = 0.0
mask = None
nn_mha = torch.nn.MultiheadAttention(
embed_dim=config.embed_dimension,
num_heads=config.num_heads,
batch_first=True,
dropout=dropout_p,
)
nn_mha = nn_mha.eval().to("cuda", config.dtype)
composite_mha = build_composite_mha_from_nn_mha(nn_mha)
qkv, lengths = generate_rand_batch(
config.batch_size,
config.max_sequence_len,
config.embed_dimension,
config.pad_percentage,
config.dtype,
)
nn_mha_output, _ = nn_mha(qkv, qkv, qkv, mask)
composite_mha_output, _ = composite_mha(qkv, qkv, qkv, mask)
# First order sanity check
assert_close_tensors(nn_mha_output, composite_mha_output)
nn_mha_time = benchmark_torch_function_in_microseconds(
nn_mha, qkv, qkv, qkv, mask
)
composite_mha_time = benchmark_torch_function_in_microseconds(
composite_mha, qkv, qkv, qkv, mask
)
# TorchDynamo will error on NestedTensors
if config.pad_percentage is None:
compiled_nn_mha = torch.compile(nn_mha)
compiled_composite_mha = torch.compile(composite_mha)
compiled_nn_mha_time = benchmark_torch_function_in_microseconds(
compiled_nn_mha, qkv, qkv, qkv, mask
)
compiled_composite_mha_time = benchmark_torch_function_in_microseconds(
compiled_composite_mha,
qkv,
qkv,
qkv,
mask,
)
else:
compiled_nn_mha_time = None
compiled_composite_mha_time = None
results = ExperimentResults(
nn_mha_time,
compiled_nn_mha_time,
composite_mha_time,
compiled_composite_mha_time,
)
return Experiment(config, results)
# Could return generator
def generate_experiments(
batch_sizes, num_heads, max_seq_lens, embed_dims, dtypes, pad_percentages
) -> List[ExperimentConfig]:
configs = []
for bsz, n_heads, seq_len, embed_dim, dtype, padding in itertools.product(
batch_sizes, num_heads, max_seq_lens, embed_dims, dtypes, pad_percentages
):
configs.append(
ExperimentConfig(
batch_size=bsz,
num_heads=n_heads,
max_sequence_len=seq_len,
embed_dimension=embed_dim,
dtype=dtype,
pad_percentage=padding,
enable_math=False,
enable_flash=True,
enable_mem_efficient=True,
enable_cudnn=True,
)
)
return configs
def main(save_path: Optional[Path]):
seed = 123
np.random.seed(seed)
torch.manual_seed(seed)
# Run one timing experiment comparing nn_mha vs composite_mha
config = ExperimentConfig(
batch_size=128,
num_heads=8,
max_sequence_len=512,
embed_dimension=512,
dtype=torch.float16,
pad_percentage=None,
enable_math=False,
enable_flash=True,
enable_mem_efficient=True,
enable_cudnn=True,
)
experiment = run_single_experiment(config)
pprint(experiment)
table = PrettyTable()
table.float_format = ".3"
table.field_names = (
ExperimentConfig.get_entry_names() + ExperimentResults.get_entry_names()
)
# Run a bunch of experiments
batch_sizes = [256]
num_heads = [32]
max_seq_lens = [256]
embed_dims = [512]
dtypes = [torch.bfloat16, torch.float16, torch.float32]
pad_percentages = [None, 0.9]
experiment_configs = generate_experiments(
batch_sizes, num_heads, max_seq_lens, embed_dims, dtypes, pad_percentages
)
experiments: List[Experiment] = []
for experiment_config in tqdm(experiment_configs):
experiment = run_single_experiment(experiment_config)
experiments.append(experiment)
table.add_row(experiment.get_entries())
print(table)
csv_string = table.get_csv_string()
if save_path is not None:
with open(save_path, "w") as csvfile:
csvfile.write(csv_string)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--save-path", "--save_path", type=str, help="Path to save the results"
)
args = parser.parse_args()
save_path = Path(args.save_path) if args.save_path else None
main(save_path)