| from . import benchmark |
| |
| |
| class PoolingBench(benchmark.Benchmark): |
| def __init__(self, case, mode, device, dtype, kernel_size, N, C, H, W): |
| super().__init__(mode, device) |
| self.case = case |
| self.kernel_size = kernel_size |
| self.N = N |
| self.C = C |
| self.H = H |
| self.W = W |
| self.data = self.rand( |
| [N, C, H, W], device=device, dtype=dtype, requires_grad=self.requires_grad |
| ) |
| |
| def forward(self): |
| if self.case == "maxpool": |
| y = self.max_pool2d(self.data, self.kernel_size, stride=1) |
| elif self.case == "avgpool": |
| y = self.avg_pool2d(self.data, self.kernel_size, stride=1) |
| return y |
| |
| def config(self): |
| return [self.kernel_size, self.N, self.C, self.H, self.W] |
| |
| def memory_workload(self): |
| if self.mode == "fwd": |
| sol_count = 1 + 1 |
| algorithmic_count = 1 + 1 |
| else: |
| sol_count = (1 + 1) + (1 + 1) |
| algorithmic_count = (1 + 1) + (2 + 1) |
| |
| buffer_size = self.N * self.C * self.H * self.W |
| return { |
| "sol": buffer_size * sol_count, |
| "algorithmic": buffer_size * algorithmic_count, |
| } |
| |
| @staticmethod |
| def default_configs(): |
| return [[3, 16, 32, 256, 256]] |
| |
| |
| class MaxPoolBench(PoolingBench): |
| def __init__(self, *args): |
| super().__init__("maxpool", *args) |
| |
| @staticmethod |
| def module(): |
| return "maxpool" |
| |
| |
| class AvgPoolBench(PoolingBench): |
| def __init__(self, *args): |
| super().__init__("avgpool", *args) |
| |
| @staticmethod |
| def module(): |
| return "avgpool" |
| |
| |
| benchmark.register_benchmark_class(MaxPoolBench) |
| benchmark.register_benchmark_class(AvgPoolBench) |